The Brazilian Native Fruits Araçá, Guabijú, and Guabiroba: A Brief and Integrative Review on Their Phenolic Composition and Analytical Methods
Abstract
1. Introduction
2. Methodology
3. Fruits of the Myrtaceae Family
4. Phenolic Compounds in Fruits and Their Analytics
4.1. Extracting Bound Phenolic Compounds
4.2. Characterization and Quantification of Phenolic Compounds
5. Phenolic Compounds of Guabijú, Guabiroba, and Araçá
5.1. Phenolic Compounds Present in Guabijú
5.2. Phenolic Compounds Present in Guabiroba
5.3. Phenolic Compounds Present in Araçás
5.4. Phenolic Similarities Between the Fruits Discussed
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- de Araújo, F.F.; Neri-Numa, I.A.; de Paulo Farias, D.; da Cunha, G.R.M.C.; Pastore, G.M. Wild Brazilian Species of Eugenia Genera (Myrtaceae) as an Innovation Hotspot for Food and Pharmacological Purposes. Food Res. Int. 2019, 121, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Zandoná, G.P.; Bagatini, L.; Woloszyn, N.; de Souza Cardoso, J.; Hoffmann, J.F.; Moroni, L.S.; Stefanello, F.M.; Junges, A.; Rombaldi, C.V. Extraction and Characterization of Phytochemical Compounds from Araçazeiro (Psidium cattleianum) Leaf: Putative Antioxidant and Antimicrobial Properties. Food Res. Int. 2020, 137, 109573. [Google Scholar] [CrossRef]
- Sereno, A.B.; Bampi, M.; dos Santos, I.E.; Ferreira, S.M.R.; Bertin, R.L.; Krüger, C.C.H. Mineral Profile, Carotenoids and Composition of Cocona (Solanum sessiliflorum Dunal), a Wild Brazilian Fruit. J. Food Compos. Anal. 2018, 72, 32–38. [Google Scholar] [CrossRef]
- Pilon, A.C.; Valli, M.; Dametto, A.C.; Pinto, M.E.F.; Freire, R.T.; Castro-Gamboa, I.; Andricopulo, A.D.; Bolzani, V.S. NuBBEDB: An Updated Database to Uncover Chemical and Biological Information from Brazilian Biodiversity. Sci. Rep. 2017, 7, 7215. [Google Scholar] [CrossRef]
- Baldermann, S.; Blagojević, L.; Frede, K.; Klopsch, R.; Neugart, S.; Neumann, A.; Ngwene, B.; Norkeweit, J.; Schröter, D.; Schröter, A.; et al. Are Neglected Plants the Food for the Future? CRC Crit. Rev. Plant Sci. 2016, 35, 106–119. [Google Scholar] [CrossRef]
- Raseira, M.C.B.; Antunes, L.E.; Trevisan, R.; Gonçalves, E.D. Espécies Fru Tíferas Nativas Do Su l Do Brasil. In Documentos 129; Embrapa: Pelotas, Brazil, 2004. [Google Scholar]
- Machado, P.G.; Londero, D.S.; Barcia, M.T.; Ballus, C.A. Exploring Anthocyanin and Free and Bound Phenolic Compounds from Two Morphotypes of Araçá (Psidium cattleianum Sabine) by LC-ESI-QqQ-MS/MS. Foods 2023, 12, 3230. [Google Scholar] [CrossRef]
- Machado, P.G.; Londero, D.S.; Farias, C.A.A.; Pudenzi, M.A.; Barcia, M.T.; Ballus, C.A. Guabijú (Myrcianthes pungens): A Comprehensive Evaluation of Anthocyanins and Free, Esterified, Glycosylated, and Insoluble Phenolic Compounds in Its Peel, Pulp, and Seeds. Food Chem. 2024, 432, 137296. [Google Scholar] [CrossRef]
- Machado, P.G.; Londero, D.S.; Alves, E.E.; Farias, C.A.A.; Pudenzi, M.A.; Barcia, M.T.; Ballus, C.A. Combining Data from Two Mass Spectrometric Analyzers Coupled to Liquid Chromatography (LC-ESI-QToF-MS/MS and LC-ESI-QqQ-MS/MS) to Characterize the Free and Bound Phenolic Compounds from Peel, Pulp, and Seeds of Guabiroba Fruits. Microchem. J. 2025, 209, 112757. [Google Scholar] [CrossRef]
- Donado-Pestana, C.M.; Moura, M.H.C.; de Araujo, R.L.; de Lima Santiago, G.; de Moraes Barros, H.R.; Genovese, M.I. Polyphenols from Brazilian Native Myrtaceae Fruits and Their Potential Health Benefits against Obesity and Its Associated Complications. Curr. Opin. Food Sci. 2018, 19, 42–49. [Google Scholar] [CrossRef]
- Reynertson, K.A.; Yang, H.; Jiang, B.; Basile, M.J.; Kennelly, E.J. Quantitative Analysis of Antiradical Phenolic Constituents from Fourteen Edible Myrtaceae Fruits. Food Chem. 2008, 109, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.S.; Alves Filho, E.G.; Ribeiro, P.R.V.; Zocolo, G.J.; Silva, S.M.; de Lucena, E.M.P.; Alves, R.E.; de Brito, E.S. Chemotaxonomic Evaluation of Different Species from the Myrtaceae Family by UPLC-QToF/MS-MS Coupled to Supervised Classification Based on Genus. Biochem. Syst. Ecol. 2020, 90, 104028. [Google Scholar] [CrossRef]
- Borges, L.L.; Conceição, E.C.; Silveira, D. Active Compounds and Medicinal Properties of Myrciaria Genus. Food Chem. 2014, 153, 224–233. [Google Scholar] [CrossRef]
- Lampila, P.; van Lieshout, M.; Gremmen, B.; Lähteenmäki, L. Consumer Attitudes towards Enhanced Flavonoid Content in Fruit. Food Res. Int. 2009, 42, 122–129. [Google Scholar] [CrossRef]
- Nora, C.D.; Jablonski, A.; Rios, A.d.O.; Hertz, P.F.; de Jong, E.V.; Flôres, S.H. The Characterisation and Profile of the Bioactive Compounds in Red Guava (Psidium cattleyanum Sabine) and Guabiju (Myrcianthes pungens (O. Berg) D. Legrand). Int. J. Food Sci. Technol. 2014, 49, 1842–1849. [Google Scholar] [CrossRef]
- Liu, R.H. Health Benefits of Fruit and Vegetables Are from Additive and Synergistic Combinations of Phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517S–520S. [Google Scholar] [CrossRef]
- Frauches, N.; Amaral, T.; Largueza, C.; Teodoro, A. Brazilian Myrtaceae Fruits: A Review of Anticancer Proprieties. Br. J. Pharm. Res. 2016, 12, 1–15. [Google Scholar] [CrossRef]
- Antonelo, F.A.; Rodrigues, M.S.; Cruz, L.C.; Pagnoncelli, M.G.; da Cunha, M.A.A.; Bonatto, S.J.R.; Busso, C.; Wagner Júnior, A.; Montanher, P.F. Bioactive Compounds Derived from Brazilian Myrtaceae Species: Chemical Composition and Antioxidant, Antimicrobial and Cytotoxic Activities. Biocatal. Agric. Biotechnol. 2023, 48, 102629. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H. GC–MS and FTIR Analyses of Oils from Hibiscus sabdariffa, Stigma maydis and Chromolaena odorata Leaf Obtained from Malaysia: Potential Sources of Fatty Acids. Chem. Data Collect. 2019, 20, 100200. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J.D. Insoluble-Bound Phenolics in Food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef]
- Fazary, A.E.; Ju, Y.H. Feruloyl Esterases as Biotechnological Tools: Current and Future Perspectives. Acta Biochim. Biophys. Sin. 2007, 39, 811–828. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound Phenolics in Foods, a Review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Gulsunoglu, Z.; Karbancioglu-Guler, F.; Raes, K.; Kilic-Akyilmaz, M. Soluble and Insoluble-Bound Phenolics and Antioxidant Activity of Various Industrial Plant Wastes. Int. J. Food Prop. 2019, 22, 1501–1510. [Google Scholar] [CrossRef]
- Chu, Y.F.; Sun, J.; Wu, X.; Liu, R.H. Antioxidant and Antiproliferative Activities of Common Vegetables. J. Agric. Food Chem. 2002, 50, 6910–6916. [Google Scholar] [CrossRef] [PubMed]
- Solárová, Z.; Liskova, A.; Samec, M.; Kubatka, P.; Büsselberg, D.; Solár, P. Anticancer Potential of Lichens’ Secondary Metabolites. Biomolecules 2020, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Skoog, D.A.; Holler James, F.; West Donald, M. Fundamentals of Analytical Chemistry: Translation of the 9th North American Edition, 9th ed.; Editora Cengage Learning Brasil: São Paulo, Brazil, 2015. [Google Scholar]
- Gaffney, J.S.; Marley, N.A. Chemical Measurements and Instrumentation. In General Chemistry for Engineers; Elsevier: Amsterdam, The Netherlands, 2018; pp. 493–532. [Google Scholar] [CrossRef]
- Harris, D.C. Análise Química Quantitativa, 9th ed.; Gen LTC: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- De Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications; Wiley: Chichester, UK, 2007. [Google Scholar]
- Gao, X.; Wang, N.; Jia, J.; Wang, P.; Zhang, A.; Qin, X. Chemical Profliling of Dingkun Dan by Ultra High Performance Liquid Chromatography Q Exactive Orbitrap High Resolution Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 177, 112732. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, E.R.; Chiţescu, C.L.; Geană, E.I.; Gird, C.E.; Socoteanu, R.P.; Boscencu, R. Advanced Analytical Approaches for the Analysis of Polyphenols in Plants Matrices—A Review. Separations 2021, 8, 65. [Google Scholar] [CrossRef]
- Gomes, J.L.; Araujo, J.R.d.S.; Araújo, S.d.S.; de Oliveira, P.L.; de Veras, B.O.; Feitoza, G.S.; de Oliveira, A.P.; Júnior, J.S.d.L.; Pereira, R.d.C.A.; Martins, L.D.V.; et al. Berg Fruits: A Comparative Composition, Antioxidant, and Safety Use. South Afr. J. Bot. 2024, 172, 109–115. [Google Scholar] [CrossRef]
- Moraes, L.d.L.S.; Rodrigues, N.R.; Dal Forno, A.H.; Tambara, A.L.; Boldori, J.R.; Vizzotto, M.; Quatrin, A.; Emanuelli, T.; Denardin, C.C. Araçá (Psidium cattleianum Sabine) Ethanol Extracts Increase Lifespan and Alleviate Oxidative Stress in Caenorhabditis elegans. J. Agric. Food Res. 2023, 11, 100505. [Google Scholar] [CrossRef]
- Pereira, E.d.S.; Vinholes, J.R.; Camargo, T.M.; Nora, F.R.; Crizel, R.L.; Chaves, F.; Nora, L.; Vizzotto, M. Characterization of Araçá Fruits (Psidium cattleianum Sabine): Phenolic Composition, Antioxidant Activity and Inhibition of α-Amylase and α-Glucosidase. Food Biosci. 2020, 37, 100665. [Google Scholar] [CrossRef]
- Mallmann, L.P.; Tischer, B.; Vizzotto, M.; Rodrigues, E.; Manfroi, V. Comprehensive Identification and Quantification of Unexploited Phenolic Compounds from Red and Yellow Araçá (Psidium cattleianum Sabine) by LC-DAD-ESI-MS/MS. Food Res. Int. 2020, 131, 108978. [Google Scholar] [CrossRef] [PubMed]
- Vinholes, J.; Lemos, G.; Lia Barbieri, R.; Franzon, R.C.; Vizzotto, M. In Vitro Assessment of the Antihyperglycemic and Antioxidant Properties of Araçá, Butiá and Pitanga. Food Biosci. 2017, 19, 92–100. [Google Scholar] [CrossRef]
- Medina, A.L.; Haas, L.I.R.; Chaves, F.C.; Salvador, M.; Zambiazi, R.C.; Da Silva, W.P.; Nora, L.; Rombaldi, C.V. Araçá (Psidium cattleianum Sabine) Fruit Extracts with Antioxidant and Antimicrobial Activities and Antiproliferative Effect on Human Cancer Cells. Food Chem. 2011, 128, 916–922. [Google Scholar] [CrossRef]
- Spinelli, L.V.; Anzanello, M.J.; Areze da Silva Santos, R.; Carboni Martins, C.; Freo Saggin, J.; Aparecida Silva Da Silva, M.; Rodrigues, E. Uncovering the Phenolic Diversity of Guabiju Fruit: LC-MS/MS-Based Targeted Metabolomics Approach. Food Res. Int. 2023, 173, 113236. [Google Scholar] [CrossRef]
- Bombana, V.B.; do Nascimento, L.H.; Rigo, D.; Fischer, B.; Colet, R.; Paroul, N.; Dallago, R.M.; Junges, A.; Cansian, R.L.; Toniazzo Backes, G. Extraction by Maceration, Ultrasound, and Pressurized Liquid Methods for the Recovery of Anthocyanins Present in the Peel of Guabiju (Myrcianthes pungens): Maximizing the Extraction of Anthocyanins from the Peel of Guabiju. Sustain. Chem. Pharm. 2023, 36, 101264. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Schulz, M.; Nehring, P.; Della Betta, F.; Valese, A.C.; Daguer, H.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Nutritional and Bioactive Potential of Myrtaceae Fruits during Ripening. Food Chem. 2018, 239, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, S.F.; da Costa Amaral, S.; Mazepa, E.; Filho, A.P.S.; Sassaki, G.L.; Silveira, J.L.M. Isolation, NMR Characterization and Bioactivity of a (4-O-Methyl-α-D-Glucurono)-β-D-Xylan from Campomanesia xanthocarpa Berg Fruits. Int. J. Biol. Macromol. 2022, 207, 893–904. [Google Scholar] [CrossRef]
- Capeletto, C.; Conterato, G.; Scapinello, J.; Rodrigues, F.S.; Copini, M.S.; Kuhn, F.; Tres, M.V.; Dal Magro, J.; Oliveira, J.V. Chemical Composition, Antioxidant and Antimicrobial Activity of Guavirova (Campomanesia xanthocarpa Berg) Seed Extracts Obtained by Supercritical CO2 and Compressed n-Butane. J. Supercrit. Fluids 2016, 110, 32–38. [Google Scholar] [CrossRef]
- Czaikoski, K.; Mesomo, M.C.; Krüger, R.L.; Queiroga, C.L.; Corazza, M.L. Extraction of Campomanesia xanthocarpa Fruit Using Supercritical CO2 and Bioactivity Assessments. J. Supercrit. Fluids 2015, 98, 79–85. [Google Scholar] [CrossRef]
- Pereira, M.C.; Hill, L.E.; Zambiazi, R.C.; Mertens-Talcott, S.; Talcott, S.; Gomes, C.L. Nanoencapsulation of Hydrophobic Phytochemicals Using Poly (Dl-Lactide-Co-Glycolide) (PLGA) for Antioxidant and Antimicrobial Delivery Applications: Guabiroba Fruit (Campomanesia xanthocarpa O. Berg) Study. LWT Food Sci. Technol. 2015, 63, 100–107. [Google Scholar] [CrossRef]
- Cai, L.; Wei, Z.; Zhao, X.; Li, Y.; Li, X.; Jiang, X. Gallic Acid Mitigates LPS-Induced Inflammatory Response via Suppressing NF-ΚB Signalling Pathway in IPEC-J2 Cells. J. Anim. Physiol. Anim. Nutr. 2022, 106, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef]
- Zheng, T.; Tang, P.; Li, G. Development of Composite Film Based on Collagen and Phenolic Acid-Grafted Chitosan for Food Packaging. Int. J. Biol. Macromol. 2023, 241, 124494. [Google Scholar] [CrossRef] [PubMed]
- Janel, N.; Noll, C. Protection and Reversal of Hepatic Fibrosis by Polyphenols. Polyphen. Hum. Health Dis. 2014, 1, 665–679. [Google Scholar] [CrossRef]
- Park, Y.J.; Song, S.; Han, Y.; Lindroth, A.M. Nutriepigenomics: Paving the Way for Personalized Nutrition. In Personalized Epigenetics; Academic Press: Cambridge, MA, USA, 2024; pp. 271–304. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Pan, G.; Huang, D.; Zhu, S. Ellagic Acid Enhances Antioxidant System Activity and Maintains the Quality of Strawberry Fruit during Storage. Phyton-Int. J. Exp. Bot. 2024, 93, 15–28. [Google Scholar] [CrossRef]
- Pico, J.; Yan, Y.; Gerbrandt, E.M.; Castellarin, S.D. Determination of Free and Bound Phenolics in Northern Highbush Blueberries by a Validated HPLC/QTOF Methodology. J. Food Compos. Anal. 2022, 108, 104412. [Google Scholar] [CrossRef]
- Saini, R.K.; Khan, M.I.; Shang, X.; Kumar, V.; Kumari, V.; Kesarwani, A.; Ko, E.Y. Dietary Sources, Stabilization, Health Benefits, and Industrial Application of Anthocyanins—A Review. Foods 2024, 13, 1227. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, Y.; Diao, T.; Zeng, W.; Zuo, Y. Experimental and Theoretical Study on Antioxidant Activity of the Four Anthocyanins. J. Mol. Struct. 2020, 1204, 127509. [Google Scholar] [CrossRef]
- Saggin, J.F.; Thys, R.C.S.; Tischer, B.; Rodrigues, E. Guamirim (Myrcia oblongata DC.): An Unexplored Native Brazilian Berry Rich in Phenolic Compounds and Its Application in Muffins. Food Res. Int. 2025, 217, 116850. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Y.; Tao, H.; Li, L.; He, Y.; Zhang, X.; Zhu, Y.; Hong, G. Analysis of the Flavonoidome Reveals the Different Health-Promoting Flavonoid Characteristics in Fruit. Antioxidants 2023, 12, 1665. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, X.; Zeng, F. Biological Functions and Health Benefits of Flavonoids in Fruits and Vegetables: A Contemporary Review. Foods 2025, 14, 155. [Google Scholar] [CrossRef]
- de Oliveira Schmidt, H.; Rockett, F.C.; Klen, A.V.B.; Schmidt, L.; Rodrigues, E.; Tischer, B.; Augusti, P.R.; de Oliveira, V.R.; da Silva, V.L.; Flôres, S.H.; et al. New Insights into the Phenolic Compounds and Antioxidant Capacity of Feijoa and Cherry Fruits Cultivated in Brazil. Food Res. Int. 2020, 136, 109564. [Google Scholar] [CrossRef]
- de Paulo Farias, D.; de Araújo, F.F.; Sawaya, A.C.; Neri-Numa, I.A.; Pastore, G.M. Impacts of in Vitro Gastrointestinal Digestion on Phenolic Compounds Bioaccessibility and Biological Activities of Uvaia (Eugenia pyriformis Cambess) Fractions. Process Biochem. 2025, 153, 248–258. [Google Scholar] [CrossRef]
- da Silva, A.P.G.; Sganzerla, W.G.; Jacomino, A.P.; da Silva, E.P.; Xiao, J.; Simal-Gandara, J. Chemical Composition, Bioactive Compounds, and Perspectives for the Industrial Formulation of Health Products from Uvaia (Eugenia pyriformis Cambess—Myrtaceae): A Comprehensive Review. J. Food Compos. Anal. 2022, 109, 104500. [Google Scholar] [CrossRef]
- Juliato, R.A.; Brito, I.P.C.; Silva, E.K. Ultrasound-Driven Chemical and Biochemical Changes in Jabuticaba Juice: Phenolic Compounds, Volatile Profile and Inactivation of Polyphenol Oxidase, Peroxidase and Pectin Methylesterase. Food Chem. 2025, 481, 144037. [Google Scholar] [CrossRef] [PubMed]
Fruits | Fraction of Fruit Studied | Test | Identification/Quantitation | Phenolic Compounds Found | Phenolic Compound Content/Antioxidant Capacity | References |
---|---|---|---|---|---|---|
Red and Yellow Araças | Pulp | Folin–Ciocalteu; DPPH; ABTS | - | - | 49.83 mg GAE/100 g; 68.83 mg GAE/100 g; 958.51 mg AAE/100. | [34] |
Peel, Pulp, and Seed were evaluated separately | ORAC | LC-ESI- QqQ -MS/MS | Gallic Acid; Protocatechuic Acid; 4-Hydroxybenzoic Acid; Chlorogenic Acid; Catechin; Caffeic Acid; Vanillic Acid; Epicatechin; Syringic Acid; Acid p-Coumaric; Ferulic Acid; Ellagic Acid; Taxifolin; Quercetin-3-Glycoside; Pelargonidin-3-Glycoside; Cyanidin-3-Glycoside; Malvidin-3-Glycoside; Delphinidin-3-Glucoside; Peonidin-3-Glucoside. | - | [7] | |
Whole Fruits | Folin–Ciocalteu; Total Flavonoids; FRAP; DPPH | HPLC-PDA | - | Hydroxybenzoate derivatives (21.45 mg GAE/50 mL); Hydroxycinnamate derivatives (22.84 mg CAE/50 mL); Flavanols (7.93 mg ME/50 mL); Anthocyanins (2.11 PEE/50 mL). | [35] | |
Peel and Pulp | DPPH; Folin–Ciocalteu | HPLC-QToF-MS. | Catechin; Kaempferol; Myricetin; Cyanidin-3-0-glucoside; Malvidin-3-0-glucoside; Vanillic Acid; Ellagic Acid; Syringic Acid; p-coumaric Acid; 4-hydroxybenzoic Acid. | - | [36] | |
Whole Fruits | ORAC | LC-QToF-MS/MS. | A total of 43 and 45 phenolic compounds were identified from yellow and red araça, respectively. | - | [37] | |
Whole Fruits | DPPH; Folin–Ciocalteu | UV/Vis (Anthocyanins and Carotenoids). | - | 603.1 mg CLEA/100 g; 29.3 CYE/100 g. | [38] | |
Pulp | DPPH; Folin–Ciocalteu; | UV/Vis (Anthocyanins and Carotenoids); HPLC. | Epicatechin; Gallic Acid; p-coumaric Acid; Ferulic Acid; Myricetin; Quercetin. | [39] | ||
Guabijú | Peel, Pulp, and Seed were evaluated separately | ORAC | LC-ESI-QToF-MS/MS; LC-ESI- QqQ -MS/MS | A total of 81 phenolic compounds were identified; Quantified: Catechin; Epicatechin; Epigallocatechin; Quercetin; Myricetin; Taxifolin; Quercetin-3-Glycoside; Protocatechuic Acid; 4-Hydroxybenzoic Acid; Vanillic Acid; Syringic Acid; Ellagic Acid; Gallic Acid; Chlorogenic Acid; Caffeic Acid; p-Coumaric Acid; Ferulic Acid; trans-cinnamic Acid; Delphinidin-3-Glycoside; Petunidin-3-Glycoside; Cyanidin-3-Glycoside; Pelargonidin-3-Glycoside; Peonidin-3-Glycoside; Malvidin-3-Glycoside. | - | [8] |
Peel and Pulp | - | HPLC-ESI-QToF-MS/MS. | 67 phenolic compounds were identified | - | [40] | |
Peel | DPPH; ABTS | UV/Vis (Total Anthocyanins and Total Flavonoids). | - | 10.54 mg GAE/100 g; 248.96 mg CYE/100 g. | [41] | |
Peel and Pulp | DPPH; Folin–Ciocalteu; FRAP | UV-Vis (Total Anthocyanins); LC-ESI-MS/MS | Catechin; Epigallocatechin; Epicatechin; Kaempferol; Naringenin; Quercetin; Caffeic Acid; Chlorogenic Acid; p-Coumaric Acid; Ferulic acid; Gallic acid; 4-Hydroxybenzoic acid. | - | [42] | |
Whole fruit | DPPH; ABTS | HPLC (Anthocyanins). | - | 51.7% Cyanidin-3-glucoside; 60% Malvidin-3-glucoside. | [15] | |
Guabiroba | Peel, Pulp, and Seed were evaluated separately | ORAC | LC-ESI-QToF-MS/MS; LC-ESI- QqQ -MS/MS. | 62 phenolic compounds were identified; Quantified: Catechin; Epicatechin; Epigallocatechin; Quercetin; Quercetrin; Quercetin-3-Glycoside; Myricetin; Kaempferol-3-Rutinoside; Ellagic Acid; Gallic Acid; Protocatechuic Acid; 4-Hydroxybenzoic Acid; Vanillic Acid; Caffeic Acid; Ferulic Acid. | - | [9] |
Pulp | DPPH | - | - | Antioxidant activity assessed by free radical scavenging (DPPH). | [43] | |
Seeds | Folin–Ciocalteu; Total Flavonoids; DPPH; FRAP | - | - | 68.58 mg GAE/100 g; 8.10 mg QEE/100 g. | [44] | |
Whole Fruit | Folin–Ciocalteu; DPPH | - | - | Antioxidant activity assessed by free radical scavenging (DPPH); 39.12 mg GAE/100 g. | [45] | |
Peel and Pulp | DPPH; ABTS | - | - | 1353.7 mg of DPPH/g; 505.9 μmol/L Trolox Equivalents/g. | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, P.G.; Molina, F.S.; Barcia, M.T.; Ballus, C.A. The Brazilian Native Fruits Araçá, Guabijú, and Guabiroba: A Brief and Integrative Review on Their Phenolic Composition and Analytical Methods. Foods 2025, 14, 2858. https://doi.org/10.3390/foods14162858
Machado PG, Molina FS, Barcia MT, Ballus CA. The Brazilian Native Fruits Araçá, Guabijú, and Guabiroba: A Brief and Integrative Review on Their Phenolic Composition and Analytical Methods. Foods. 2025; 14(16):2858. https://doi.org/10.3390/foods14162858
Chicago/Turabian StyleMachado, Patrícia Gotardo, Felipe Siqueira Molina, Milene Teixeira Barcia, and Cristiano Augusto Ballus. 2025. "The Brazilian Native Fruits Araçá, Guabijú, and Guabiroba: A Brief and Integrative Review on Their Phenolic Composition and Analytical Methods" Foods 14, no. 16: 2858. https://doi.org/10.3390/foods14162858
APA StyleMachado, P. G., Molina, F. S., Barcia, M. T., & Ballus, C. A. (2025). The Brazilian Native Fruits Araçá, Guabijú, and Guabiroba: A Brief and Integrative Review on Their Phenolic Composition and Analytical Methods. Foods, 14(16), 2858. https://doi.org/10.3390/foods14162858