The Impact of Gallic Acid Binding on the Foam and Interfacial Properties of Whey Protein Isolate Under Weak Acidic Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Whey Protein Isolate/Gallic Acid Complexes
2.3. Determination of Particle Size and Zeta Potential
2.4. Determination of Turbidity
2.5. Determination of Surface Hydrophobicity
2.6. The Spectrofluorometric Analysis
2.7. Determination of Surface Tension and Dilatational Rheology
2.7.1. Surface Tension
2.7.2. Interfacial Rheology Measurements
2.8. Foamability and Stability
2.9. Statistical Analysis
3. Results and Discussion
3.1. Particle Size and Potential Analysis
3.2. Protein Surface Hydrophobicity
3.3. Protein Internal Fluorescence
3.4. Measurement of Interfacial Rheological Properties
4. Foamability and Foam Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pugh, R.J.; Hamlett, C.A.E.; Fairhurst, D.J. A short overview of bubbles in foods and chocolate. Adv. Colloid Interface Sci. 2023, 314, 102835. [Google Scholar] [CrossRef]
- Deotale, S.; Dutta, S.; Moses, J.A.; Balasubramaniam, V.M.; Anandharamakrishnan, C. Foaming Characteristics of Beverages and Its Relevance to Food Processing. Food Eng. Rev. 2020, 12, 229–250. [Google Scholar] [CrossRef]
- Ramos, G.L.d.P.A.; Guimarães, J.T.; Pimentel, T.C.; da Cruz, A.G.; de Souza, S.L.Q.; Vendramel, S.M.R. Chapter 19—Whey: Generation, recovery, and use of a relevant by-product. In Valorization of Agri-Food Wastes and by-Products; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 391–414. [Google Scholar]
- Yan, M.; Wang, Y.; Wang, C.; Feng, S.; Zhang, T. Whey protein isolate-resveratrol complex as a radical scavenging foaming ingredient with increased ultraviolet stability. Food Chem. 2024, 434, 137519. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, Z.; Mintah, B.K.; Xu, H.; Dabbour, M.; Cheng, Y.; Dai, C.; He, R.; Ma, H. Effects of nonthermal physical processing technologies on functional, structural properties and digestibility of food protein: A review. J. Food Process Eng. 2022, 45, e14010. [Google Scholar] [CrossRef]
- Karabulut, G.; Yemiş, O. Modification of hemp seed protein isolate (Cannabis sativa L.) by high-intensity ultrasound treatment. Part 1: Functional properties. Food Chem. 2022, 375, 131843. [Google Scholar] [CrossRef]
- Sun, X.; Sarteshnizi, R.A.; Udenigwe, C.C. Recent advances in protein–polyphenol interactions focusing on structural properties related to antioxidant activities. Curr. Opin. Food Sci. 2022, 45, 100840. [Google Scholar] [CrossRef]
- Hao, L.; Sun, J.; Pei, M.; Zhang, G.; Li, C.; Li, C.; Ma, X.; He, S.; Liu, L. Impact of non-covalent bound polyphenols on conformational, functional properties and in vitro digestibility of pea protein. Food Chem. 2022, 383, 132623. [Google Scholar] [CrossRef]
- Pei, Y.; Wan, J.; You, M.; McClements, D.J.; Li, Y.; Li, B. Impact of whey protein complexation with phytic acid on its emulsification and stabilization properties. Food Hydrocoll. 2019, 87, 90–96. [Google Scholar] [CrossRef]
- Pan, X.; Fang, Y.; Wang, L.; Shi, Y.; Xie, M.; Xia, J.; Pei, F.; Li, P.; Xiong, W.; Shen, X.; et al. Covalent Interaction between Rice Protein Hydrolysates and Chlorogenic Acid: Improving the Stability of Oil-in-Water Emulsions. J. Agric. Food Chem. 2019, 67, 4023–4030. [Google Scholar] [CrossRef]
- Han, X.; Liang, Z.; Tian, S.; Liu, L.; Wang, S. Epigallocatechin gallate (EGCG) modification of structural and functional properties of whey protein isolate. Food Res. Int. 2022, 158, 111534. [Google Scholar] [CrossRef]
- Li, C.; Dai, T.; Chen, J.; Li, X.; Li, T.; Liu, C.; McClements, D.J. Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin. Food Chem. 2021, 339, 128145. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Zhan, F.; Ding, S.; Xie, W.; Zhu, X.; Hu, J.; Gao, J.; Li, B.; Chen, Y. Towards understanding the interaction of β-lactoglobulin with capsaicin: Multi-spectroscopic, thermodynamic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll. 2020, 105, 105767. [Google Scholar] [CrossRef]
- Zhan, F.; Yang, J.; Li, J.; Wang, Y.; Li, B. Characteristics of the interaction mechanism between tannic acid and sodium caseinate using multispectroscopic and thermodynamics methods. Food Hydrocoll. 2018, 75, 81–87. [Google Scholar] [CrossRef]
- Zhan, F.; Li, J.; Wang, Y.; Shi, M.; Li, B.; Sheng, F. Bulk, Foam, and Interfacial Properties of Tannic Acid/Sodium Caseinate Nanocomplexes. J. Agric. Food Chem. 2018, 66, 6832–6839. [Google Scholar] [CrossRef] [PubMed]
- Zhan, F.; Zhou, X.; Jiang, Y.; Li, J.; Li, B. From an oil with “antifoaming” properties to stabilization for foam: A novel approach for establishing a long-term stable foam system. Food Hydrocoll. 2023, 145, 109086. [Google Scholar] [CrossRef]
- Zhan, F.; Li, J.; Shi, M.; Wu, D.; Li, B. Foaming Properties and Linear and Nonlinear Surface Dilatational Rheology of Sodium Caseinate, Tannin Acid, and Octenyl Succinate Starch Ternary Complex. J. Agric. Food Chem. 2019, 67, 2340–2349. [Google Scholar] [CrossRef]
- Masoumi, B.; Tabibiazar, M.; Golchinfar, Z.; Mohammadifar, M.; Hamishehkar, H. A review of protein-phenolic acid interaction: Reaction mechanisms and applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 3539–3555. [Google Scholar] [CrossRef]
- Cao, Y.; Xiong, Y.L. Binding of Gallic Acid and Epigallocatechin Gallate to Heat-Unfolded Whey Proteins at Neutral pH Alters Radical Scavenging Activity of in Vitro Protein Digests. J. Agric. Food Chem. 2017, 65, 8443–8450. [Google Scholar] [CrossRef]
- Dai, T.; Li, T.; Li, R.; Zhou, H.; Liu, C.; Chen, J.; McClements, D.J. Utilization of plant-based protein-polyphenol complexes to form and stabilize emulsions: Pea proteins and grape seed proanthocyanidins. Food Chem. 2020, 329, 127219. [Google Scholar] [CrossRef]
- Condict, L.; Kasapis, S. Critical issues encountered in the analysis of protein-phenolic binding interactions via fluorescence spectroscopy. Food Hydrocoll. 2022, 124, 107219. [Google Scholar] [CrossRef]
- Ye, J.; Shi, N.; Rozi, P.; Kong, L.; Zhou, J.; Yang, H. A Comparative Study of the Structural and Functional Properties of Chickpea Albumin and Globulin Protein Fractions. Food Bioprocess Technol. 2024, 17, 3253–3266. [Google Scholar] [CrossRef]
- Meng, Y.; Wei, Z.; Xue, C. Correlation among molecular structure, air/water interfacial behavior and foam properties of naringin-treated chickpea protein isolates. Food Hydrocoll. 2024, 147, 109309. [Google Scholar] [CrossRef]
- Zhan, F.; Hu, J.; He, C.; Sun, J.; Li, J.; Li, B. Complexation between sodium caseinate and gallic acid: Effects on foam properties and interfacial properties of foam. Food Hydrocoll. 2020, 99, 105365. [Google Scholar] [CrossRef]
- Bock, A.; Kieserling, H.; Rohn, S.; Steinhäuser, U.; Drusch, S. Impact of Phenolic Acid Derivatives on β-Lactoglobulin Stabilized Oil-Water-Interfaces. Food Biophys. 2022, 17, 508–522. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, S.; Gu, Y.; Cheng, T.; Sun, F.; Wang, Y.; Wang, D.; Wang, Z.; Guo, Z. Mechanism of sodium alginate synergistically improving foaming properties of pea protein isolate: Air/water interface microstructure and rheological properties. Food Hydrocoll. 2025, 159, 110624. [Google Scholar] [CrossRef]
- Wang, T.; Wang, N.; Yu, Y.; Yu, D.; Xu, S.; Wang, L. Study of soybean protein isolate-tannic acid non-covalent complexes by multi-spectroscopic analysis, molecular docking, and interfacial adsorption kinetics. Food Hydrocoll. 2023, 137, 108330. [Google Scholar] [CrossRef]
- Dai, T.; McClements, D.J.; Hu, T.; Chen, J.; He, X.; Liu, C.; Sheng, J.; Sun, J. Improving foam performance using colloidal protein–polyphenol complexes: Lactoferrin and tannic acid. Food Chem. 2022, 377, 131950. [Google Scholar] [CrossRef]
- Cao, Y.; Xiong, Y.L. Interaction of Whey Proteins with Phenolic Derivatives Under Neutral and Acidic pH Conditions. J. Food Sci. 2017, 82, 409–419. [Google Scholar] [CrossRef]
Mass Ratio | F0/F280 nm | Kq/[L/(mol·s)]280 nm | F0/F290 nm | Kq/[L/(mol·s)]290 nm |
---|---|---|---|---|
1:0 | 1 | 1 | ||
1:0.1 | 1.1764 | 3.00 × 1010 | 1.0304 | 5.19 × 1010 |
1:0.3 | 1.6915 | 3.92 × 1010 | 1.2081 | 1.18 × 1011 |
1:0.5 | 2.3086 | 4.45 × 1010 | 1.4403 | 1.50 × 1011 |
1:1 | 4.4575 | 5.88 × 1010 | 1.9815 | 1.67 × 1011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, F.; Li, J.; Li, B. The Impact of Gallic Acid Binding on the Foam and Interfacial Properties of Whey Protein Isolate Under Weak Acidic Conditions. Foods 2025, 14, 3209. https://doi.org/10.3390/foods14183209
Zhan F, Li J, Li B. The Impact of Gallic Acid Binding on the Foam and Interfacial Properties of Whey Protein Isolate Under Weak Acidic Conditions. Foods. 2025; 14(18):3209. https://doi.org/10.3390/foods14183209
Chicago/Turabian StyleZhan, Fuchao, Jing Li, and Bin Li. 2025. "The Impact of Gallic Acid Binding on the Foam and Interfacial Properties of Whey Protein Isolate Under Weak Acidic Conditions" Foods 14, no. 18: 3209. https://doi.org/10.3390/foods14183209
APA StyleZhan, F., Li, J., & Li, B. (2025). The Impact of Gallic Acid Binding on the Foam and Interfacial Properties of Whey Protein Isolate Under Weak Acidic Conditions. Foods, 14(18), 3209. https://doi.org/10.3390/foods14183209