Optimizing Extraction Methods for Bioactive Polysaccharides from Rosa rugosa and Rosa damascena
Abstract
1. Introduction
2. Polysaccharides in Different Parts of Rose Plant
2.1. Polysaccharide Composition
2.1.1. Leaves
2.1.2. Petals
2.1.3. Stems
2.1.4. Roots
Polysaccharide | Petals | Leaves | Stems | Roots | Functional Roles | References |
---|---|---|---|---|---|---|
Pectin | High (>10%) | Moderate (5–10%) | Low (1–5%) | Low (1–5%) | Hydration, Cell wall plasticity, Antioxidant properties | [20,22,34,35] |
Lignin | Very Low (<1%) | Low (1–5%) | High (>10%) | High (>10%) | Protection against degradation, Structural rigidity | [36] |
Cellulose | Low (1–5%) | Moderate (5–10%) | High (>10%) | High (>10%) | Structural support, Mechanical strength | [36,37] |
Hemicelluloses | Moderate (5–10%) | High (>10%) | High (>10%) | Moderate (5–10%) | Cell wall cohesion, Nutrient transport, Flexibility | [20,37] |
Arabinogalactan | Moderate (5–10%) | Moderate (5–10%) | Low (1–5%) | Moderate (5–10%) | Signaling, Water retention, Cell wall extensibility | [38,39] |
Glucans (incl. β-glucans) | Moderate (5–10%) | Low (1–5%) | Low (1–5%) | Moderate (5–10%) | Immunomodulatory effects, Antioxidant, Water retention | [39,40] |
Mucilaginous polysaccharides | Low (1–5%) | Low (1–5%) | Low (1–5%) | High (>10%) | Nutrient absorption, Water retention, Soil adaptation | [38,39] |
Xyloglucans/ Xylans | Low (1–5%) | Low (1–5%) | High (>10%) | Moderate (5–10%) | Cell wall flexibility especially in roots and stems | [37] |
Galacturonic acid-rich pectin | High (>10%) | Moderate (5–10%) | Low (1–5%) | Low (1–5%) | Antioxidant properties, Major component in petals and fruit | [34] |
β-glucans | Moderate (5–10%) | Low (1–5%) | Low (1–5%) | Moderate (5–10%) | Anti-inflammatory, Antioxidant, Immunomodulatory activities | [40] |
2.2. Antioxidant Properties
2.2.1. Free Radical Scavenging
2.2.2. Metal Ion Chelation
2.2.3. Enhancement of Endogenous Antioxidant Enzymes
3. Extraction Methods
3.1. Conventional Methods
3.1.1. Hot Water Extraction
3.1.2. Ethanol/Methanol Extraction
3.2. Modern Extraction Methods
3.2.1. Pressurized Liquid Extraction (PLE)
3.2.2. Ultrasound-Assisted Extraction (UAE)
3.2.3. Microwave-Assisted Extraction (MAE)
3.2.4. Enzyme-Assisted Extraction (EAE)
3.2.5. Supercritical Fluid Extraction (SFE)
3.2.6. Integrated and Hybrid Extraction Approaches
3.3. Factors Affecting Extraction Efficiency
3.3.1. Extraction Temperature
3.3.2. Extraction Time
3.3.3. Liquid to Solid Ratio
3.3.4. Enzyme Concentration and Type
3.3.5. Ultrasonic Power and Duration
3.3.6. Solvent Type and Concentration
3.3.7. Plant Material Characteristics
4. Challenges in Extraction and Optimization
4.1. Challenges
4.1.1. Yield Limitations
4.1.2. Degradation During Extraction
4.1.3. Variation Between Rose Species
4.2. Optimization Strategies
4.2.1. Enhancing Extraction Efficiency
4.2.2. Sustainable and Green Extraction Techniques
4.2.3. Pre-Treatment Methods for Improved Extraction
5. Applications and Future Perspectives of Rose Polysaccharides
5.1. Current Utilization of Rose Polysaccharides
5.1.1. Cosmetic Industry
5.1.2. Pharmaceuticals
5.1.3. Nutraceuticals
5.1.4. Food Industry
5.2. Future Utilization Perspectives
5.2.1. Emerging Technologies
5.2.2. Rose Species Exploration
5.2.3. Industrial Scaling
Process Standardization
By-Product Utilization
Regulatory Frameworks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Datta, S.K. Rose. In Floriculture and Ornamental Plants; Springer: Berlin/Heidelberg, Germany, 2022; pp. 153–180. [Google Scholar]
- Wang, H. Beneficial medicinal effects and material applications of rose. Heliyon 2024, 10, e23530. [Google Scholar] [CrossRef]
- Hussen, K. Review paper on genetic diversity of damask rose (Rosa damascena Mill.) and economic importance of its oil. Ukr. J. Ecol. 2023, 13, 11–14. [Google Scholar]
- Ribotta, S.; Liccari, F.; Muggia, L.; Pallavicini, A.; Bagnolini, F.; Tordoni, E.; Bacaro, G. Invasion at the edge: The case of Rosa rugosa (Rosaceae) in Italy. Diversity 2021, 13, 645. [Google Scholar] [CrossRef]
- Mileva, M.; Ilieva, Y.; Jovtchev, G.; Gateva, S.; Zaharieva, M.M.; Georgieva, A.; Dimitrova, L.; Dobreva, A.; Angelova, T.; Vilhelmova-Ilieva, N. Rose flowers—A delicate perfume or a natural healer? Biomolecules 2021, 11, 127. [Google Scholar] [CrossRef]
- Bamne, F.; Shaikh, N.; Ali, A.; Momin, M.; Khan, T. Phytochemicals and Overview of the Evolving Landscape in Management of Osteoarthritis. In Herbal Medicine Phytochemistry: Applications and Trends; Springer: Berlin/Heidelberg, Germany, 2024; pp. 835–858. [Google Scholar]
- Wang, W.; Li, J.; Lu, F.; Liu, F. Ultrasound-assisted multi-enzyme extraction for highly efficient extraction of polysaccharides from Ulva lactuca. Foods 2024, 13, 891. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi, N.; Pourkorrani, M.H.S.; Langarizadeh, M.A.; Ranjbartavakoli, M.; Sharififar, F.; Asgary, S. Evidence for Rosa damascena efficacy in mental disorders in preclinical animal studies and clinical trials: A systematic review. Phytother. Res. 2022, 36, 3016–3031. [Google Scholar] [CrossRef]
- Hegde, A.S.; Gupta, S.; Sharma, S.; Srivatsan, V.; Kumari, P. Edible rose flowers: A doorway to gastronomic and nutraceutical research. Food Res. Int. 2022, 162, 111977. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, Y.; Zhang, L.; Tian, Y.; Zhong, X.; Fang, X.; Yang, Y.; Tao, A. Exploring Rosa roxburghii Tratt polysaccharides: From extraction to application potential in functional products-An in-depth review. Int. J. Biol. Macromol. 2024, 280, 135543. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Zhang, X.; Sun, X.; Bao, M.; Wang, Y. Morphological and Molecular Analyses of the Interaction between Rosa multiflora and Podosphaera pannosa. Genes 2022, 13, 1003. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ge, J.; Zhou, S.; Zhu, W.; Han, Y.; Chen, S.; Xue, S.; Wang, Y.; Qiu, H.; Wu, X. CD19/CD22 dual-targeting chimeric antigen receptor T-cell therapy bridging to allogeneic haematopoietic stem cell transplantation for B-cell acute lymphoblastic leukaemia delays platelet recovery and increases risks of cytomegalovirus and Epstein–Barr virus viremia after transplantation. Clin. Transl. Med. 2023, 13, e1459. [Google Scholar]
- Qiu, L.; Zhang, M.; Ju, R.; Wang, Y.; Chitrakar, B.; Wang, B. Effect of different drying methods on the quality of restructured rose flower (Rosa rugosa) chips. Dry. Technol. 2020, 38, 1632–1643. [Google Scholar] [CrossRef]
- Doblin, M.S.; Ma, Y.; Novaković, L.; Bacic, A.; Johnson, K.L. Plant cell walls–past, present, and future. In Plant Cell Walls; CRC Press: Boca Raton, FL, USA, 2023; pp. 1–28. [Google Scholar]
- Benalaya, I.; Alves, G.; Lopes, J.; Silva, L.R. A review of natural polysaccharides: Sources, characteristics, properties, food, and pharmaceutical applications. Int. J. Mol. Sci. 2024, 25, 1322. [Google Scholar] [CrossRef] [PubMed]
- Pieczywek, P.M.; Chibrikov, V.; Zdunek, A. In silico studies of plant primary cell walls–structure and mechanics. Biol. Rev. 2023, 98, 887–899. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, L.; Qin, S.; Kuang, Z.; Wan, M.; Li, Z.; Li, L. Heterogeneity in Mechanical Properties of Plant Cell Walls. Plants 2024, 13, 3561. [Google Scholar] [CrossRef]
- Ray, U.; Zhu, S.; Pang, Z.; Li, T. Mechanics design in cellulose-enabled high-performance functional materials. Adv. Mater. 2021, 33, 2002504. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Miao, Y.; Huang, H.; Zhang, Y.; Huang, L.; Cao, J. Arabinogalactan proteins: Focus on the role in cellulose synthesis and deposition during plant cell wall biogenesis. Int. J. Mol. Sci. 2022, 23, 6578. [Google Scholar] [CrossRef] [PubMed]
- Önder, S.; Tonguç, M.; Önder, D.; Erbaş, S.; Mutlucan, M. Dynamic changes occur in the cell wall composition and related enzyme activities during flower development in Rosa damascena. Front. Plant Sci. 2023, 14, 1120098. [Google Scholar] [CrossRef]
- Liu, X.; Le Bourvellec, C.; Renard, C.M. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3574–3617. [Google Scholar] [CrossRef]
- Slavov, A.; Chalova, V. Physicochemical Characterization of Pectic Polysaccharides from Rose Essential Oil Industry By-Products. Foods 2024, 13, 270. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Wang, P.; Liu, Z.; An, L.; Zhang, X.; Xie, Z.; Wang, Y.; Li, X.; Gao, W. Evaluation of citrus pectin extraction methods: Synergistic enhancement of pectin’s antioxidant capacity and gel properties through combined use of organic acids, ultrasonication, and microwaves. Int. J. Biol. Macromol. 2024, 266, 131164. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, L.; He, S.; Liu, J.; Huang, H. Involvement of pectin and hemicellulose depolymerization in cut gerbera flower stem bending during vase life. Postharvest Biol. Technol. 2020, 167, 111231. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, S.; Yang, R.; Yang, D.; Zhao, Y.; Kuang, J.; Chen, L.; Zhang, R.; Hu, H. Side chain of confined xylan affects cellulose integrity leading to bending stem with reduced mechanical strength in ornamental plants. Carbohydr. Polym. 2024, 329, 121787. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Structure and growth of plant cell walls. Nat. Rev. Mol. Cell Biol. 2024, 25, 340–358. [Google Scholar] [CrossRef]
- Angelova, G.; Brazkova, M.; Stefanova, P.; Blazheva, D.; Vladev, V.; Petkova, N.; Slavov, A.; Denev, P.; Karashanova, D.; Zaharieva, R. Waste rose flower and lavender straw biomass—An innovative lignocellulose feedstock for mycelium bio-materials development using newly isolated Ganoderma resinaceum GA1M. J. Fungi 2021, 7, 866. [Google Scholar] [CrossRef]
- Shibly, M.A.H.; Islam, M.I.; Rahat, M.N.H.; Billah, M.M.; Rahman, M.M.; Bashar, M.S.; Abdul, B.; Alorfi, H.S. Extraction and characterization of a novel cellulosic fiber derived from the bark of Rosa hybrida plant. Int. J. Biol. Macromol. 2024, 257, 128446. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Hou, L.; Ding, F.; Whalen, J.K. Root mucilage: Chemistry and functions in soil. Encycl. Soils Environ. 2023, 1, 332–342. [Google Scholar]
- Sekhohola-Dlamini, L.M.; Keshinro, O.M.; Masudi, W.L.; Cowan, A.K. Elaboration of a phytoremediation strategy for successful and sustainable rehabilitation of disturbed and degraded land. Minerals 2022, 12, 111. [Google Scholar] [CrossRef]
- Skrzydeł, J.; Borowska-Wykręt, D.; Kwiatkowska, D. Structure, assembly and function of cuticle from mechanical perspective with special focus on perianth. Int. J. Mol. Sci. 2021, 22, 4160. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhang, Q.; Yang, S.; Zhang, S.; Chen, G. Comparative study on the impact of different extraction technologies on structural characteristics, physicochemical properties, and biological activities of polysaccharides from seedless chestnut rose (Rosa sterilis) fruit. Foods 2024, 13, 772. [Google Scholar] [CrossRef]
- Zhai, Y.-M.; Li, Y.-Y.; Liu, L.-X.; Liu, Y.-G. Extraction methods, physiological activities, and applications of rose residue and its bioactive components: A comprehensive review: Yu-Mei Zhai et al. J. Food Meas. Charact. 2025, 19, 5183–5196. [Google Scholar] [CrossRef]
- Shin, Y.; Chane, A.; Jung, M.; Lee, Y. Recent advances in understanding the roles of pectin as an active participant in plant signaling networks. Plants 2021, 10, 1712. [Google Scholar] [CrossRef]
- Cai, Y.; Abla, M.; Gao, L.; Wu, J.; Yang, L. Research on phenolic content and its antioxidant activities in Fermented Rosa rugosa ‘Dianhong’petals with brown sugar. Antioxidants 2024, 13, 607. [Google Scholar] [CrossRef] [PubMed]
- Delmer, D.; Dixon, R.A.; Keegstra, K.; Mohnen, D. The plant cell wall—Dynamic, strong, and adaptable—Is a natural shapeshifter. Plant Cell 2024, 36, 1257–1311. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Zhou, D.; Chen, L.; Rose, J.P.; Wang, B.-C.; Ye, Z.-H. Plant Cell Wall Polysaccharide O-Acetyltransferases. Plants 2024, 13, 2304. [Google Scholar] [CrossRef]
- De Barros, T.C.; Leite, V.G.; Pedersoli, G.D.; Leme, F.M.; Marinho, C.R.; Teixeira, S.P. Mucilage cells in the flower of Rosales species: Reflections on morphological diversity, classification, and functions. Protoplasma 2023, 260, 1135–1147. [Google Scholar] [CrossRef]
- Liu, Q.; Song, B.; Tong, S.; Yang, Q.; Zhao, H.; Guo, J.; Tian, X.; Chang, R.; Wu, J. Research progress on the anticancer activity of plant polysaccharides. Recent Pat. Anti-Cancer Drug Discov. 2024, 19, 573–598. [Google Scholar] [CrossRef]
- Olech, M.; Nowacka-Jechalke, N.; Masłyk, M.; Martyna, A.; Pietrzak, W.; Kubiński, K.; Załuski, D.; Nowak, R. Polysaccharide-rich fractions from Rosa rugosa Thunb.—Composition and chemopreventive potential. Molecules 2019, 24, 1354. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Liu, K.; Yang, J.; Liu, S.; Wang, S.; Wang, S. Advances on food-derived peptidic antioxidants—A review. Antioxidants 2020, 9, 799. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Xu, D.; Zhou, Y.-M.; Zhang, Y.-B.; Zhang, H.; Chen, Y.-B.; Cui, Y.-L. Antioxidant activities of natural polysaccharides and their derivatives for biomedical and medicinal applications. Antioxidants 2022, 11, 2491. [Google Scholar] [CrossRef]
- Zhong, Y.; Tai, L.; Blennow, A.; Ding, L.; Herburger, K.; Qu, J.; Xin, A.; Guo, D.; Hebelstrup, K.H.; Liu, X. High-amylose starch: Structure, functionality and applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 8568–8590. [Google Scholar] [CrossRef]
- Łubek-Nguyen, A.; Olech, M.; Nowacka-Jechalke, N.; Martyna, A.; Kubiński, K.; Masłyk, M.; Moczulski, M.; Kanak, S. Crude Polysaccharide Fraction from Rosa rugosa Thunb. Root—Chemical Characterisation, Enzyme Inhibitory, Antioxidant and Antiproliferative Activity. Appl. Sci. 2022, 12, 10126. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Li, X.; Jiang, F.; Liu, M.; Qu, Y.; Lan, Z.; Dai, X.; Huang, C.; Yue, X.; Zhao, S.; Pan, X. Synthesis, characterization, and bioactivities of polysaccharide metal complexes: A review. J. Agric. Food Chem. 2022, 70, 6922–6942. [Google Scholar] [CrossRef]
- Joly, N.; Ghemati, D.; Aliouche, D.; Martin, P. Interaction of metal ions with mono-and polysaccharides for wastewater treatment: A review. Nat. Prod. Chem. Res. 2020, 8, 373. [Google Scholar]
- Shahrajabian, M.H.; Sun, W. Shahrajabian MH, Sun W. Medicinal plants, economical and natural agents with antioxidant activity. Curr. Nutr. Food Sci. 2023, 19, 763–784. [Google Scholar] [CrossRef]
- Alabdallah, N.M.; Alluqmani, S.M. The synthesis of polysaccharide crude nanoparticles extracts from Taif rose petals and its effect on eggplant seedlings under drought and salt stress. J. King Saud Univ. Sci. 2022, 34, 102055. [Google Scholar] [CrossRef]
- Teka, N.; Alminderej, F.M.; Souid, G.; El-Ghoul, Y.; Le Cerf, D.; Majdoub, H. Characterization of polysaccharides sequentially extracted from allium roseum leaves and their hepatoprotective effects against cadmium induced toxicity in mouse liver. Antioxidants 2022, 11, 1866. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, F.; Singh, K.; Gairola, S.; Ahmed, Z.; Shah, B.A. A comprehensive review on phytochemistry and pharmacology of Rosa species (Rosaceae). Curr. Top. Med. Chem. 2024, 24, 364–378. [Google Scholar] [CrossRef]
- Beigom Hejaziyan, L.; Hosseini, S.M.; Taravati, A.; Asadi, M.; Bakhshi, M.; Moshaei Nezhad, P.; Gol, M.; Mououdi, M. Effect of Rosa damascena extract on rat model Alzheimer’s disease: A histopathological, behavioral, enzyme activities, and oxidative stress study. Evid. Based Complement. Altern. Med. 2023, 2023, 4926151. [Google Scholar] [CrossRef]
- Li, J.; Ye, G.; Wang, J.; Gong, T.; Wang, J.; Zeng, D.; Cifuentes, A.; Ibañez, E.; Zhao, H.; Lu, W. Recent advances in pressurized hot water extraction/modification of polysaccharides: Structure, physicochemical properties, bioactivities, and applications. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70104. [Google Scholar] [CrossRef]
- Huang, H.; Huang, G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides. Chem. Biol. Drug Des. 2020, 96, 1209–1222. [Google Scholar] [CrossRef]
- Huang, X.; Ai, C.; Yao, H.; Zhao, C.; Xiang, C.; Hong, T.; Xiao, J. Guideline for the extraction, isolation, purification, and structural characterization of polysaccharides from natural resources. eFood 2022, 3, e37. [Google Scholar] [CrossRef]
- Takahashi, N. Rose (Rosa sp.) More Than Just Beautiful: Exploring the Therapeutic Properties of the Rose Species. In Advances in Medicinal and Aromatic Plants; Apple Academic Press: Point Pleasant, NJ, USA, 2024; Volume 2, pp. 263–297. [Google Scholar]
- Wu, H.; Li, M.; Yang, X.; Wei, Q.; Sun, L.; Zhao, J.; Shang, H. Extraction optimization, physicochemical properties and antioxidant and hypoglycemic activities of polysaccharides from roxburgh rose (Rosa roxburghii Tratt.) leaves. Int. J. Biol. Macromol. 2020, 165, 517–529. [Google Scholar] [CrossRef]
- Plaza, M.; Marina, M.L. Pressurized hot water extraction of bioactives. TrAC Trends Anal. Chem. 2023, 166, 117201. [Google Scholar] [CrossRef]
- Sun, C.; Wang, G.; Sun, J.; Yin, J.; Huang, J.; Li, Z.; Mu, D.; He, M.; Liu, T.; Cheng, J. A new method of extracting Polygonatum sibiricum polysaccharide with antioxidant function: Ultrasound-assisted extraction-deep eutectic solvents method. Foods 2023, 12, 3438. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Zhang, Y.; Zhang, Q.; Wang, Y.; Liu, Y.; Cui, X. Impact of Enzymatic Degradation Treatment on Physicochemical Properties, Antioxidant Capacity, and Prebiotic Activity of Lilium Polysaccharides. Foods 2025, 14, 246. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef]
- Piotrowicz, Z.; Tabisz, Ł.; Waligórska, M.; Pankiewicz, R.; Łęska, B. Phenol-rich alternatives for Rosa x damascena Mill. Efficient phytochemical profiling using different extraction methods and colorimetric assays. Sci. Rep. 2021, 11, 23883. [Google Scholar] [CrossRef]
- Binhamad, H. Extraction, Characterisation and Properties of Polysaccharides from Novel Sources. Ph.D. Thesis, University of Huddersfield, Huddersfield, UK, 2018. [Google Scholar]
- Gao, J. Technology of Isolation, Identification and Research of Antioxidant Activity of Polyphenols from Pingyin Rosae Rugosae Flos; Kyiv National University of Technology and Design: Kyiv, Ukraine, 2021. [Google Scholar]
- Ren, Y.; Bai, Y.; Zhang, Z.; Cai, W.; Del Rio Flores, A. The preparation and structure analysis methods of natural polysaccharides of plants and fungi: A review of recent development. Molecules 2019, 24, 3122. [Google Scholar] [CrossRef]
- Bushra, R.; Ahmad, M.; Seidi, F.; Song, J.; Jin, Y.; Xiao, H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv. Colloid. Interface Sci. 2023, 318, 102953. [Google Scholar] [CrossRef]
- Kim, S.; Chung, H. Biodegradable polymers: From synthesis methods to applications of lignin-graft-polyester. Green Chem. 2024, 26, 10774–10803. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Ferreira, R.d.M.; Coelho, L.A.B.; Barreto, D.W. Production of Anthocyanin-Rich Red Rose Petal Extract by Enzymatic Maceration. Biomass 2024, 4, 429–441. [Google Scholar] [CrossRef]
- Zhan, Q.; Zhong, H.; Yin, M.; Peng, J.; Chen, M. Optimization of the polysaccharide extraction process from Rosa roxburghii Tratt using Box-Behnken response surface methodology and monosaccharide composition analysis. Food Sci. Technol. 2022, 42, e86322. [Google Scholar] [CrossRef]
- Kalcheva-Karadzhova, K.; Shikov, V.; Mihalev, K.; Dobrev, G.; Ludneva, D.; Penov, N. Enzyme-assisted extraction of polyphenols from rose (Rosa damascena Mill.) petals. Acta Univ. Cibiniensis. Ser. E Food Technol. 2014, 18, 65–72. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, W.; Zhang, X.; Zhang, X.; Lu, C.; Deng, Y. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr. Polym. 2013, 97, 695–702. [Google Scholar] [CrossRef]
- Mtibe, A.; Linganiso, L.Z.; Mathew, A.P.; Oksman, K.; John, M.J.; Anandjiwala, R.D. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr. Polym. 2015, 118, 1–8. [Google Scholar] [CrossRef]
- Mirzaee, N.; Nikzad, M.; Battisti, R.; Araghi, A. Isolation of cellulose nanofibers from rapeseed straw via chlorine-free purification method and its application as reinforcing agent in carboxymethyl cellulose-based films. Int. J. Biol. Macromol. 2023, 251, 126405. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Cruz, S.; Tecante, A. Extraction and characterization of cellulose nanofibers from Rose stems (Rosa spp.). Carbohydr. Polym. 2019, 220, 53–59. [Google Scholar] [CrossRef]
- Xu, B.; Yu, L.; Jiang, Y.; Wang, L.; Yan, X.; Zhang, J. Bacteriological analysis of nasal secretions in patients with nasal lymphoma. J. Clin. Otorhinolaryngol. Head Neck Surg. 2023, 15, 247–251. [Google Scholar]
- Dominic, C.M.; Raj, V.; Neenu, K.; Begum, P.S.; Formela, K.; Saeb, M.R.; Prabhu, D.D.; Vijayan, P.P.; Ajithkumar, T.; Parameswaranpillai, J. Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum). Int. J. Biol. Macromol. 2022, 206, 92–104. [Google Scholar] [CrossRef]
- Perez-Vazquez, A.; Carpena, M.; Barciela, P.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A. Pressurized liquid extraction for the recovery of bioactive compounds from seaweeds for food industry application: A review. Antioxidants 2023, 12, 612. [Google Scholar] [CrossRef]
- Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J.A.; Ibañez, E. Pressurized liquid extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 375–398. [Google Scholar]
- Bai, C.; Chen, R.; Chen, Y.; Bai, H.; Sun, H.; Li, D.; Wu, W.; Wang, Y.; Gong, M. Plant polysaccharides extracted by high pressure: A review on yields, physicochemical, structure properties, and bioactivities. Int. J. Biol. Macromol. 2024, 263, 129939. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Hassoun, A.; Tarchi, I.; Loudiyi, M.; Boukria, O.; Cahyana, Y.; Ozogul, F.; Khwaldia, K. Transforming plant-based waste and by-products into valuable products using various “Food Industry 4.0” enabling technologies: A literature review. Sci. Total Environ. 2024, 955, 176872. [Google Scholar] [CrossRef] [PubMed]
- Chalapud, M.C.; Carrín, M.E. Ultrasound-assisted extraction of oilseeds—Sustainability processes to obtain traditional and non-traditional food ingredients: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2161–2196. [Google Scholar] [CrossRef] [PubMed]
- Tsiaka, T.; Stavropoulou, N.A.; Giannakourou, M.C.; Strati, I.F.; Sinanoglou, V.J. Optimization of ultrasound-assisted extraction and characterization of the phenolic compounds in rose distillation side streams using spectrophotometric assays and high-throughput analytical techniques. Molecules 2023, 28, 7403. [Google Scholar] [CrossRef] [PubMed]
- Um, M.; Han, T.-H.; Lee, J.-W. Ultrasound-assisted extraction and antioxidant activity of phenolic and flavonoid compounds and ascorbic acid from rugosa rose (Rosa rugosa Thunb.) fruit. Food Sci. Biotechnol. 2018, 27, 375–382. [Google Scholar] [CrossRef]
- Sopharadee, S.; Kittipitchakul, J.; Srisawas, N.; Neimkhum, W.; Yawootti, A.; Rades, T.; Chaiyana, W. Green Approach for Rosa damascena Mill. Petal Extract: Insights into Phytochemical Composition, Anti-Aging Potential, and Stability. Antioxidants 2025, 14, 541. [Google Scholar] [CrossRef]
- Danlami, J.M.; Arsad, A.; Ahmad Zaini, M.A.; Sulaiman, H. A comparative study of various oil extraction techniques from plants. Rev. Chem. Eng. 2014, 30, 605–626. [Google Scholar] [CrossRef]
- Chen, G.; Kan, J. Ultrasound-assisted extraction, characterization, and antioxidant activity in vitro and in vivo of polysaccharides from Chestnut rose (Rosa roxburghii tratt) fruit. J. Food Sci. Technol. 2018, 55, 1083–1092. [Google Scholar] [CrossRef]
- He, A.; Putra, N.R. Rose essential oils: Current trends, mapping of extraction techniques, chemical analysis, therapeutic applications, and by-product valorization. Can. J. Chem. Eng. 2025, 103, 3332–3357. [Google Scholar] [CrossRef]
- Sethi, S.; Rathod, V. Recent advancements in ultrasound-assisted biomolecule extraction from prokaryotic and eukaryotic cells: A review. Prep. Biochem. Biotechnol. 2024, 1–27. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, B.; Ge, H.; Wang, S.; Li, B.; Xu, H. Microwave-assisted extraction of cellulose and aromatic compounds from rose petals based on deep eutectic solvent. Int. J. Biol. Macromol. 2024, 258, 129058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hu, W.; Yu, A.; Bi, H.; Wang, J.; Wang, X.; Kuang, H.; Wang, M. Physicochemical properties, health benefits, and applications of the polysaccharides from Rosa rugosa Thunb.: A review. Int. J. Biol. Macromol. 2024, 282, 136975. [Google Scholar] [CrossRef]
- López-Salazar, H.; Camacho-Díaz, B.H.; Ocampo, M.A.; Jiménez-Aparicio, A.R. Microwave-assisted extraction of functional compounds from plants: A Review. BioResources 2023, 18, 6614. [Google Scholar] [CrossRef]
- Zou, R.; Zhou, X.; Qian, M.; Wang, C.; Boldor, D.; Lei, H.; Zhang, X. Advancements and applications of microwave-assisted deep eutectic solvent (MW-DES) lignin extraction: A comprehensive review. Green Chem. 2024, 26, 1153–1169. [Google Scholar] [CrossRef]
- Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Singhal, R.S. Enzyme-assisted extraction of bioactives. In Food Bioactives: Extraction and Biotechnology Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 171–201. [Google Scholar]
- Rizwan, D.; Mir, S.A.; Aziz, S.; Masoodi, F.A. Enzyme-assisted extraction of essential oils. In Enzymes in Oil Processing; Elsevier: Amsterdam, The Netherlands, 2024; pp. 217–233. [Google Scholar]
- Cendrowski, A.; Studnicki, M.; Kalisz, S. Impact of different solvents and temperatures on the extraction of bioactive compounds from rose fruits (Rosa rugosa) pomace. Appl. Sci. 2024, 14, 691. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, G.; Yang, Y.; Du, B.; Lin, D. Optimization of enzymatic-assisted extraction of polysaccharides from Roxburgh rose pomace and its antioxidant activity. E3S Web Conf. 2019, 78, 02014. [Google Scholar] [CrossRef]
- Streimikyte, P.; Viskelis, P.; Viskelis, J. Enzymes-assisted extraction of plants for sustainable and functional applications. Int. J. Mol. Sci. 2022, 23, 2359. [Google Scholar] [CrossRef]
- Franco Londono, M. Extraction of Dill Seed Oil/Essential Oil and Cranberry Pomace Anthocyanins Using Green Technologies and In Vitro Evaluation of Their Antifungal Activity. 2025. Available online: https://ualberta.scholaris.ca/server/api/core/bitstreams/c444d1cf-b28a-4b4b-a929-3664cf3765de/content (accessed on 19 August 2025).
- Singh, R.K.; Avula, R.Y. 7 Supercritical Fluid Extraction in Food Processing. In Enhancing Extraction Processes in the Food Industry; CRC Press: Boca Raton, FL, USA, 2011; p. 195. [Google Scholar]
- Herzyk, F.; Piłakowska-Pietras, D.; Korzeniowska, M. Supercritical extraction techniques for obtaining biologically active substances from a variety of plant byproducts. Foods 2024, 13, 1713. [Google Scholar] [CrossRef]
- Sarkar, A.; Lassi, U. Processing of Biomass Waste: Technological Upgradation and Advancement; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Zhou, M.; Sun, Y.; Luo, L.; Pan, H.; Zhang, Q.; Yu, C. Road to a bite of rosehip: A comprehensive review of bioactive compounds, biological activities, and industrial applications of fruits. Trends Food Sci. Technol. 2023, 136, 76–91. [Google Scholar] [CrossRef]
- Xie, L. Encapsulation of Astaxanthin-enriched Camelina Seed Oil Obtained by Ethanol-modified Supercritical Carbon Dioxide Extraction. Master’s Thesis, University of Nebraska, Lincoln, NE, USA, 2019. [Google Scholar]
- Boateng, I.D. Recent advances incombined Avant-garde technologies (thermal-thermal, non-thermal-non-thermal, and thermal-non-thermal matrix) to extract polyphenols from agro byproducts. J. Food Drug Anal. 2023, 31, 552. [Google Scholar]
- AlYammahi, J.; Rambabu, K.; Thanigaivelan, A.; Bharath, G.; Hasan, S.W.; Show, P.L.; Banat, F. Advances of non-conventional green technologies for phyto-saccharides extraction: Current status and future perspectives. Phytochem. Rev. 2023, 22, 1067–1088. [Google Scholar] [CrossRef]
- Ismail, N.S.A.; Mohamad, M. Ultrasonic Assisted Enzyme Extraction In Plant Extraction: Bioactive Compound. Acta Chem. Malays. (ACMY) 2024, 8, 39–42. [Google Scholar]
- Anwar, M.M.J. Advances in Green Technologies for Bioactive Extraction and Valorization of Agro-Waste in Food and Nutraceutical Industries. Haya Saudi J. Life Sci. 2025, 10, 184–195. [Google Scholar] [CrossRef]
- Baydar, N.G.; Baydar, H. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Ind. Crops Prod. 2013, 41, 375–380. [Google Scholar] [CrossRef]
- Chen, S.; Luan, L.; Zhang, Y.; Liu, F.; Ye, X.; Hou, Z. A comparison study on polysaccharides extracted from Rosa sterilis SD Shi using different methods: Structural and in vitro fermentation characterizations. Food Chem. X 2023, 17, 100533. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, B.; Huang, Q.; Fu, X.; Liu, R.H. Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: Characterization and hypoglycemic activity. Ind. Crops Prod. 2017, 100, 1–11. [Google Scholar] [CrossRef]
- Braga, M.; Seabra, I.; Dias, A.; De Sousa, H. Recent Trends and Perspectives for the Extraction of Natural Products. In Natural Product Extraction: Principles and Applications; The Royal Society of Chemistry: London, UK, 2022. [Google Scholar]
- Valorization, L.R. Ana Rita Guerra Silva Rodrigues Pinto. Ph.D. Thesis, Instituto Superior de Ciências da Saúde Egas Moniz, Caparica, Portugal, 2016. [Google Scholar]
- Raut, P.; Bhosle, D.; Janghel, A.; Deo, S.; Verma, C.; Kumar, S.S.; Agrawal, M.; Amit, N.; Sharma, M.; Giri, T. Emerging Pressurized Liquid Extraction (PLE) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals. Res. J. Pharm. Technol. 2015, 8, 800–810. [Google Scholar] [CrossRef]
- Gao, X.-M.; Shu, L.-D.; Yang, L.-Y.; Shen, Y.-Q.; Zhang, Y.-J.; Hu, Q.-F. Phenylethanoids from the flowers of Rosa rugosa and their biological activities. Bull. Korean Chem. Soc. 2013, 34, 246–248. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Sheng, L.; Zhang, D.; Zheng, X.; Pan, Y.; Yu, X.; Liang, X.; Wang, Q.; Wang, B. Effect of ultrasonic degradation on the structural feature, physicochemical property and bioactivity of plant and microbial polysaccharides: A review. Int. J. Biol. Macromol. 2023, 236, 123924. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zou, X.; Sun, M. Optimization of extraction process by response surface methodology and preliminary characterization of polysaccharides from Phellinus igniarius. Carbohydr. Polym. 2010, 80, 344–349. [Google Scholar] [CrossRef]
- Sepe, F.; Valentino, A.; Marcolongo, L.; Petillo, O.; Calarco, A.; Margarucci, S.; Peluso, G.; Conte, R. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control. Gels 2025, 11, 198. [Google Scholar] [CrossRef]
- Ntakoulas, D.D.; Tsikrika, K.; Pasias, I.N.; Proestos, C. Current Research in Phytonutrient Potential of Wild Edible Plants. In Exploring Traditional Wild Edible Plants; CRC Press: Boca Raton, FL, USA, 2025; pp. 48–83. [Google Scholar]
- Trinh, L.T.P.; Choi, Y.-S.; Bae, H.-J. Production of phenolic compounds and biosugars from flower resources via several extraction processes. Ind. Crops Prod. 2018, 125, 261–268. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, P.; Chen, Y.; Tian, Y.; Chen, J. Physicochemical characterization and in vitro biological activities of water-extracted polysaccharides fractionated by stepwise ethanol precipitation from Rosa roxburghii Tratt fruit. J. Food Meas. Charact. 2022, 16, 38–48. [Google Scholar] [CrossRef]
- Aslanbay Guler, B.; Tepe, U.; Imamoglu, E. Sustainable point of view: Life cycle analysis for green extraction technologies. ChemBioEng Rev. 2024, 11, 348–362. [Google Scholar] [CrossRef]
- Córdova, A.; Henríquez, P.; Nuñez, H.; Rico-Rodriguez, F.; Guerrero, C.; Astudillo-Castro, C.; Illanes, A. Recent advances in the application of enzyme processing assisted by ultrasound in agri-foods: A review. Catalysts 2022, 12, 107. [Google Scholar] [CrossRef]
- Panda, D.; Manickam, S. Cavitation technology—The future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. Appl. Sci. 2019, 9, 766. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, G. Optimization of ultrasound-assisted deep eutectic solvent extraction, characterization, and bioactivities of polysaccharide from the fruit of Rosa roxburghii Tratt. J. Food Meas. Charact. 2025, 1–15. [Google Scholar] [CrossRef]
- Villa, C.; Robustelli Della Cuna, F.S.; Russo, E.; Ibrahim, M.F.; Grignani, E.; Preda, S. Microwave-assisted and conventional extractions of volatile compounds from Rosa x damascena Mill. fresh petals for cosmetic applications. Molecules 2022, 27, 3963. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Zheng, S.; Zhu, S.; Li, C. Optimization, Structural Characterization, and Bioactivities of Polysaccharides from Rosa roxburghii Tratt Fruit Using Enzyme-Assisted Extraction. Foods 2025, 14, 2423. [Google Scholar] [CrossRef] [PubMed]
- Ghaddar, S.A. Integrated Eco-Extraction of Plant Bioactive Compounds. Investigation of Supercritical Fluid Extraction (SFE). Ph.D. Thesis, Université d’Orléans, Orléans, France, 2023. [Google Scholar]
- Rowe, J.W. Natural Products of Woody Plants: Chemicals Extraneous to the Lignocellulosic Cell Wall; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Khan, A.S. Flowering Plants: Structure and Industrial Products; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Wolf, M.; Berger, F.; Hanstein, S.; Weidenkaff, A.; Endreß, H.-U.; Oestreich, A.M.; Ebrahimi, M.; Czermak, P. Hot-water hemicellulose extraction from fruit processing residues. ACS Omega 2022, 7, 13436–13447. [Google Scholar] [CrossRef]
- Xiao, W.; Zhou, P.; Wang, X.; Zhao, R.; Wang, Y. Comparative characterization and immunomodulatory activities of polysaccharides extracted from the radix of Platycodon grandiflorum with different extraction methods. Molecules 2022, 27, 4759. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.-B.; Deng, Y.; Zhang, J.-Y. Primary Study on Effect of Extraction Methods on the Properties and Activities of Polysaccharides from Geum japonicum var. Chinense F. Bolle. Molecules 2025, 30, 148. [Google Scholar] [CrossRef]
- Lv, Y.; Yue, H.; Tan, C.; Liao, H. Characterization of a novel biodegradable active film with rose polyphenol extract and its application in edible oil packaging. Food Biosci. 2025, 63, 105784. [Google Scholar] [CrossRef]
- Khalid, S.; Chaudhary, K.; Amin, S.; Raana, S.; Zahid, M.; Naeem, M.; Khaneghah, A.M.; Aadil, R.M. Recent advances in the implementation of ultrasound technology for the extraction of essential oils from terrestrial plant materials: A comprehensive review. Ultrason. Sonochem. 2024, 107, 106914. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, G. Inhibition of proliferation and induction of apoptosis in prostatic carcinoma DU145 cells by polysaccharides from Yunnan Rosa roxburghii Tratt. Molecules 2024, 29, 1575. [Google Scholar] [CrossRef]
- Todorova, M.; Dobreva, A.; Petkova, N.; Grozeva, N.; Gerdzhikova, M.; Veleva, P. Organic vs conventional farming of oil-bearing rose: Effect on essential oil and antioxidant activity. BioRisk 2022, 17, 271–285. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, S.; Chen, Y.; Huang, R.; Cheng, B.; Mao, Q.; Liu, T.; Liu, Y.; Zhao, K.; Pan, H. Multi-omics analyzes of Rosa gigantea illuminate tea scent biosynthesis and release mechanisms. Nat. Commun. 2024, 15, 8469. [Google Scholar] [CrossRef] [PubMed]
- Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B. Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. Molecules 2022, 27, 730. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Sowbhagya, H.; Chitra, V. Enzyme-assisted extraction of flavorings and colorants from plant materials. Crit. Rev. Food Sci. Nutr. 2010, 50, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.; Ora, A.; Häkkinen, S.T.; Ritala, A.; Räisänen, R.; Kallioinen-Mänttäri, M.; Melin, K. Innovative extraction technologies of bioactive compounds from plant by-products for textile colorants and antimicrobial agents. Biomass Convers. Biorefinery 2024, 14, 24973–25002. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Wang, C.; Liu, M.; You, J.; Yin, L.; Shi, M. Green pretreatment of lignocellulosic biomasses via deep eutectic solvents. Sustain. Chem. Pharm. 2024, 39, 101569. [Google Scholar] [CrossRef]
- Chagnoleau, J.-B. Extraction of Natural Compounds Towards Sustainable Solvents: Experiment and Modelling. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2024. [Google Scholar]
- Shams, K.A.; Abdel-Azim, N.S.; Saleh, I.A.; Hegazy, M.-E.F.; El-Missiry, M.M.; Hammouda, F.M.; Bohouth, E.; Tahrir, E. Green technology: Economically and environmentally innovative methods for extraction of medicinal & aromatic plants (MAP) in Egypt. J. Chem. Pharm. Res. 2015, 7, 1050–1074. [Google Scholar]
- Colombo, R.; Moretto, G.; Barberis, M.; Frosi, I.; Papetti, A. Rice byproduct compounds: From green extraction to antioxidant properties. Antioxidants 2023, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Huang, J.; Wu, G.; Tong, J.; Xie, G.; Duan, J.-a.; Qin, M. Multiple responses optimization of ultrasonic-assisted extraction by response surface methodology (RSM) for rapid analysis of bioactive compounds in the flower head of Chrysanthemum morifolium Ramat. Ind. Crops Prod. 2015, 74, 192–199. [Google Scholar] [CrossRef]
- Ahmed, T.; Rana, M.R.; Hossain, M.A.; Ullah, S.; Suzauddula, M. Optimization of ultrasound-assisted extraction using response surface methodology for total anthocyanin content, total phenolic content, and antioxidant activities of Roselle (Hibiscus sabdariffa L.) calyces and comparison with conventional Soxhlet extraction. Biomass Convers. Biorefin. 2024, 14, 28985–28999. [Google Scholar]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef]
- Salunkhe, D.K.; Bhat, N.R.; Desai, B.B. Postharvest Biotechnology of Flowers and Ornamental Plants; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Varade, D. 11 Natural Cosmetics. In Materials from Natural Sources: Structure, Properties, and Applications; CRC Press: Boca Raton, FL, USA, 2024; p. 241. [Google Scholar]
- Lee, M.h.; Nam, T.G.; Lee, I.; Shin, E.J.; Han, A.r.; Lee, P.; Lee, S.Y.; Lim, T.G. Skin anti-inflammatory activity of rose petal extract (Rosa gallica) through reduction of MAPK signaling pathway. Food Sci. Nutr. 2018, 6, 2560–2567. [Google Scholar] [CrossRef]
- Antosiewicz-Klimczak, B. Katarzyna Gawel-Bęben. In Traditional Medicines in Drug Discovery and Development; Cambridge Scholars Publishing: Cambridge, UK, 2024; p. 201. [Google Scholar]
- Mármol, I.; Sánchez-de-Diego, C.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Therapeutic applications of rose hips from different Rosa species. Int. J. Mol. Sci. 2017, 18, 1137. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, B. Skin health promoting effects of natural polysaccharides and their potential application in the cosmetic industry. Polysaccharides 2022, 3, 818–830. [Google Scholar] [CrossRef]
- Tieu, S.; Charchoglyan, A.; Wagter-Lesperance, L.; Karimi, K.; Bridle, B.W.; Karrow, N.A.; Mallard, B.A. Immunoceuticals: Harnessing their immunomodulatory potential to promote health and wellness. Nutrients 2022, 14, 4075. [Google Scholar] [CrossRef]
- Chen, G.; Sun, J.; Dai, Q.; Sun, M.; Hu, P. Polysaccharides from seedless chestnut rose (Rosa sterilis) fruits: Insights into innovative drying technologies and their structural characteristics, antioxidant, Antiglycation, and α-glucosidase inhibitory activities. Foods 2024, 13, 2483. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, J.; Tian, C.; Dong, L.; Kang, Z.; Wang, J.; Zhao, S.; Li, M.; Tong, X. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: Effects on short-chain fatty acids. Nutr. Metab. 2024, 21, 49. [Google Scholar] [CrossRef] [PubMed]
- Benmebarek, I.E.; Maqsood, S.; Khalid, W.; Navaf, M.; Rasool, I.F.U.; Moreno, A.; Esatbeyoglu, T. Valorization of agro-industrial waste to produce low-methoxyl pectin and its activation towards more sustainable applications and circular economy. Int. J. Biol. Macromol. 2025, 320, 3. [Google Scholar] [CrossRef]
- Shoaei, F.; Heshmati, A.; Mahjub, R.; Garmakhany, A.D.; Taheri, M. The assessment of microencapsulated Lactobacillus plantarum survivability in rose petal jam and the changes in physicochemical, textural and sensorial characteristics of the product during storage. Sci. Rep. 2022, 12, 6200. [Google Scholar] [CrossRef]
- Deis, L.; Quiroga, A.M.; De Rosas, M.I. Coloured compounds in fruits and vegetables and health. In Psychiatry and Neuroscience Update: From Epistemology to Clinical Psychiatry–Vol. IV; Springer: Berlin/Heidelberg, Germany, 2021; pp. 343–358. [Google Scholar]
- Luo, L.; Fan, W.; Qin, J.; Guo, S.; Xiao, H.; Tang, Z. Study on process optimization and antioxidant activity of polysaccharide from Bletilla striata extracted via deep eutectic solvents. Molecules 2023, 28, 5538. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.-x.; Wang, J.; Hu, J.; Lou, G.-h.; Xiong, H.-j.; Peng, C.-y.; Huang, Q.-w. Modulation of apoptosis by plant polysaccharides for exerting anti-cancer effects: A review. Front. Pharmacol. 2020, 11, 792. [Google Scholar] [CrossRef]
- Hoang, H.T.; Moon, J.-Y.; Lee, Y.-C. Natural antioxidants from plant extracts in skincare cosmetics: Recent applications, challenges and perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Faur, C.-A.; Zăhan, M.; Bunea, C.I.; Hârșan, E.; Bora, F.-D.; Bunea, A. Antiproliferative and biochemical evaluation of rose extracts: Impact on tumor and normal skin cells. Front. Plant Sci. 2024, 15, 1477243. [Google Scholar] [CrossRef]
- Ni, M.; Chen, J.; Fu, M.; Li, H.; Bu, S.; Hao, X.; Gu, W. UPLC-ESI-MS/MS-based analysis of various edible rosa fruits concerning secondary metabolites and evaluation of their antioxidant activities. Foods 2024, 13, 796. [Google Scholar] [CrossRef]
- Vukosavljev, M.; Stranjanac, I.; van Dongen, B.; Voorrips, R.; Miric, M.; Bozanic Tanjga, B.; Arens, P.; Smulders, M. A novel source of food garden rose petals. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Breeding and Effective Use of Biotechnology and 1362, Angers, France, 14–20 August 2022; pp. 165–172. [Google Scholar]
- Chen, Z.; Zang, Y. CMAX3: A robust statistical test for genetic association accounting for covariates. Genes 2021, 12, 1723. [Google Scholar] [CrossRef]
- Constantin, O.E.; Stoica, F.; Rațu, R.N.; Stănciuc, N.; Bahrim, G.E.; Râpeanu, G. Bioactive components, applications, extractions, and health benefits of winery by-products from a circular bioeconomy perspective: A review. Antioxidants 2024, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Katsamakas, E. Digital transformation and sustainable business models. Sustainability 2022, 14, 6414. [Google Scholar] [CrossRef]
- Javed, M.H.; Ahmad, A.; Rehan, M.; Musharavati, F.; Nizami, A.-S.; Khan, M.I. Advancing Sustainable Energy: Environmental and Economic Assessment of Plastic Waste Gasification for Syngas and Electricity Generation Using Life Cycle Modeling. Sustainability 2025, 17, 1277. [Google Scholar] [CrossRef]
Plant Part | Extraction Methods | Conditions | Solvent/ Reagent Used | Characteristics & Yield | References |
---|---|---|---|---|---|
Leaves | Ethanol/Methanol Extraction | RT 12–24 h | 80% Ethanol/ Methanol | Selective precipitation of polysaccharides, removes small molecules | [40] |
Hot Water Extraction | 60–100 °C 2–5 h | Distilled water | Moderate yield (5–15%), presence of pectin and hemicelluloses | [68,69] | |
Petals | Ethanol/Methanol Extraction | RT, overnight | 70–95% Ethanol/ Methanol | Removes impurities, enhances polysaccharide purity | [40,70] |
Hot Water Extraction | 80–100 °C, 1–4 h | Distilled water | High yield (>15%), neutral polysaccharides | [32,69] | |
Stems | Ethanol/Methanol Extraction | RT, overnight | 80% Ethanol/ Methanol | Purifies polysaccharides, removes phenolic compounds | [71,72] |
Hot Water Extraction | 90 °C, 3–5 h | Distilled water | Moderate yield (5–15%), heterogeneous polysaccharide composition | [73,74] | |
Roots | Ethanol/Methanol Extraction | RT, 12–24 h | 70–95% Ethanol/ Methanol | Precipitates polysaccharides, enhances purity | [12,75] |
Hot Water Extraction | 90 °C, 2–4 h | Distilled water | Higher extraction efficiency, acidic polysaccharides | [76] |
Extraction Method | Principle/Process | Key Parameters | Advantages | Limitations | References |
---|---|---|---|---|---|
Hot Water Extraction (HWE) | Heating plant material in water to dissolve water-soluble polysaccharides | 60–100 °C, 1–4 h, water as solvent | Simple, cost-effective, environmentally friendly, preserves bioactivity, scalable | Long extraction time, risk of hydrolysis, low yield for some polysaccharides, co-extraction of impurities | [58,59,69,109,110,111,112] |
Ethanol/Methanol Extraction (Precipitation) | Alcohol is added to aqueous extract to precipitate polysaccharides | 70–90% (v/v) ethanol/methanol | Efficient for purification after aqueous extraction; removes proteins/phenolics | Not a primary extraction method; may not remove all impurities | [32,113] |
Enzyme-Assisted Extraction (EAE) | Cell wall-degrading enzymes (e.g., cellulase, pectinase) break down plant matrix, releasing polysaccharides | Enzyme type/concentration, temperature (30–55 °C), pH, time | Higher yield, milder conditions, preserves structure, selective extraction | Cost of enzymes, risk of enzyme residue, optimization required | [112,113] |
Ultrasound-Assisted Extraction (UAE) | Ultrasound waves disrupt cell walls, enhancing solvent penetration and mass transfer | 20–60 kHz, 30–90 °C, 10–60 min | Shorter extraction time, increased yield, energy efficient | Possible degradation of polysaccharides at high power, equipment cost | [58,59] |
Microwave-Assisted Extraction (MAE) | Microwaves rapidly heat plant material and solvent, causing cell rupture and release of polysaccharides | 100–800 W, 60–120 °C, 5–30 min | Rapid, high efficiency, reduced solvent use, good yield | Risk of overheating/degradation, equipment cost | [58,92,111] |
Pressurized Liquid Extraction (PLE) | Uses high pressure and temperature to enhance solvent extraction efficiency | 50–200 °C, 10–20 MPa, 10–60 min | High yield, efficient, reduced solvent use | Specialized equipment, possible degradation at high temp | [110,114] |
Supercritical Fluid Extraction (SFE) | Supercritical CO2 (often with co-solvents) extracts bioactive components under high pressure and moderate temperature | 31–80 °C, 10–35 MPa, CO2/co-solvent | Selective, solvent-free product, preserves structure | High equipment cost, not suitable for all polysaccharides | [110] |
Integrated/Hybrid Extraction | Combines two or more techniques to leverage synergistic effects (e.g., cavitation-enhanced enzyme penetration; rapid microwave heating with green DES) | Method-dependent; typically milder conditions, reduced enzyme dosage, shorter processing times | Higher yield and selectivity; improved antioxidant retention; lower energy/solvent use; greener | Optimization complexity; equipment integration and scale-up considerations | [106,107] |
Extraction Method | Yield (%) | Energy/Temp (°C) | Solvent-to-Solid Ratio (mL/g) | Extraction Time | Bioactivity Retention | References |
---|---|---|---|---|---|---|
Hot Water Extraction (HWE) | 3.2–8.5% | 80–100 °C continuous heating (high energy demand) | 20–40:1 | 2–5 h | Moderate; risk of partial hydrolysis | [33,57] |
Ethanol/Methanol Precipitation | (used for purification, not primary yield) | RT large alcohol volumes (high solvent use) | 70–90% ethanol | 12–24 h | High purity, but not efficient for yield | [32,64] |
Enzyme-Assisted Extraction (EAE) | 4.3–4.8% | 45–60 °C mild heating; enzyme dose 1–3% (low energy) | 15–20:1 | 80–120 min | High; mild conditions preserve activity | [32,95] |
Ultrasound-Assisted Extraction (UAE) | 6.5–15% | 50–90 °C; 200–500 W | 16–30:1 | 25–85 min | High; preserves antioxidant activity | [33,83,125] |
Microwave-Assisted Extraction (MAE) | 18–36% | 60–120 °C; 400–600 W | 12–15:1 | 5–20 min | High; fast heating avoids degradation | [126,127] |
Pressurized Liquid Extraction (PLE) | 15–30% | 100–150 °C; 10–20 MPa | 10–15:1 | 20–60 min | High; preserves structure | [77,79] |
Supercritical CO2 Extraction (SFE) | 10–25% | 31–80 °C; 10–35 MPa | Low (CO2, with co-solvent 5–15%) | 1–3 h | Very High; solvent-free extracts | [101,128] |
DES-based Microwave/UAE (Emerging) | 15–40% (varies) | 60–90 °C 200–400 W | 15–20:1 | 30–90 min | High; greener solvents, tunable | [90] |
Challenges | Optimization Strategies | References |
---|---|---|
Low yield from woody tissues (Stem, roots) due to rigid cell walls composed of cellulose, hemicelluloses, and lignin. | Use enzymatic hydrolysis and mild acid or alkaline pretreatments to break down rigid cell walls, improving solubilization while preserving polysaccharide structure. | [60,129,130,132,140] |
Polysaccharide degradation caused by high temperature, long extraction times, and harsh solvents. | Employ green extraction techniques such as ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) to reduce extraction time and temperature, minimizing degradation. | [10,22,134,135] |
Variability in polysaccharide composition and antioxidant activity among rose species and plant parts due to genetic and environmental factors. | Standardize plant material selection, harvesting times, and preprocessing; develop species- and tissue-specific extraction protocols to ensure consistency. | [32,69,136,137,138] |
Limited solubility of some polysaccharides in water, reducing extraction efficiency. | Use mixed solvents (e.g., aqueous ethanol, methanol) or deep eutectic solvents (DES) to improve solubility and maintain bioactivity. | [141,142,143,144] |
Environmental concerns and high solvent consumption in traditional extraction methods. | Adopt sustainable and green extraction technologies such as supercritical fluid extraction (SFE), subcritical water extraction (SWE), UAE, and MAE to reduce solvent use and environmental impact. | [101,135,145,146] |
Complex interactions of multiple extraction parameters make optimization challenging. | Apply statistical optimization methods like response surface methodology (RSM) to systematically optimize extraction conditions (temperature, time, solvent ratio, enzyme concentration). | [117,147,148] |
Poor solvent penetration due to plant tissue structure limiting polysaccharide accessibility. | Use mechanical pretreatments such as grinding and ultrafine milling, combined with chemical pretreatments (alkaline or mild acid hydrolysis), to increase surface area and weaken cell walls. | [61,140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, S.; Ashraf, M.Z.; Miao, B.; Zhao, X. Optimizing Extraction Methods for Bioactive Polysaccharides from Rosa rugosa and Rosa damascena. Foods 2025, 14, 3211. https://doi.org/10.3390/foods14183211
Ashraf S, Ashraf MZ, Miao B, Zhao X. Optimizing Extraction Methods for Bioactive Polysaccharides from Rosa rugosa and Rosa damascena. Foods. 2025; 14(18):3211. https://doi.org/10.3390/foods14183211
Chicago/Turabian StyleAshraf, Sawaira, Muhammad Zahid Ashraf, Baohe Miao, and Xinxin Zhao. 2025. "Optimizing Extraction Methods for Bioactive Polysaccharides from Rosa rugosa and Rosa damascena" Foods 14, no. 18: 3211. https://doi.org/10.3390/foods14183211
APA StyleAshraf, S., Ashraf, M. Z., Miao, B., & Zhao, X. (2025). Optimizing Extraction Methods for Bioactive Polysaccharides from Rosa rugosa and Rosa damascena. Foods, 14(18), 3211. https://doi.org/10.3390/foods14183211