Effects of Region, Processing, and Their Interaction on the Elemental Profiles of Pu-Erh Tea
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fermentation of Ripe Pu-Erh Tea
2.3. Multi-Element Analysis
2.4. Statistical Analysis
3. Results
3.1. The Difference in Multi-Elements Among Different Regions
3.2. The Difference in Multi-Elements Among Different Processing Techniques
3.3. Effects of Region, Processing Method, and Their Interaction on Multi-Elements
3.4. Principal Component Analysis
3.5. Orthogonal Partial Least Squares Discriminant Analysis (Opls-Da) of Pu-Erh Tea
3.6. Discriminant Analysis of Pu-Erh Tea from Different Regions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Lu, C.; Wei, Y.; Zhang, J.; Shao, A.; Li, L.; Wang, Y.; Ning, J. Chemical imaging for determining the distributions of quality components during the piling fermentation of Pu-erh tea. Food Control 2024, 158, 110234. [Google Scholar] [CrossRef]
- Vu, H.; Song, F.V.; Tian, K.V.; Su, H.; Chass, G.A. Systematic characterisation of the structure and radical scavenging potency of Pu’Er tea polyphenol theaflavin. Org. Biomol. Chem. 2019, 17, 9942–9950. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhu, Y.; Tan, J.; Guo, L.; Dai, W.; Lin, Z. Bioactive compounds from Pu-erh tea with therapy for hyperlipidaemia. J. Funct. Foods 2015, 19, 194–203. [Google Scholar] [CrossRef]
- Su, J.; Wang, X.; Song, W.; Bai, X.; Li, C. Reducing oxidative stress and hepatoprotective effect of water extracts from Pu-erh tea on rats with high-fat diet. Food Sci. Hum. Wellness 2016, 5, 199–206. [Google Scholar] [CrossRef]
- Roda, G.; Marinello, C.; Grassi, A.; Picozzi, C.; Aldini, G.; Carini, M.; Regazzoni, L. Ripe and raw Pu-erh tea: LC-MS profiling, antioxidant capacity and enzyme inhibition activities of aqueous and hydro-alcoholic extracts. Molecules 2019, 24, 473. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Jia, H.; Zhang, J.; Wei, Y.; Deng, W.; Ning, J. Effects of microbial action and moist-heat action on the nonvolatile components of Pu-Erh tea, as revealed by metabolomics. J. Agric. Food Chem. 2022, 70, 15602–15613. [Google Scholar] [CrossRef]
- Deng, X.; Huang, G.; Tu, Q.; Zhou, H.; Li, Y.; Shi, H.; Wu, X.; Ren, H.; Huang, K.; He, X.; et al. Evolution analysis of flavor-active compounds during artificial fermentation of Pu-erh tea. Food Chem. 2021, 357, 129783. [Google Scholar] [CrossRef]
- Reyrolle, M.; Desauziers, V.; Pigot, T.; Gautier, L.; Bechec, M.L. Comparison of untargeted and markers analysis of volatile organic compounds with SIFT-MS and SPME-GC-MS to assess tea traceability. Foods 2024, 13, 3996. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Y.; Jiang, J.; Luo, L.; Zeng, L. Discriminant analysis of Pu-erh tea of different raw materials based on phytochemicals using Chemometrics. Foods 2022, 11, 680. [Google Scholar] [CrossRef]
- Karwowska, K.; Kozłowska-Tylingo, K.; Skotnicka, M.; Śmiechowska, M. Theogallin-to-gallic-acid ratio as a potential biomarker of Pu-erh teas. Foods 2023, 12, 2453. [Google Scholar] [CrossRef]
- Kanrar, B.; Kundu, S.; Khan, P.; Jain, V. Elemental profiling for discrimination of geographical origin of tea (Camellia sinensis) in north-east region of India by ICP-MS coupled with Chemometric techniques. Food Chem. Adv. 2022, 1, 100073. [Google Scholar] [CrossRef]
- Gonzaga, L.S.; Capone, D.L.; Bastian, S.E.P.; Danner, L.; Jeffery, D.W. Sensory typicity of regional Australian cabernet Sauvignon wines according to expert evaluations and descriptive analysis. Food Res. Int. 2020, 138, 109760. [Google Scholar] [CrossRef]
- Kumar, V.; Roy, B.K. Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Sci. Rep. 2018, 8, 10714. [Google Scholar] [CrossRef]
- Navratilova, K.; Hrbek, V.; Kratky, F.; Hurkova, K.; Tomaniova, M.; Pulkrabova, J.; Hajslova, J. Green tea: Authentication of geographic origin based on UHPLC-HRMS fingerprints. J. Food Compos. Anal. 2019, 78, 121–128. [Google Scholar] [CrossRef]
- Guo, J.; Yu, Z.; Liu, M.; Guan, M.; Shi, A.; Hu, Y.; Li, S.; Yi, L.; Ren, D. Analysis of volatile profile and aromatic characteristics of raw Pu-erh tea during storage based on GC-MS and odor activity value. Foods 2023, 12, 3568. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qian, L.; Chen, M.; Song, Y.; Liu, Y.; Wang, Y.; Liu, H. The application of elemental fingerprints in tea origin traceability and the research progress on influencing factors. Shipin Kexue (Food Sci.) 2024, 45, 293–301. Available online: http://kns.cnki.net/kcms/detail/11.2206.TS.20240821.1951.085.html (accessed on 16 August 2025). (In Chinese).
- Luo, Y.; Kuang, X.; Zhou, S.; Yuan, F.; Liu, G.; Ge, S. Study on the origin identification of Guizhou province green tea based on multielement analysis. J. Food Saf. Qual. 2024, 15, 20–28. (In Chinese) [Google Scholar] [CrossRef]
- Deng, X.; Liu, Z.; Zhan, Y.; Ni, K.; Zhang, Y.; Ma, W.; Shao, S.; Lv, X.; Yuan, Y.; Rogers, K.M. Predictive geographical authentication of green tea with protected designation of origin using a random forest model. Food Control 2020, 107, 106807. [Google Scholar] [CrossRef]
- Zhang, J. Environmentally Geochemical Characteristics and Geographical Origin Authentication of Tea from Major Tea Producing Areas in Guizhou Province, China. Ph.D. Thesis, Guizhou University, Guiyang, China, 2020. (In Chinese) [Google Scholar] [CrossRef]
- Ren, Y.; Feng, C.; Ye, Z.; Zhu, H.; Hou, R.; Granato, D.; Cai, H.; Peng, C. Keemun black tea: Tracing its narrow-geographic origins using comprehensive elemental fingerprinting and chemometrics. Food Control 2022, 133, 108614. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, Q. The suitability of rare earth elements for geographical traceability of tea leaves. J. Sci. Food Agric. 2019, 99, 6509–6514. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Y.; Li, M. Effects of geographical origin, variety, season and their interactions on minerals in tea for traceability. J. Food Compos. Anal. 2017, 63, 15–20. [Google Scholar] [CrossRef]
- McKenzie, J.S.; Jurado, J.M.; Pablos, F.D. Characterisation of tea leaves according to their total mineral content by means of probabilistic neural networks. Food Chem. 2010, 123, 859–864. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Chen, Y.; Rong, Y.; Jiang, Y.; Liu, F.; Zhou, Q.; Wei, X.; Yuan, H.; Zhang, J.; et al. Effect of geographical origins and pile-fermentation on the multi-element profiles of ripen Pu-erh tea revealed by comprehensive elemental fingerprinting. Food Control 2023, 154, 109978. [Google Scholar] [CrossRef]
- Savić, A.; Mutić, J.; Lučić, M.; Vesković, J.; Miletić, A.; Onjia, M. Ultrasound-assisted extraction followed by inductively coupled plasma mass spectrometry and multivariate profiling of rare earth elements in coffee. Foods 2025, 14, 275. [Google Scholar] [CrossRef] [PubMed]
- Bonello, F.; Cravero, M.C.; Dell’Oro, V.; Tsolakis, C.; Ciambotti, A. Wine traceability using chemical analysis, isotopic parameters, and sensory profiles. Beverages 2018, 4, 54. [Google Scholar] [CrossRef]
- GB/T 22111-2008; Geographical Indication Products Pu-erh Tea. General Administration of Quality Supervision. Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2008.
- Chen, M.; Liao, Q.; Qian, L.; Zou, H.; Li, Y.; Song, Y.; Xia, Y.; Liu, Y.; Liu, H.; Liu, Z. Effects of geographical origin and tree age on the stable isotopes and multi-elements of Pu-erh tea. Foods 2024, 13, 473. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Principal component analysis. Nat. Methods 2017, 14, 641–642. [Google Scholar] [CrossRef]
- GB/T 22111-2008; Geographical Indication Products Pu-erh Tea. Available online: https://www.chinesestandard.net/PDF/English.aspx/GBT22111-2008 (accessed on 16 August 2025).
- Liu, H.; Lin, X.; He, L.; Lan, S.; Lin, T.; Yan, H.; Li, Q. The Discrimination of Pu’er tea according to region of origin using the content of heavy rare-earth elements. J. Tea Sci. 2014, 34, 451–457. (In Chinese) [Google Scholar] [CrossRef]
- Shi, Z.; Li, Y.; Yang, W. Analysis of mineral elements in Pu-er tea produced in Yunnan Pu’er. J. Kunming Univ. 2015, 37, 34–37. (In Chinese) [Google Scholar] [CrossRef]
- Shuai, M.; Peng, C.; Niu, H.; Shao, D.; Hou, R.; Cai, H. Recent techniques for the authentication of the geographical origin of tea leaves from Camellia sinensis: A review. Food Chem. 2022, 374, 131713. [Google Scholar] [CrossRef]
- Shao, S.; Xu, M.; Liao, X.; Luo, Q.; Lin, Y.; Wang, P.; Fang, D.; Huang, Y.; Jin, S.; Ye, N. Production regions discrimination of Huangguanyin oolong tea by using the content of chemical components and rare earth elements. Food Res. Int. 2023, 165, 112522. [Google Scholar] [CrossRef]
- Lv, H.; Lin, Z.; Zhang, Y.; Liang, Y. Study on the content of the major mineral elements in Pu-erh tea. J. Tea Sci. 2013, 33, 411–419. (In Chinese) [Google Scholar] [CrossRef]
- Ben Amar, Y.M.; Nava, V.; Mouad, L.B.; Brigui, J.; Chouaibi, N.; Potortì, A.G.; Litrenta, F.; Albergamo, A.; Di Bella, G. Proximate composition and mineral profile of Moroccan and Italian carobs. J. Food Compos. Anal. 2025, 143, 107628. [Google Scholar] [CrossRef]
- Wang, T.; Li, R.; Liu, K.; Chen, Q.; Nian, B.; Wang, Q.; Xiao, Y.; Sha, G.; Chen, S.; Lei, X.; et al. Changes in sensory characteristics, chemical composition and microbial succession during fermentation of ancient plants Pu-erh tea. Food Chem. X 2023, 20, 101003. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; He, C.; Li, Y.; Yu, Z.; Chen, Y.; Wang, Y.; Ni, D. The formation of aroma quality of dark tea during pile-fermentation based on multi-omics. LWT 2021, 147, 111491. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, L.; Aaqil, M.; Wang, Q.; Peng, W.; Zhuang, L.; Gong, W.; Zheng, T.; Zhao, M.; Wang, C.; et al. Enhanced fermentation of Pu-Erh tea with Aspergillus niger: Quality and microbial community analysis. Molecules 2024, 29, 5647. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, G.; Chen, L.; Liu, T.; Liu, X.; Lu, C. Profiling elements in Puerh tea from Yunnan province, China. Food Addit. Contam. Part B 2017, 10, 155–164. [Google Scholar] [CrossRef]
- Chen, B.; Pu, H.; Dao, S.; Jiang, D.; Luo, Z.; Gao, X.; Li, Z. Study on variation of metal elements during Pu’er tea fermentation. Sci. Technol. Food Ind. 2016, 37, 246–249. (In Chinese) [Google Scholar] [CrossRef]
Region | Number of Samples | N Latitude (deg) | E Longitude (deg) | Altitude (m) |
---|---|---|---|---|
Jinggu | 24 | 22.29–23.52 | 100.02–101.07 | 1842–1901 |
Bangdong | 24 | 23.29–24.16 | 99.49–100.26 | 1633–1739 |
Ning’er | 24 | 22.42–23.15 | 100.22–101.03 | 1330–1614 |
Element | Jinggu | Bangdong | Ning’er |
---|---|---|---|
Li (ug/kg) * | 78.14 ± 4.90 a | 74.47 ± 2.89 a | 67.21 ± 2.20 b |
K (mg/kg) ** | 28,476 ± 1103 b | 33,104 ± 475 a | 25,239 ± 469 c |
Ca (mg/kg) ** | 4572 ± 216 b | 5501 ± 134 a | 3463 ± 24 c |
Sc (ug/kg) ** | 48.600 ± 3.349 a | 33.501 ± 4.357 b | 16.889 ± 1.675 c |
Fe (mg/kg) ** | 141 ± 9 b | 167 ± 8 a | 100 ± 1 c |
Co (ug/kg) ** | 147.41 ± 6.80 b | 286.94 ± 10.21 a | 71.59 ± 0.57 c |
Cu (mg/kg) | 18.1 ± 7.3 | 17.7 ± 0.2 | 17.7 ± 0.3 |
Zn (mg/kg) ** | 36 ± 1 b | 39 ± 1 a | 40 ± 0 a |
As (ug/kg) | 64.66 ± 11.62 | 63.70 ± 9.64 | 55.04 ± 7.48 |
Rb (mg/kg) ** | 109.5 ± 5.0 b | 161.3 ± 2.3 a | 46.7 ± 0.4 c |
Sr (mg/kg) ** | 13.5 ± 0.6 b | 14.7 ± 0.3 a | 5.7 ± 0.1 c |
Y (ug/kg) ** | 268.7 ± 14.2 a | 219.4 ± 4.2 b | 71.7 ± 1.9 c |
Cd (ug/kg) ** | 50.865 ± 2.508 b | 56.816 ± 1.500 a | 31.560 ± 1.061 c |
Cs (ug/kg) ** | 261.61 ± 12.76 ab | 278.54 ± 4.80 a | 184.52 ± 2.46 c |
Ba (mg/kg) ** | 18 ± 1 b | 38 ± 1 a | 13 ± 0 c |
La (ug/kg) ** | 193.27 ± 8.04 b | 225.10 ± 5.15 a | 61.21 ± 2.52 c |
Nd (ug/kg) ** | 188.48 ± 4.54 a | 150.63 ± 4.56 b | 51.25 ± 0.43 c |
Sm (ug/kg) ** | 42.641 ± 3.859 a | 26.959 ± 1.841 b | 11.534 ± 1.406 c |
Eu (ug/kg) ** | 10.732 ± 0.630 a | 7.389 ± 1.047 b | 2.478 ± 0.298 c |
Gd (ug/kg) ** | 44.775 ± 2.725 a | 31.805 ± 1.304 b | 12.718 ± 0.012 c |
Tb (ug/kg) ** | 6.569 ± 0.520 a | 4.304 ± 0.199 b | 1.778 ± 0.115 c |
Dy (ug/kg) ** | 40.342 ± 3.705 a | 26.700 ± 0.469 b | 10.206 ± 0.496 c |
Ho (ug/kg) ** | 8.476 ± 0.202 a | 5.885 ± 0.289 b | 2.130 ± 0.190 c |
Er (ug/kg) ** | 25.253 ± 1.131 a | 17.345 ± 1.151 b | 5.595 ± 0.297 c |
Tm (ug/kg) ** | 3.533 ± 0.081 a | 2.570 ± 0.177 b | 0.698 ± 0.042 c |
Yb (ug/kg) ** | 24.558 ± 0.599 a | 16.130 ± 0.468 b | 4.629 ± 0.410 c |
Lu (ug/kg) ** | 3.636 ± 0.221 a | 2.383 ± 0.191 b | 0.661 ± 0.074 c |
Pb (ug/kg) | 109.00 ± 27.71 | 152.04 ± 2.31 | 88.44 ± 6.09 |
Element | Fresh Leaves | Kill-Green | Rolling | First Turning | Second Turning | Third Turning | Fourth Turning | Ripe Pu-Erh Tea |
---|---|---|---|---|---|---|---|---|
Li (ug/kg) ** | 54.42 ± 33.59 abcd | 49.84 ± 12.34 bcd | 50.45 ± 11.60 bcd | 62.14 ± 3.75 bcd | 62.81 ± 8.41 abcd | 63.33 ± 7.51 abcd | 67.25 ± 14.07 abcd | 73.28 ± 5.70 a |
K (mg/kg) | 23,943 ± 1910 | 23,709 ± 1989 | 23,625 ± 2402 | 24,595 ± 2393 | 26,550 ± 3966 | 26,097 ± 3387 | 27,072 ± 5331 | 28,940 ± 3483 |
Ca (mg/kg) | 4320 ± 76 | 3780 ± 31 | 3750 ± 25 | 3540 ± 56 | 3990 ± 76 | 3820 ± 64 | 4020 ± 69 | 4510 ± 89 |
Sc (ug/kg) | 26.580 ± 15.1120 | 28.923 ± 14.557 | 29.018 ± 17.925 | 29.036 ± 14.600 | 32.742 ± 14.988 | 31.183 ± 12.809 | 33.686 ± 14.302 | 32.997 ± 14.034 |
Fe (mg/kg) | 86 ± 31 | 90 ± 21 | 90 ± 15 | 110 ± 22 | 119 ± 32 | 118 ± 30 | 135 ± 49 | 136 ± 30 |
Co (ug/kg) | 103.06 ± 63.53 | 97.66 ± 34.52 | 92.66 ± 28.98 | 150.11 ± 86.14 | 160.39 ± 96.20 | 158.24 ± 91.07 | 169.79 ± 107.18 | 168.651 ± 94.799 |
Cu (mg/kg) ** | 14.6 ± 2.7 abcd | 12.7 ± 4.0 abcd | 13.7 ± 3.6 abcd | 16.1 ± 1.1 abcd | 16.7 ± 0.4 bcd | 16.6 ± 0.5 bcd | 16.9 ± 0.9 abcd | 18.0 ± 0.6 a |
Zn (mg/kg) ** | 32 ± 5 abcd | 32 ± 4 bcd | 31 ± 3 bcd | 34 ± 2 bcd | 36 ± 2 abcd | 36 ± 1 abcd | 37 ± 4 abcd | 38 ± 2 a |
As (ug/kg) * | 41.29 ± 18.50 ab | 40.30 ± 11.420 b | 42.66 ± 9.97 ab | 49.56 ± 7.11 ab | 50.56 ± 5.51 ab | 51.60 ± 4.45 ab | 56.36 ± 8.97 ab | 61.14 ± 9.59 a |
Rb (mg/kg) | 83.1 ± 39.0 | 89.0 ± 38.9 | 87.7 ± 37.9 | 93.8 ± 41.8 | 99.9 ± 49.4 | 97.8 ± 46.8 | 103.3 ± 53.8 | 105.8 ± 49.7 |
Sr (mg/kg) | 11.8 ± 4.6 | 10.2 ± 5.5 | 9.7 ± 4.8 | 8.8 ± 3.3 | 10.0 ± 3.8 | 9.6 ± 3.7 | 10.5 ± 3.9 | 11.3 ± 4.2 |
Y (ug/kg) | 147.9 ± 94.5 | 138.2 ± 98.2 | 145.9 ± 118.0 | 162.4 ± 82.2 | 175.5 ± 92.4 | 169.1 ± 81.3 | 179.5 ± 78.4 | 186.6 ± 89.0 |
Cd (ug/kg) ** | 26.031 ± 5.396 c | 31.505 ± 13.585 bc | 31.886 ± 12.544 bc | 40.335 ± 13.442 ab | 43.472 ± 11.799 ab | 40.257 ± 11.421 ab | 45.201 ± 13.223 a | 46.413 ± 11.539 a |
Cs (ug/kg) | 193.98 ± 96.27 | 311.04 ± 149.49 | 299.80 ± 133.8 | 221.97 ± 45.54 | 222.04 ± 46.91 | 225.82 ± 43.37 | 232.78 ± 58.59 | 241.55 ± 43.95 |
Ba (mg/kg) | 27 ± 12 | 18 ± 5 | 17 ± 3 | 19 ± 9 | 21 ± 11 | 21 ± 10 | 23 ± 11 | 23 ± 11 |
La (ug/kg) | 154.22 ± 111.95 | 104.92 ± 51.81 | 97.56 ± 56.26 | 141.38 ± 71.25 | 153.96 ± 76.80 | 142.38 ± 71.54 | 159.46 ± 72.17 | 159.86 ± 75.42 |
Nd (ug/kg) | 122.10 ± 87.20 | 101.67 ± 60.81 | 97.75 ± 74.67 | 117.65 ± 60.55 | 131.93 ± 65.19 | 118.23 ± 58.62 | 127.93 ± 56.50 | 130.12 ± 61.46 |
Sm (ug/kg) | 25.711 ± 18.747 | 22.220 ± 13.236 | 21.477 ± 18.506 | 24.728 ± 13.645 | 27.187 ± 14.764 | 25.028 ± 13.470 | 27.323 ± 12.893 | 27.045 ± 13.656 |
Eu (ug/kg) | 6.050 ± 3.614 | 5.349 ± 3.982 | 6.021 ± 5.101 | 6.000 ± 3.294 | 6.639 ± 3.437 | 6.180 ± 3.214 | 6.473 ± 3.224 | 6.866 ± 3.650 |
Gd (ug/kg) | 25.415 ± 17.203 | 22.274 ± 14.719 | 23.759 ± 20.060 | 25.405 ± 13.441 | 27.278 ± 13.656 | 26.533 ± 13.038 | 27.655 ± 12.897 | 29.766 ± 14.046 |
Tb (ug/kg) | 3.725 ± 2.550 | 3.591 ± 2.678 | 3.704 ± 3.223 | 3.865 ± 2.195 | 4.012 ± 2.109 | 4.080 ± 2.072 | 4.199 ± 1.904 | 4.217 ± 2.095 |
Dy (ug/kg) | 21.968 ± 14.721 | 21.726 ± 16.686 | 23.135 ± 20.913 | 22.282 ± 12.896 | 24.917 ± 13.871 | 23.692 ± 12.720 | 25.790 ± 13.219 | 25.749 ± 13.204 |
Ho (ug/kg) | 4.556 ± 3.080 | 4.512 ± 3.506 | 4.628 ± 4.093 | 4.766 ± 2.606 | 5.157 ± 2.990 | 4.941 ± 2.722 | 5.216 ± 2.653 | 5.497 ± 2.770 |
Er (ug/kg) | 12.741 ± 8.602 | 13.037 ± 10.608 | 12.876 ± 11.813 | 14.137 ± 8.435 | 14.446 ± 8.151 | 14.579 ± 8.367 | 15.755 ± 8.427 | 16.065 ± 8.605 |
Tm (ug/kg) | 1.931 ± 1.298 | 1.938 ± 1.706 | 1.962 ± 1.932 | 2.182 ± 1.323 | 2.115 ± 1.296 | 2.126 ± 1.254 | 2.343 ± 1.261 | 2.267 ± 1.252 |
Yb (ug/kg) | 11.562 ± 7.479 | 12.745 ± 11.362 | 12.951 ± 12.77 | 13.914 ± 9.336 | 14.414 ± 9.229 | 14.025 ± 9.153 | 14.649 ± 8.755 | 15.105 ± 8.674 |
Lu (ug/kg) | 1.762 ± 1.251 | 2.096 ± 1.948 | 1.891 ± 1.907 | 2.050 ± 1.362 | 2.040 ± 1.43 | 2.087 ± 1.275 | 2.210 ± 1.342 | 2.227 ± 1.303 |
Pb (ug/kg) | 116.495 ± 31.506 | 128.709 ± 31.553 | 147.622 ± 25.115 | 162.377 ± 34.825 | 163.135 ± 32.215 | 163.067 ± 25.378 | 202.184 ± 16.909 | 212.732 ± 60.063 |
Region | Jinggu | Bangdong | Ning’er | Total | ||
---|---|---|---|---|---|---|
Original | count | Jinggu | 24 | 0 | 0 | 24 |
Bangdong | 0 | 24 | 0 | 24 | ||
Ning’er | 0 | 0 | 24 | 24 | ||
% | 100 | 100 | 100 | 100 | ||
Cross-validation | count | Jinggu | 23 | 0 | 1 | 24 |
Bangdong | 0 | 24 | 0 | 24 | ||
Ning’er | 0 | 0 | 24 | 24 | ||
% | 95.8 | 100 | 100 | 98.6 |
Sample ID | Actual Group | Predicted Group | YJinggu Score | YBangdong Score | YNing’er Score |
---|---|---|---|---|---|
Jinggu | Jinggu | Jinggu | −262.152 | −408.835 | −419.62 |
−267.437 | −414.939 | −425.922 | |||
−268.049 | −414.898 | −425.862 | |||
−266.368 | −411.391 | −421.944 | |||
−268.026 | −414.881 | −425.617 | |||
−264.444 | −413.433 | −424.286 | |||
Bangdong | Bangdong | Bangdong | −409.529 | −313.67 | −356.126 |
−409.006 | −312.333 | −354.276 | |||
−411.512 | −314.777 | −357.514 | |||
−410.97 | −314.24 | −356.843 | |||
−414.776 | −316.326 | −358.374 | |||
−414.285 | −316.59 | −359.186 | |||
Ning’er | Ning’er | Ning’er | −420.246 | −357.652 | −323.08 |
−426.697 | −361.328 | −325.295 | |||
−421.465 | −356.671 | −321.491 | |||
−425.105 | −364.505 | −331.439 | |||
−427.043 | −362.274 | −326.632 | |||
−428.163 | −364.421 | −328.718 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-L.; Jiang, H.-Y.; Chen, M.-M.; Wang, X.-L.; Liu, H.-Y.; Zou, H.-D.; Zhang, B.-W.; Xu, Y.-L.; Qian, L.-L. Effects of Region, Processing, and Their Interaction on the Elemental Profiles of Pu-Erh Tea. Foods 2025, 14, 2848. https://doi.org/10.3390/foods14162848
Li Y-L, Jiang H-Y, Chen M-M, Wang X-L, Liu H-Y, Zou H-D, Zhang B-W, Xu Y-L, Qian L-L. Effects of Region, Processing, and Their Interaction on the Elemental Profiles of Pu-Erh Tea. Foods. 2025; 14(16):2848. https://doi.org/10.3390/foods14162848
Chicago/Turabian StyleLi, Yan-Long, He-Yuan Jiang, Ming-Ming Chen, Xiao-Li Wang, Hong-Yan Liu, Hai-Dan Zou, Bo-Wen Zhang, Ya-Liang Xu, and Li-Li Qian. 2025. "Effects of Region, Processing, and Their Interaction on the Elemental Profiles of Pu-Erh Tea" Foods 14, no. 16: 2848. https://doi.org/10.3390/foods14162848
APA StyleLi, Y.-L., Jiang, H.-Y., Chen, M.-M., Wang, X.-L., Liu, H.-Y., Zou, H.-D., Zhang, B.-W., Xu, Y.-L., & Qian, L.-L. (2025). Effects of Region, Processing, and Their Interaction on the Elemental Profiles of Pu-Erh Tea. Foods, 14(16), 2848. https://doi.org/10.3390/foods14162848