Influence of Cutting Dimensions and Cooking Methods on the Nutritional Composition and Sensory Attributes of Zucchini (Cucurbita pepo L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Cooking Methods
2.3. Physicochemical Characterisation
2.4. Analysis of Bioactive Compounds
2.4.1. Extraction of Sample
2.4.2. Phenolic Compound Determination
2.4.3. Antioxidant Activity Determination
2.5. Instrumental Texture Analysis
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results
3.1. Nutritional and Chemical Profile
3.2. Antioxidant Properties
3.3. Instrumental Texture Analysis
3.4. Sensorial Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meldrum, O.W.; Yakubov, G.E. Journey of dietary fiber along the gastrointestinal tract: Role of physical interactions, mucus, and biochemical transformations. Crit. Rev. Food Sci. Nutr. 2024, 4264–4292, advance online publication. [Google Scholar] [CrossRef]
- Mahajan, A.; Sharma, P.; Goudar, G.; Gogoi, P.; Ananthan, R.; Kalpuri, S.; Longvah, T. Evaluating the bioaccessibility and antioxidant activity of polyphenols extracted from vegetables by-product. Food Bioeng. 2024, 3, 250–265. [Google Scholar] [CrossRef]
- González Ramos, C. Ensayo Comparativo de Cultivares de Calabacín Redondo (Cucurbita pepo L.), Bajo Invernadero. Bachelor’s Thesis, Facultad Ingeniería Agrícola y del Medio Rural, Universidad de La Laguna, Tenerife, Spain, 2019. [Google Scholar]
- Dussán-Sarria, S.; Garcia-Mogollon, C.A.; Gutiérrez-Guzmán, N. Cambios Fisicoquímicos y Sensoriales Producidos por el Tipo de Corte y Empaque en Zanahoria (Daucus carota L.) Mínimamente Procesada. Inf. Tecnol. 2015, 26, 63–70. [Google Scholar] [CrossRef]
- Adiletta, G.; Di Matteo, M.; Albanese, D.; Farina, V.; Cinquanta, L.; Corona, O. Changes in physico-chemical traits and enzymes oxidative system during cold storage of ‘Formosa’ papaya fresh cut fruits grown in the Mediterranean area. Ital. J. Food Sci. 2020, 32, 845–857. [Google Scholar] [CrossRef]
- Simões, A.N.; Ventrella, M.C.; Moretti, C.L.; Carnelossi, M.A.; Puschmann, R. Anatomical and physiological evidence of white blush on baby carrot surfaces. Postharvest Biol. Technol. 2010, 55, 45–52. [Google Scholar] [CrossRef]
- Emmambux, N.M.; Minnaar, A. The effect of edible coatings and polymeric packaging films on the quality of minimally processed carrots. J. Sci. Food Agric. 2003, 83, 1065–1071. [Google Scholar] [CrossRef]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables: Effect of cooking on vegetable phytochemicals. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef]
- Ramírez Anaya, J.P. Influencia de las Técnicas Culinarias Sobre el Contenido de Polifenoles y Capacidad Antioxidante en Hortalizas de la Dieta Mediterránea. Bachelor’s Thesis, Universidad de Granada, Granada, Spain, 2014. [Google Scholar]
- Myhrvold, N.; Young, C.; Bilet, M. Modernist Cuisine: The Art and Science of Cooking; Cooking Lab.: Port Washington, NY, USA, 2011. [Google Scholar]
- Razzak, A.; Mahjabin, T.; Munim Khan, M.R.; Hossain, M.; Sadia, U.; Zzaman, W. Effect of cooking methods on the nutritional quality of selected vegetables in Sylhet City. Heliyon 2023, 9, e21709. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Effect of Different Cooking Methods on Polyphenols, Carotenoids and Antioxidant Activities of Selected Edible Leaves. Antioxidants 2018, 7, 117. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ediriweera, M.K.; Boo, K.-H.; Kim, C.S.; Cho, S.K. Effects of Cooking and Processing Methods on Phenolic Contents and Antioxidant and Anti-Proliferative Activities of Broccoli Florets. Antioxidants 2021, 10, 641. [Google Scholar] [CrossRef]
- De Beer, D.; Beelders, T.; Human, C.; Joubert, E. Assessment of the stability of compounds belonging to neglected phenolic classes and flavonoid sub classes using reaction kinetic modeling. Crit. Rev. Food Sci. Nutr. 2022, 63, 11802–11829. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association Official Analytical Chemists, 17th ed.; Nielsen: New York, NY, USA, 2000; Available online: https://www.aoac.org/ (accessed on 1 March 2024).
- Ferracane, R.; Pellegrini, N.; Visconti, A.; Graziani, G.; Chiavaro, E.; Miglio, C.; Fogliano, V. Effects of Different Cooking Methods on Antioxidant Profile, Antioxidant Capacity, and Physical Characteristics of Artichoke. J. Agric. Food Chem. 2008, 56, 8601–8608. [Google Scholar] [CrossRef]
- Morillas-Ruiz, J.M.; Delgado-Alarcón, J.M. Análisis nutricional de alimentos vegetales con diferentes orígenes: Evaluación de capacidad antioxidante y compuestos fenólicos totales. Nutr. Clín. Diet. Hosp 2012, 32, 8–20. [Google Scholar]
- Sánchez-Moreno, C.; Plaza, L.; De Ancos, B.; Cano, M.P. Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices: Bioactive compounds and antioxidant capacity of commercial orange juices. J. Sci. Food Agric. 2003, 83, 430–443. [Google Scholar] [CrossRef]
- UNE-EN ISO 8589:2010; Sensory Analysis. General Guidance for the Design of Test Rooms. ISO: Geneve, Switzerland, 2010.
- Salazar Serna, E. Tecnología y Caracterización de Productos Cárnicos Curados Obtenidos a Partir de Cerdo Chato Murciano. Ph.D. Thesis, Universidad Católica San Antonio de Murcia, Murcia, Spain, 2013. [Google Scholar]
- Paull, R. Effect of temperature and relative humidity on fresh commodity quality. Postharvest Biol. Technol. 1999, 15, 263–277. [Google Scholar] [CrossRef]
- Fellows, P.J. Food Processing Technology Principles and Practice Second Edition; Woodhead Publishing Limited: Cambridge, UK, 2022. [Google Scholar]
- Mohapatra, D.; Rao, P.S. A thin layer drying model of parboiled wheat. J. Food Eng. 2005, 66, 513–518. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, M.; Mujumdar, A.S.; Duan, X.; Sun, J. Effect of different drying methods on the drying characteristics, chemical properties and antioxidant capacity of Ziziphus jujuba var. Spinosa fruit. LWT 2024, 196, 115873. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, J.; Mujumdar, A.S.; Wang, S. Trends in microwave-related drying of fruits and vegetables. Trends Food Sci. Technol. 2006, 17, 524–534. [Google Scholar] [CrossRef]
- Chuyen, H.V.; Nguyen, M.H.; Roach, P.D.; Golding, J.B.; Parks, S.E. Effects of pretreatments and air drying temperatures on the carotenoid composition and antioxidant capacity of dried gac peel. J. Food Process. Preserv. 2017, 41, e13226. [Google Scholar] [CrossRef]
- Cano Acevedo, Y. Evaluación de la Incidencia de las Operaciones Unitarias en el Comportamiento Fisiológico de Hortalizas Mínimamente Procesadas. Ph.D. Thesis, Facultad de Ingeniería de Alimentos, Corporación Universitaria Lasallista, Antioquía, Colombia, 2020. [Google Scholar]
- Antunes, A.M.; Manoel, L.; Evangelista, R.M.; Ono, E.O.; Vieites, R.L.; Antunes, A.M.; Manoel, L.; Evangelista, R.M.; Ono, E.O.; Vieites, R.L. Quality of fresh-cut onion subjected to different cut types. Hortic. Bras. 2014, 32, 254–258. [Google Scholar] [CrossRef]
- Frati, A.; Antonini, E.; Ninfali, P. Chapter 2. Industrial freezing, cooking, and storage differently affect antioxidant nutrients in vegetables. In Fruits, Vegetables and Herbs; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Correa, D.A.; Castillo, P.M.; Díaz, S.T. Pérdida de humedad y absorción de aceite en la fritura a vacío de un producto cárnico tipo chorizo con incorporación de harina de garbanzo (Cicer arietum). Cienc. Tecnol. Aliment. 2018, 15, 5–15. [Google Scholar] [CrossRef]
- Saguy, I.S.; Dana, D. Integrated approach to deep fat frying: Engineering, nutrition, health and consumer aspects. J. Food Eng. 2003, 56, 143–152. [Google Scholar] [CrossRef]
- Chiou, A.; Kalogeropoulos, N.; Salta, F.N.; Efstathiou, P.; Andrikopoulos, N.K. Pan-frying of French fries in three different edible oils enriched with olive leaf extract: Oxidative stability and fate of microconstituents. LWT 2009, 42, 1090–1097. [Google Scholar] [CrossRef]
- Bouchon, P. Understanding oil uptake during deep-fat frying. Adv. Food Nutr. Res. 2009, 57, 209–234. [Google Scholar] [CrossRef] [PubMed]
- Dana, D.; Saguy, I.S. Mechanism of oil uptake during deep-fat frying and the surfactant effect—Theory and myth. Adv. Colloid Interface Sci. 2006, 21, 128–130, 267–272. [Google Scholar] [CrossRef]
- Pedreschi, F.; Moyano, P.; Kaack, K.; Granby, K. Color changes and acrylamide formation in fried potato slices. Food Res. Int. 2005, 38, 1–9. [Google Scholar] [CrossRef]
- Murador, D.; Braga, A.R.; Da Cunha, D.; De Rosso, V. Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta-analytic investigation. Crit. Rev. Food Sci. Nutr. 2018, 58, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
- Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J. Agric. Food Chem. 2008, 56, 139–147. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar] [CrossRef]
- Bourne, M.C. Food Texture and Viscosity: Concept and Measurement, 2nd ed.; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Nishinari, K.; Kohyama, K. Texture and rheology in food and health. Food Funct. 2015, 6, 3065–3071. [Google Scholar]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Waldron, K.W.; Parker, M.L.; Smith, A.C. Plant cell walls and food quality. Compr. Rev. Food Sci. Food Saf. 2003, 2, 101–119. [Google Scholar] [CrossRef]
- Rivera-López, J.; Vázquez-Ortiz, F.A.; Ayala-Zavala, J.F.; González-Aguilar, G.A. Efecto del corte y la temperatura de almacenamiento en la calidad de Papaya fresca cortada (Carica Papaya L. CV. “maradol”). Rev. Iber. Tecnol. Postcosecha 2005, 6, 83–94. [Google Scholar]
- González-Aguilar, G.A.; Ayala-Zavala, J.F.; Ruiz-Cruz, S.; Acedo-Félix, E.; Dıaz-Cinco, M.E. Effect of temperature and modified atmosphere packaging on overall quality of fresh-cut bell peppers. LWT 2004, 37, 817–826. [Google Scholar] [CrossRef]
- Karakurt, Y.; Huber, D.J. Activities of several membrane and cell-wall hydrolases, ethylene biosynthetic enzymes, and cell wall polyuronide degradation during low-temperature storage of intact and fresh-cut papaya (Carica papaya) fruit. Postharvest Biol. Technol. 2003, 28, 219–229. [Google Scholar] [CrossRef]
- Monalisa, K.; Bhuiyan, J.; Islam, M.; Sayem, A. Boiling-induced changes on physicochemical, bioactive compounds, color, and texture properties of pumpkin (Cucurbita maxima). Food Sci. Technol. Int. 2019, 26, 333–343. [Google Scholar] [CrossRef]
- Irfan, M.; Inam-Ur-Raheem, M.; Muhammad Aadil, R.; Nadeem, R.; Shabbir, U.; Javed, A. Impact of different cut types on the quality of fresh-cut potatoes during storage. Braz. J. Food Technol. 2020, 23, 1–7. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. Kinetic Modeling of Food Quality: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2008, 7, 144–158. [Google Scholar] [CrossRef]
Culinary Treatment | Cutting Size | Dry Extract | Ash | Protein | Fat |
---|---|---|---|---|---|
Raw | 10 × 10 × 10 | 4.66 ± 0.45 d | 0.32 ± 0.11 b | 1.51 ± 0.07 c | 0.08 ± 0.00 c |
20 × 20 × 20 | 5.23 ± 0.08 cd | 0.62 ± 0.02 cd | 1.52 ± 0.07 c | 0.07 ± 0.01 c | |
Steam | 10 × 10 × 10 | 4.96 ± 0.54 cd | 0.55 ± 0.01 d | 1.34 ± 0.03 c | 0.06 ± 0.06 c |
20 × 20 × 20 | 5.53 ± 0.16 c | 0.65 ± 0.00 cd | 1.16 ± 0.08 bc | 0.04 ± 0.01 c | |
Stir-frying | 10 × 10 × 10 | 8.19 ± 0.63 b | 0.82 ± 0.15 c | 2.08 ± 0.17 a | 0.44 ± 0.16 b |
20 × 20 × 20 | 10.18 ± 0.73 a | 1.17 ± 0.06 a | 2.01 ± 0.25 ab | 0.95 ± 0.06 a | |
Results of ANOVA | |||||
p-value | Cutting size | 0.000001 | 0.000608 | 0.423675 | 0.090558 |
Culinary treatment | 0.000000 | 0.000001 | 0.000386 | 0.000000 | |
Interaction | 0.001567 | 0.259270 | 0.306820 | 0.000174 |
Culinary Treatment | Cutting Size | Total Phenolic (µg AEG/Dry Weight) | Antioxidant Capacity (mg AA/Dry Weight) |
---|---|---|---|
Raw | 10 × 10 × 10 | 0.15 ± 0.01 ab | 13.96 ± 0.70 d |
20 × 20 × 20 | 0.14 ± 0.00 b | 13.40 ± 0.74 d | |
Steam | 10 × 10 × 10 | 0.15 ± 0.01 ab | 16.20 ± 0.23 cd |
20 × 20 × 20 | 0.16 ± 0.0 a | 19.66 ± 0.63 bc | |
Stir-frying | 10 × 10 × 10 | 0.14 ± 0.01 b | 21.76 ± 2.68 b |
20 × 20 × 20 | 0.16 ± 0.0 a | 39.77 ± 3.03 a | |
Results of ANOVA | |||
p-value | Cutting size | 0.061648 | 0.000028 |
Culinary treatment | 0.437487 | 0.000000 | |
Interaction | 0.036197 | 0.000019 |
Culinary Treatment | Cutting Size | Hardness (g) | Adhesiveness (mJ) |
---|---|---|---|
Raw | 10 × 10 × 10 | 51,000 ± 2880 a | 868.37 ± 46.73 b |
20 × 20 × 20 | 49,500 ± 2270 a | 1016.68 ± 35.44 a | |
Steam | 10 × 10 × 10 | 12,015 ± 504 c | 41.87 ± 4.39 c |
20 × 20 × 20 | 10,756 ± 1946 c | 63.83 ± 9.92 c | |
Stir-frying | 10 × 10 × 10 | 18,896 ± 1484 b | 39.03 ± 2.66 c |
20 × 20 × 20 | 20,370 ± 1677 b | 48.02 ± 3.97 c | |
Results of ANOVA | |||
p-value | Cutting size | 0.794850 | 0.007044 |
Culinary treatment | 0.000000 | 0.000000 | |
Interaction | 0.704947 | 0.016951 |
Culinary Treatment | Cutting Size | Appearance | Colour | Odour | Taste | General Texture | General Acceptation |
---|---|---|---|---|---|---|---|
Steam | 10 × 10 × 10 | 3.98 ± 0.13 a | 4.06 ± 0.11 a | 3.44 ± 0.12 a | 3.24 ± 0.16 a | 3.82 ± 0.13 a | 3.50 ± 0.12 a |
20 × 20 × 20 | 3.20 ± 0.18 b | 3.35 ± 0.16 c | 3.28 ± 0.14 ab | 3.33 ± 0.17 a | 3.28 ± 0.18 b | 3.28 ± 0.17 a | |
Stir-frying | 10 × 10 × 10 | 3.46 ± 0.18 b | 3.56 ± 0.17 c | 3.28 ± 0.16 ab | 3.18 ± 0.17 a | 3.38 ± 0.15 b | 3.34 ± 0.14 a |
20 × 20 × 20 | 3.00 ± 0.19 b | 2.80 ± 0.18 b | 3.04 ± 0.15 b | 3.11 ± 0.17 a | 3.04 ± 0.14 b | 3.28 ± 0.15 a | |
Results of ANOVA | |||||||
p-value | Cutting size | 0.000330 | 0.000009 | 0.167073 | 0.964733 | 0.004166 | 0.343277 |
Culinary treatment | 0.036739 | 0.001709 | 0.161550 | 0.407146 | 0.025333 | 0.580765 | |
Interaction | 0.341602 | 0.943694 | 0.780833 | 0.637909 | 0.505746 | 0.580765 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abellán, A.; Gómez, P.; Villegas, A.; Buendía-Moreno, L.; Tejada, L. Influence of Cutting Dimensions and Cooking Methods on the Nutritional Composition and Sensory Attributes of Zucchini (Cucurbita pepo L.). Foods 2025, 14, 3213. https://doi.org/10.3390/foods14183213
Abellán A, Gómez P, Villegas A, Buendía-Moreno L, Tejada L. Influence of Cutting Dimensions and Cooking Methods on the Nutritional Composition and Sensory Attributes of Zucchini (Cucurbita pepo L.). Foods. 2025; 14(18):3213. https://doi.org/10.3390/foods14183213
Chicago/Turabian StyleAbellán, Adela, Pablo Gómez, Alba Villegas, Laura Buendía-Moreno, and Luis Tejada. 2025. "Influence of Cutting Dimensions and Cooking Methods on the Nutritional Composition and Sensory Attributes of Zucchini (Cucurbita pepo L.)" Foods 14, no. 18: 3213. https://doi.org/10.3390/foods14183213
APA StyleAbellán, A., Gómez, P., Villegas, A., Buendía-Moreno, L., & Tejada, L. (2025). Influence of Cutting Dimensions and Cooking Methods on the Nutritional Composition and Sensory Attributes of Zucchini (Cucurbita pepo L.). Foods, 14(18), 3213. https://doi.org/10.3390/foods14183213