Fermentation of Pea Protein Isolate by Enterococcus faecalis 07: A Strategy to Enhance Flavor and Functionality
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Strains
2.2. The Fermentation of Pea Protein
2.3. Microbial Analysis
2.4. Functional Properties of Proteins
2.4.1. Solubility
2.4.2. Water Retention Capacity/Oil Retention Capacity
2.5. Determination of Organic Acid Content
2.6. Determination of Free Amino Acids
2.7. 5 Nucleotide Detection
2.8. Determination of Volatile Organic Compounds
2.9. E-Tongue Analysis
2.10. Sensory Evaluation
2.11. Data Analysis
3. Results and Discussion
3.1. Microbial, pH, and Organic Acid Analysis
3.2. Protein Properties
3.2.1. Solubility
3.2.2. Water-Retention Capacity/Oil-Retention Capacity
3.3. Nucleotide Analysis
3.4. Analysis of Free Amino Acids
3.5. Volatile Organic-Compounds Analysis
Volatile Organic Compounds | Volatile Organic Compounds Content | ||||||
---|---|---|---|---|---|---|---|
Odor characteristic | RT | F-0H | F-24H | F-48H | F-72H | VIP | |
Hexanal | grassy | 5.92 | 57.63 ± 8.06 a | 31.11 ± 1.56 b | 10.42 ± 2.85 c | 5.09 ± 0.95 c | 3.74 |
D-Limonene | 16.14 | — | 0.32 ± 0.03 c | 23.21 ± 3.97 a | 10.51 ± 3.25 b | 3.15 | |
Benzaldehyde | almond | 13.16 | 5.09 ± 1.22 b | 1.34 ± 0.10 c | 7.13 ± 0.7 a | 7.20 ± 0.88 a | 1.78 |
(E,E)-3,5-Octadien-One | vegetable, hay | 18.07 | 7.34 ± 5.70 a | 0.61 ± 0.58 c | 1.42 ± 0.41 b | 1.09 ± 0.21 b | 1.76 |
1-Nonen-4-ol | 19.19 | — | 1.16 ± 0.29 c | 9.29 ± 1.48 a | 6.15 ± 0.55 b | 1.74 | |
2-Heptenal-Z | almond, fruit | 12.63 | — | 0.51 ± 0.04 c | 2.32 ± 0.32 b | 3.93 ± 0.79 a | 1.43 |
4-Ethyl-3-nonen-5-yne | 16.56 | 1.30 ± 1.51 bc | 0.32 ± 0.03 c | 3.01 ± 1.17 a | 3.96 ± 0.82 a | 1.35 | |
Acetic acid | acid | 3.02 | — | — | 1.73 ± 0.23 b | 3.02 ± 0.06 a | 1.28 |
1-Octen-3-ol | mushroom, vegetable | 14.16 | 6.94 ± 1.53 a | 6.54 ± 3.52 a | 3.44 ± 0.36 b | 1.73 ± 0.34 c | 1.24 |
Pentanal | bread, fruity | 3.17 | 2.90 ± 1.42 a | 0.62 ± 0.04 b | 2.20 ± 0.47 a | 2.05 ± 0.30 a | 1.07 |
Hexanoic acid | meat broth | 15.45 | — | — | 2.57 ± 0.43 a | 0.72 ± 0.31 b | 1.07 |
2-Heptanone | cheese, fruit | 10.09 | 2.62 ± 1.32 a | 0.42 ± 0.01 b | 1.53 ± 0.43 ab | 0.72 ± 0.31 b | 1.06 |
Octanal | citrus, fat, green | 15.11 | — | 0.27 ± 0.01 b | 2.89 ± 0.47 a | 2.77 ± 0.94 a | 1.06 |
2-Butanone,3-hydnxy- | butter, creamy | 3.38 | — | 0.42 ± 0.03 ab | 1.24 ± 0.09 a | — | 1.01 |
3,5-Octadien-2-ol | 16.83 | 2.33 ± 0.4 a | 0.17 ± 0.03 c | 0.84 ± 0.08 b | 0.69 ± 0.06 b | 0.99 | |
2-Enthyl-1-hexanol | 16.29 | 0.72 ± 0.08 b | — | 1.97 ± 0.35 a | 0.63 ± 0.10 b | 0.98 |
3.6. E-Tongue Analysis
3.7. Correlation Analysis Between E-Tongue and Volatile Compounds
3.8. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thakur, S.; Pandey, A.K.; Verma, K.; Shrivastava, A.; Singh, N. Plant-based protein as an alternative to animal proteins: A review of sources, extraction methods and applications. Int. J. Food Sci. Technol. 2024, 59, 488–497. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, M.; Ohm, J.-B.; Chen, B.; Rao, J. Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chem. 2019, 278, 665–673. [Google Scholar] [CrossRef]
- Lara, S.W.; Tsiami, A. A Lexicon of Descriptive Sensory Terms for Peas (Pisum sativum L.): A Systematic Review. Foods 2024, 13, 2290. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.; Xiong, Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Gao, Z.; Shen, P.; Lan, Y.; Cui, L.; Ohm, J.-B.; Chen, B.; Rao, J. Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate. Food Res. Int. 2020, 131, 109045. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Hu, Q.; Li, J.; Chen, J.; Liu, X. Enhancement of nutritional quality of chickpea flour by solid-state fermentation for improvement of in vitro antioxidant activity and protein digestibility. Food Chem. 2025, 468, 142418. [Google Scholar] [CrossRef]
- Mukherjee, A.; Breselge, S.; Dimidi, E.; Marco, M.L.; Cotter, P.D. Fermented foods and gastrointestinal health: Underlying mechanisms. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 248–266. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Yang, B.; Yang, C.; Jin, Y.; Sui, W.; Zhang, G.; Wu, T. Reduction of Beany Flavor and Improvement of Nutritional Quality in Fermented Pea Milk: Based on Novel Bifidobacterium animalis subsp. lactis 80. Foods 2024, 13, 2099. [Google Scholar] [CrossRef] [PubMed]
- Pei, M.; Zhao, Z.; Chen, S.; Reshetnik, E.I.; Gribanova, S.L.; Li, C.; Zhang, G.; Liu, L.; Zhao, L. Physicochemical properties and volatile components of pea flour fermented by Lactobacillus rhamnosus L08. Food Biosci. 2022, 46, 101590. [Google Scholar] [CrossRef]
- García Arteaga, V.; Leffler, S.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Sensory profile, functional properties and molecular weight distribution of fermented pea protein isolate. Curr. Res. Food Sci. 2021, 4, 1–10. [Google Scholar] [CrossRef]
- Hwang, C.E.; Kim, S.C.; Kim, D.H.; Lee, H.Y.; Suh, H.K.; Cho, K.M.; Lee, J.H. Enhancement of isoflavone aglycone, amino acid, and CLA contents in fermented soybean yogurts using different strains: Screening of antioxidant and digestive enzyme inhibition properties. Food Chem. 2021, 340, 128199. [Google Scholar] [CrossRef]
- Farahian, N.; Hanifian, S.; Khiabani, M.S.; Shayegh, J.; Gharekhani, M. Impact of native Enterococcus faecalis and Pichia kudriavzevii intracellular enzymes on ultra-filtered cheese: Compositional, textural and sensory analysis. Int. Dairy J. 2025, 169, 106314. [Google Scholar] [CrossRef]
- Li, C.-C.; Guo, S.-J.; Feng, Y.-T.; Zhou, Y.-R.; Li, Y.; Gao, Z.-P.; Guo, C.-F. Microbiological, physicochemical, textural, and rheological properties of fermented soymilk produced with Enterococcus faecium and Lactiplantibacillus plantarum. Food Chem. 2025, 467, 142232. [Google Scholar] [CrossRef]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Lactic acid fermentation: A novel approach to eliminate unpleasant aroma in pea protein isolates. LWT 2021, 150, 111927. [Google Scholar] [CrossRef]
- Luo, T.; Fan, Y.; Fan, M.; Li, M.; Qiu, Z.; Du, Q.; Ma, C.; Liu, C.; Peng, Y.; Zhang, S.; et al. Physicochemical and Functional Properties of DND358 (A Hypocholesterolemic Soybean) Protein Isolate. Foods 2024, 13, 3236. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Liu, R.; Liu, X.; Lv, M.; Zhou, S.; Mu, Y.; Zhao, Y.; Wang, L. Addition of Lactobacillus fermentum to Fermented Sea Buckthorn (Hippophae rhamnoides L.) Fruit Vinegar Significantly Improves Its Sour Taste. Foods 2025, 14, 1223. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Xu, X.; Zhang, L.; Du, T.; Huang, T.; Huang, J.; Ren, H.; Xiong, T.; Xie, M. Integrated metatranscriptomics and metabolomics reveal microbial succession and flavor formation mechanisms during the spontaneous fermentation of Laotan Suancai. Food Res. Int. 2024, 177, 113865. [Google Scholar] [CrossRef]
- Pan, Y.; Xue, X.; Wang, Y.; Wang, J.; Teng, W.; Cao, J.; Zhang, Y. Effects of Different Preservation Techniques on Microbial and Physicochemical Quality Characteristics of Sauced Beef Under Chilled Storage. Foods 2025, 14, 1175. [Google Scholar] [CrossRef]
- Qiang, X.; Zhao, M.; Xia, T.; Wang, Q.; Yu, J.; Qiao, C.; Zhang, H.; Lv, S.; Liu, Y.; Wang, M. Effect of Different Fermentation Methods on the Physicochemical, Bioactive and Volatile Characteristics of Wolfberry Vinegar. Foods 2025, 14, 1078. [Google Scholar] [CrossRef]
- Bayinbate, B.; Yang, L.; Badar, I.H.; Liu, Y.; Zhang, L.; Hu, Y.; Xu, B. Characterization of flavor profile of beef jerky from different regions of China using gas chromatography–mass spectrometry, electronic tongue, and electronic nose. Food Chem. X 2025, 25, 102245. [Google Scholar] [CrossRef]
- Cao, C.; Waterhouse, G.I.N.; Sun, W.; Zhao, M.; Sun-Waterhouse, D.; Su, G. Effects of Fermentation with Tetragenococcus halophilus and Zygosaccharomyces rouxii on the Volatile Profiles of Soybean Protein Hydrolysates. Foods 2023, 12, 4513. [Google Scholar] [CrossRef]
- Ben-Harb, S.; Saint-Eve, A.; Panouillé, M.; Souchon, I.; Bonnarme, P.; Dugat-Bony, E.; Irlinger, F. Design of microbial consortia for the fermentation of pea-protein-enriched emulsions. Int. J. Food Microbiol. 2019, 293, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Behrends, A.; Weber, F. Influence of Different Fermentation Strategies on the Phenolic Profile of Bilberry Wine (Vaccinium myrtillus L.). J. Agric. Food Chem. 2017, 65, 7483–7490. [Google Scholar] [CrossRef] [PubMed]
- Bergentall, M.K.; Niimi, J.; Persson, I.; Calmet, E.; As, D.; Plovie, A.; Malafronte, L.; Melin, P. Malolactic fermentation in lingonberry juice and its use as a preservative. Food Microbiol. 2024, 121, 104500. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef]
- Gao, B.; Hu, X.; Xue, H.; Li, R.; Liu, H.; Han, T.; Tu, Y.; Zhao, Y. The changes of umami substances and influencing factors in preserved egg yolk: pH, endogenous protease, and proteinaceous substance. Front. Nutr. 2022, 9, 998448. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- He, S.; Zhao, J.; Cao, X.; Ye, Y.; Wu, Z.; Yue, J.; Yang, L.; Jin, R.; Sun, H. Low pH-shifting treatment would improve functional properties of black turtle bean (Phaseolus vulgaris L.) protein isolate with immunoreactivity reduction. Food Chem. 2020, 330, 127217. [Google Scholar] [CrossRef]
- Zhu, K.-X.; Sun, X.-H.; Chen, Z.-C.; Peng, W.; Qian, H.-F.; Zhou, H.-M. Comparison of functional properties and secondary structures of defatted wheat germ proteins separated by reverse micelles and alkaline extraction and isoelectric precipitation. Food Chem. 2010, 123, 1163–1169. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Chang, C.; Chen, J.; Cao, F.; Zhao, J.; Zheng, Y.; Zhu, J. Physicochemical and functional properties of proteins extracted from three microalgal species. Food Hydrocoll. 2019, 96, 510–517. [Google Scholar] [CrossRef]
- Suresh Kumar, K.; Ganesan, K.; Selvaraj, K.; Subba Rao, P.V. Studies on the functional properties of protein concentrate of Kappaphycus alvarezii (Doty) Doty—An edible seaweed. Food Chem. 2014, 153, 353–360. [Google Scholar] [CrossRef]
- Periago, M.J.; Vidal, M.L.; Ros, G.; Rincón, F.; Martínez, C.; López, G.; Rodrigo, J.; Martínez, I. Influence of enzymatic treatment on the nutritional and functional properties of pea flour. Food Chem. 1998, 63, 71–78. [Google Scholar] [CrossRef]
- Çabuk, B.; Stone, A.K.; Korber, D.R.; Tanaka, T.; Nickerson, M.T. Effect of Lactobacillus plantarum Fermentation on the Surface and Functional Properties of Pea Protein-Enriched Flour. Food Technol. Biotechnol. 2018, 56, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.; Hayat, K.; Cui, H.; Hussain, S.; Ho, C.-T.; Zhang, X. Characterization of flavor active non-volatile compounds in chicken broth and correlated contributing constituent compounds in muscle through sensory evaluation and partial least square regression analysis. LWT 2020, 118, 108786. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.-H.; Joo, S.-T. Low-temperature and long-time heating regimes on non-volatile compound and taste traits of beef assessed by the electronic tongue system. Food Chem. 2020, 320, 126656. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Ismail, I.; Joo, S.-T. Identification of Umami Taste in Sous-Vide Beef by Chemical Analyses, Equivalent Umami Concentration, and Electronic Tongue System. Foods 2020, 9, 251. [Google Scholar] [CrossRef]
- Bhagavan, N.; Ha, C.-E. Nucleotide metabolism. In Essentials of Medical Biochemistry; Academic Press: Cambridge, MA, USA, 2015; p. 752. [Google Scholar]
- Chen, Z.; Fang, X.; Wu, W.; Chen, H.; Han, Y.; Yang, H.; Gao, H. Effects of fermentation with Lactiplantibacillus plantarum GDM1.191 on the umami compounds in shiitake mushrooms (Lentinus edodes). Food Chem. 2021, 364, 130398. [Google Scholar] [CrossRef] [PubMed]
- Costantini, A.; Da Ros, A.; Nikoloudaki, O.; Montemurro, M.; Di Cagno, R.; Genot, B.; Gobbetti, M.; Giuseppe Rizzello, C. How cereal flours, starters, enzymes, and process parameters affect the in vitro digestibility of sourdough bread. Food Res. Int. 2022, 159, 111614. [Google Scholar] [CrossRef]
- Ghazisaeedi, F.; Meens, J.; Hansche, B.; Maurischat, S.; Schwerk, P.; Goethe, R.; Wieler, L.H.; Fulde, M.; Tedin, K. A virulence factor as a therapeutic: The probiotic Enterococcus faecium SF68 arginine deiminase inhibits innate immune signaling pathways. Gut Microbes 2022, 14, 2106105. [Google Scholar] [CrossRef]
- Li, C.-C.; Li, Z.-Y.; Feng, Y.-T.; Tian, Y.-H.; Gao, Z.-P.; Guo, C.-F. Application and comparative analysis of Enterococcus faecium CGMCC 29309 and Lactobacillus delbrueckii subsp. bulgaricus CGMCC 1.60194 in the preparation of fermented soymilk. Food Biosci. 2025, 66, 106273. [Google Scholar] [CrossRef]
- Icer, M.A.; Sarikaya, B.; Kocyigit, E.; Atabilen, B.; Çelik, M.N.; Capasso, R.; Ağagündüz, D.; Budán, F. Contributions of Gamma-Aminobutyric Acid (GABA) Produced by Lactic Acid Bacteria on Food Quality and Human Health: Current Applications and Future Prospects. Foods 2024, 13, 2437. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, Q.; Liu, J.; Shang, Y.; Min, Y.; Sun, X.; Tang, J. Enhanced γ-aminobutyric acid production by Co-culture fermentation with Enterococcus faecium AB157 and Saccharomyces cerevisiae SC125. LWT 2024, 208, 116739. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, Y.; Li, L.; Chen, S.; Zhao, Y.; Li, C.; Xiang, H.; Wang, D.; Wei, Y.; Wang, Y. Elucidating the mechanism underlying volatile and non-volatile compound development related to microbial amino acid metabolism during golden pomfret (Trachinotus ovatus) fermentation. Food Res. Int. 2022, 162, 112095. [Google Scholar] [CrossRef]
- Osman, M.A. Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. J. Saudi Soc. Agric. Sci. 2011, 10, 1–6. [Google Scholar] [CrossRef]
- Sissons, J.; Davila, M.; Du, X. Sautéing and roasting effect on free amino acid profiles in portobello and shiitake mushrooms, and the effect of mushroom- and cooking-related volatile aroma compounds on meaty flavor enhancement. Int. J. Gastron. Food Sci. 2022, 28, 100550. [Google Scholar] [CrossRef]
- Kornet, C.; Venema, P.; Nijsse, J.; van der Linden, E.; van der Goot, A.J.; Meinders, M. Yellow pea aqueous fractionation increases the specific volume fraction and viscosity of its dispersions. Food Hydrocoll. 2020, 99, 105332. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Xiao, L.; Wang, S.; Wang, X.; Ma, K.; Ji, F.; Azarpazhooh, E.; Ajami, M.; Rui, X.; et al. Effects of Lactiplantibacillus plantarum with different phenotypic features on the nutrition, flavor, gel properties, and digestion of fermented soymilk. Food Biosci. 2023, 55, 103026. [Google Scholar] [CrossRef]
- Du, L.; Ro, K.-S.; Zhang, Y.; Tang, Y.-J.; Li, W.; Xie, J.; Wei, D. Effects of lactiplantibacillus plantarum X7021 on physicochemical properties, purines, isoflavones and volatile compounds of fermented soymilk. Process Biochem. 2022, 113, 150–157. [Google Scholar] [CrossRef]
- Roland, W.S.U.; Pouvreau, L.; Curran, J.; van de Velde, F.; de Kok, P.M.T. Flavor Aspects of Pulse Ingredients. Cereal Chem. 2017, 94, 58–65. [Google Scholar] [CrossRef]
- Tian, H.; Xiong, J.; Yu, H.; Chen, C.; Lou, X. Flavor optimization in dairy fermentation: From strain screening and metabolic diversity to aroma regulation. Trends Food Sci. Technol. 2023, 141, 104194. [Google Scholar] [CrossRef]
- Tieman, D.; Taylor, M.; Schauer, N.; Fernie, A.R.; Hanson, A.D.; Klee, H.J. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. Sci. USA 2006, 103, 8287–8292. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, T.; Yang, L.; Zhang, Y.; Kang, L.; Yang, L.; Zhai, Y.; Jin, Y.; Zhao, L.; Duan, Y. Effects of Fermentation on the Physicochemical Properties and Aroma of Lamb Liver Paste. Fermentation 2022, 8, 676. [Google Scholar] [CrossRef]
- Shangguan, L.; Liu, Z.; Xu, L.; Yang, Q.; Zhang, X.; Yao, L.; Li, P.; Chen, X.; Dai, J. Effect of Corynebacterium glutamicum Fermentation on the Volatile Flavors of the Enzymatic Hydrolysate of Soybean Protein Isolate. Foods 2024, 13, 2591. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhao, X.; Laghi, L.; Jiang, X.; Tang, J.; Du, X.; Zhu, C.; Picone, G. Insights into the Flavor Profile of Yak Jerky from Different Muscles Based on Electronic Nose, Electronic Tongue, Gas Chromatography–Mass Spectrometry and Gas Chromatography–Ion Mobility Spectrometry. Foods 2024, 13, 2911. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, D.; Cercaci, L.; Alamed, J.; McClements, D.J.; Decker, E.A. Chemical and Physical Stability of Citral and Limonene in Sodium Dodecyl Sulfate−Chitosan and Gum Arabic-Stabilized Oil-in-Water Emulsions. J. Agric. Food Chem. 2007, 55, 3585–3591. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef]
- Yi, C.; Li, Y.; Zhu, H.; Liu, Y.; Quan, K. Effect of Lactobacillus plantarum fermentation on the volatile flavors of mung beans. LWT 2021, 146, 111434. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, L.; Li, R.; Zhao, X.; Liu, J.; Zhang, J. Improved nutritional composition and flavor of mung bean yogurt through fermentation with Lactiplantibacillus plantarum SF28. Food Biosci. 2025, 67, 106338. [Google Scholar] [CrossRef]
- Xiao, N.; Zhang, Q.; Xu, H.; Zheng, C.; Yin, Y.; Liu, S.; Shi, W. Effect of Lactobacillus plantarum and flavourzyme on protein degradation and flavor development in grass carp during fermentation. Food Chem. X 2024, 22, 101439. [Google Scholar] [CrossRef] [PubMed]
Organic Acid | Organic Acid Content (mg/mL) | |||
---|---|---|---|---|
F-0H | F-24H | F-48H | F-72H | |
Lactic acid | ND | 3.53 ± 0.12 c | 4.21 ± 0.14 b | 4.55 ± 0.46 a |
Formic acid | ND | 1.38 ± 0.16 b | 1.81 ± 0.05 a | 1.54 ± 0.33 b |
Tartaric acid | 0.05 ± 0.01 d | 4.51 ± 0.07 b | 4.75 ± 0.01 a | 4.13 ± 0.07 c |
Malic acid | 0.09 ± 0.01 c | 0.47 ± 0.01 a | 0.19 ± 0.07 b | 0.12 ± 0.05 b |
Citric acid | 0.09 ± 0.02 b | 0.15 ± 0.03 a | 0.19 ± 0.03 a | 0.14 ± 0.06 a |
Succinic acid | 0.09 ± 0.01 d | 0.19 ± 0.06 b | 0.14 ± 0.03 c | 0.24 ± 0.01 a |
Fumaric acid | ND | ND | 0.06 ± 0.02 a | 0.04 ± 0.01 a |
5′-Nucleotide | Nucleotide Content (mg/100 g) | |||
---|---|---|---|---|
F-0H | F-24H | F-48H | F-72H | |
5′-AMP | 7.10 ± 0.19 c | 7.55 ± 0.24 bc | 8.81 ± 0.92 ab | 9.24 ± 0.95 a |
5′-GMP | 6.14 ± 0.06 b | 6.09 ± 0.03 b | 6.31 ± 0.1 b | 7.62 ± 0.58 a |
5′-CMP | 1.57 ± 0.2 c | 1.66 ± 0.03 bc | 1.87 ± 0.06 ab | 1.94 ± 0.1 a |
Free Amino Acid | Free Amino-Acid Content (mg/100 g) | |||
---|---|---|---|---|
F-0H | F-24H | F-48H | F-72H | |
Asp | 2.36 ± 0.06 b | 9.20 ± 0.71 a | 9.37 ± 0.58 a | 9.52 ± 0.59 a |
Thr | 1.35 ± 0.02 c | 2.64 ± 0.12 b | 2.72 ± 0.25 ab | 2.97 ± 0.11 a |
Ser | 0.9 ± 0.05 a | 1.05 ± 0.1 a | 1.09 ± 0.11 a | 1.05 ± 0.11 b |
Glu | 21.25 ± 1.47 a | 17.13 ± 0.29 b | 17.59 ± 0.02 b | 16.49 ± 0.45 b |
Gly | 19.57 ± 0.78 b | 25.63 ± 0.99 a | 24.52 ± 0.07 a | 25.62 ± 0.72 a |
Ala | 4.92 ± 0.10 b | 5.65 ± 0.49 a | 5.93 ± 0.55 a | 5.93 ± 0.41 a |
Cys | 0.63 ± 0.01 b | 1.42 ± 0.36 a | 1.39 ± 0.26 a | 1.34 ± 0.01 a |
Val | 9.73 ± 0.10 c | 12.37 ± 0.29 b | 12.92 ± 0.18 a | 12.41 ± 0.25 b |
Met | 0.54 ± 0.02 b | 0.98 ± 0.25 a | 0.61 ± 0.08 b | 0.57 ± 0.03 b |
Ile | 7.09 ± 0.01 | 7.24 ± 0.26 | 6.55 ± 0.63 | 6.50 ± 0.60 |
.Leu | 16.68 ± 0.36 c | 18.23 ± 0.77 a | 17.64 ± 0.55 b | 18.48 ± 1.42 a |
Tyr | 7.52 ± 0.18 a | 7.01 ± 0.21 b | 6.93 ± 0.17 b | 6.72 ± 0.25 b |
Phe | 6.49 ± 0.18 c | 8.81 ± 0.25 b | 9.57 ± 0.41 a | 9.66 ± 0.42 a |
Lys | 7.75 ± 0.26 c | 8.52 ± 0.18 b | 9.23 ± 0.37 a | 9.54 ± 0.39 a |
His | 4.33 ± 0.17 c | 5.82 ± 0.74 ab | 4.92 ± 0.36 bc | 6.80 ± 0.98 a |
Arg | 20.94 ± 0.09 a | 10.94 ± 0.40 b | 10.81 ± 0.46 b | 10.74 ± 0.25 b |
Umami amino acids | 24.51 ± 1.42 b | 26.33 ± 0.82 ab | 27.26 ± 0.58 a | 25.51 ± 0.90 ab |
Sweet amino acids | 26.7 ± 0.74 b | 34.92 ± 1.49 a | 34.19 ± 0.67 a | 35.57 ± 0.36 a |
Bitter amino acids | 73.32 ± 0.83 a | 70.19 ± 0.68 b | 68.87 ± 0.63 b | 70.93 ± 1.78 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Zhu, L.; Wang, Y.; Cao, R.; Ren, Y.; Zhao, X. Fermentation of Pea Protein Isolate by Enterococcus faecalis 07: A Strategy to Enhance Flavor and Functionality. Foods 2025, 14, 3065. https://doi.org/10.3390/foods14173065
Zhu Z, Zhu L, Wang Y, Cao R, Ren Y, Zhao X. Fermentation of Pea Protein Isolate by Enterococcus faecalis 07: A Strategy to Enhance Flavor and Functionality. Foods. 2025; 14(17):3065. https://doi.org/10.3390/foods14173065
Chicago/Turabian StyleZhu, Zhunyao, Laijing Zhu, Yanli Wang, Ruixue Cao, Yifan Ren, and Xiangzhong Zhao. 2025. "Fermentation of Pea Protein Isolate by Enterococcus faecalis 07: A Strategy to Enhance Flavor and Functionality" Foods 14, no. 17: 3065. https://doi.org/10.3390/foods14173065
APA StyleZhu, Z., Zhu, L., Wang, Y., Cao, R., Ren, Y., & Zhao, X. (2025). Fermentation of Pea Protein Isolate by Enterococcus faecalis 07: A Strategy to Enhance Flavor and Functionality. Foods, 14(17), 3065. https://doi.org/10.3390/foods14173065