The Functional Characterization of an AA10 Lytic Polysaccharide Monooxygenase from Saccharophagus degradans 2-40T for Enhanced Chitin Biodegradation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Cloning, Expression, and Purification
2.3. Phylogenetic Analysis and Structural Sequence Alignment
2.4. Effects of Temperature and pH on SdLPMO10 Activity and Stability
2.5. Chitin and Cellulose Degradation Experiments
2.6. MALDI-TOF MS Analysis
2.7. Structural Analysis of α-Chitin After SdLPMO10A Pre-Treatment
2.8. Synergy Test of SdLPMO10A and Chitinase
2.9. Statistical Analysis
3. Results and Discussion
3.1. Heterologous Expression and Purification of SdLPMO10A
3.2. Enzyme Specificity Assay of SdLPMO10A
3.3. Characterization of the Properties of SdLPMO10A
3.4. Structural Insights on SdLPMO10A
3.5. Structure of α-Chitins After SdLPMO10A Pre-Treatment
3.6. Synergistic Effect of SdLPMO10A and Chitinase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Xu, C.; Lei, C.; Meng, L.; Wang, C.; Song, Y. Chitosan as a barrier membrane material in periodontal tissue regeneration. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qin, Z.; Wang, C.; Jiang, Z. N-acetyl-d-glucosamine-based oligosaccharides from chitin: Enzymatic production, characterization and biological activities. Carbohydr. Polym. 2023, 315, 121019. [Google Scholar] [CrossRef]
- Vaaje-Kolstad, G.; Westereng, B.; Horn, S.J.; Liu, Z.; Zhai, H.; Sørlie, M.; Eijsink, V.G. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 2010, 330, 219–222. [Google Scholar] [CrossRef]
- Hemsworth, G.R.; Davies, G.J.; Walton, P.H. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr. Opin. Struct. Biol. 2013, 23, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.; Chylenski, P.; Bissaro, B.; Eijsink, V.G.H.; Horn, S.J. The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail. Biotechnol. Biofuels 2018, 11, 209. [Google Scholar] [CrossRef]
- Bissaro, B.; Røhr, Å.K.; Müller, G.; Chylenski, P.; Skaugen, M.; Forsberg, Z.; Horn, S.J.; Vaaje-Kolstad, G.; Eijsink, V.G.H. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat. Chem. Biol. 2017, 13, 1123–1128. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, H. Current understanding of substrate specificity and regioselectivity of LPMOs. Bioresour. Bioprocess. 2020, 7, 11. [Google Scholar] [CrossRef]
- Dan, M.; Zheng, Y.; Zhao, G.; Hsieh, Y.S.Y.; Wang, D. Current insights of factors interfering the stability of lytic polysaccharide monooxygenases. Biotechnol. Adv. 2023, 67, 108216. [Google Scholar] [CrossRef]
- Ekborg, N.A.; Gonzalez, J.M.; Howard, M.B.; Taylor, L.E.; Hutcheson, S.W.; Weiner, R.M. Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int. J. Syst. Evol. Microbiol. 2005, 55, 1545–1549. [Google Scholar] [CrossRef]
- Suvorov, M.; Kumar, R.; Zhang, H.; Hutcheson, S. Novelties of the cellulolytic system of a marine bacterium applicable to cellulosic sugar production. Biofuels 2011, 2, 59–70. [Google Scholar] [CrossRef]
- Henrissat, B.; Davies, G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 1997, 7, 637–644. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Salazar-Alvarez, G.; McKee, L.S.; Srivastava, V.; Sellberg, J.A.; Bulone, V.; Hsieh, Y.S. Production of functionalised chitins assisted by fungal lytic polysaccharide monooxygenase. Green Chem. 2018, 20, 2091–2100. [Google Scholar] [CrossRef]
- Bramucci, E.; Paiardini, A.; Bossa, F.; Pascarella, S. PyMod: Sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL. BMC Bioinform. 2012, 13, S2. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
- Breslmayr, E.; Hanžek, M.; Hanrahan, A.; Leitner, C.; Kittl, R.; Šantek, B.; Oostenbrink, C.; Ludwig, R. A fast and sensitive activity assay for lytic polysaccharide monooxygenase. Biotechnol. Biofuels 2018, 11, 79. [Google Scholar] [CrossRef]
- Zhang, Y.H.P.; Cui, J.; Lynd, L.R.; Kuang, L.R. A Transition from Cellulose Swelling to Cellulose Dissolution by o-Phosphoric Acid: Evidence from Enzymatic Hydrolysis and Supramolecular Structure. Biomacromolecules 2006, 7, 644–648. [Google Scholar] [CrossRef]
- Soon, C.Y.; Tee, Y.B.; Tan, C.H.; Rosnita, A.T.; Khalina, A. Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration. Int. J. Biol. Macromol. 2018, 108, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Gbenebor, O.P.; Adeosun, S.O.; Lawal, G.I.; Jun, S.; Olaleye, S.A. Acetylation, crystalline and morphological properties of structural polysaccharide from shrimp exoskeleton. Eng. Sci. Technol. Int. J. 2017, 20, 1155–1165. [Google Scholar] [CrossRef]
- Zhou, N.; Yang, P.; Chen, J.; Wei, G.; Wang, C.; Zhang, A.; Chen, K.; Ouyang, P. Effect of organic solvents treatment on structure of chitin and its enzymatic hydrolysis. Polym. Degrad. Stab. 2022, 198, 109654. [Google Scholar] [CrossRef]
- Katta, S.; Ankati, S.; Podile, A.R. Chitooligosaccharides are converted to N-acetylglucosamine by N-acetyl-β-hexosaminidase from Stenotrophomonas maltophilia. FEMS Microbiol. Lett. 2013, 348, 19–25. [Google Scholar] [CrossRef]
- Forsberg, Z.; Mackenzie, A.K.; Sørlie, M.; Røhr, Å.K.; Helland, R.; Arvai, A.S.; Vaaje-Kolstad, G.; Eijsink, V.G.H. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc. Natl. Acad. Sci. USA 2014, 111, 8446–8451. [Google Scholar] [CrossRef]
- Sprenger, K.G.; Choudhury, A.; Kaar, J.L.; Pfaendtner, J. Lytic Polysaccharide Monooxygenases ScLPMO10B and ScLPMO10C Are Stable in Ionic Liquids As Determined by Molecular Simulations. J. Phys. Chem. B 2016, 120, 3863–3872. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Chahar, D.; Bisht, M.; Venkatesu, P. Assessing the compatibility of choline-based deep eutectic solvents for the structural stability and activity of cellulase: Enzyme sustain at high temperature. Int. J. Biol. Macromol. 2023, 249, 125988. [Google Scholar] [CrossRef]
- Sunna, A. Modular organisation and functional analysis of dissected modular β-mannanase Cs Man26 from Caldicellulosiruptor Rt8B.4. Appl. Microbiol. Biotechnol. 2010, 86, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Couturier, M.; Feliu, J.; Haon, M.; Navarro, D.; Lesage-Meessen, L.; Coutinho, P.M.; Berrin, J.-G. A thermostable GH45 endoglucanase from yeast: Impact of its atypical multimodularity on activity. Microb. Cell Factories 2011, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Líter, J.A.; Ayuso-Fernández, I.; Csarman, F.; de Eugenio, L.I.; Míguez, N.; Plou, F.J.; Prieto, A.; Ludwig, R.; Martínez, M.J. Lytic Polysaccharide Monooxygenase from Talaromyces amestolkiae with an Enigmatic Linker-like Region: The Role of This Enzyme on Cellulose Saccharification. Int. J. Mol. Sci. 2021, 22, 13611. [Google Scholar] [CrossRef]
- Laurent, C.V.F.P.; Sun, P.; Scheiblbrandner, S.; Csarman, F.; Cannazza, P.; Frommhagen, M.; van Berkel, W.J.H.; Oostenbrink, C.; Kabel, M.A.; Ludwig, R. Influence of Lytic Polysaccharide Monooxygenase Active Site Segments on Activity and Affinity. Int. J. Mol. Sci. 2019, 20, 6219. [Google Scholar] [CrossRef]
- Agrawal, D.; Kaur, B.; Kaur Brar, K.; Chadha, B.S. An innovative approach of priming lignocellulosics with lytic polysaccharide mono-oxygenases prior to saccharification with glycosyl hydrolases can economize second generation ethanol process. Bioresour. Technol. 2020, 308, 123257. [Google Scholar] [CrossRef]
- Semenova, M.V.; Gusakov, A.V.; Telitsin, V.D.; Rozhkova, A.M.; Kondratyeva, E.G.; Sinitsyn, A.P. Purification and characterization of two forms of the homologously expressed lytic polysaccharide monooxygenase (PvLPMO9A) from Penicillium verruculosum. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2020, 1868, 140297. [Google Scholar] [CrossRef]
- Li, F.; Xie, J.; Zhang, X.; Zhao, L. Improvement of the Optimum pH of Aspergillus niger Xylanase towards an Alkaline pH by Site-Directed Mutagenesis. J. Microbiol. Biotechnol. 2015, 25, 11–17. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Munzone, A.; El Kerdi, B.; Fanuel, M.; Rogniaux, H.; Ropartz, D.; Réglier, M.; Royant, A.; Simaan, A.J.; Decroos, C. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere. FEBS J. 2020, 287, 3298–3314. [Google Scholar] [CrossRef]
- Fowler, C.A.; Sabbadin, F.; Ciano, L.; Hemsworth, G.R.; Elias, L.; Bruce, N.; McQueen-Mason, S.; Davies, G.J.; Walton, P.H. Discovery, activity and characterisation of an AA10 lytic polysaccharide oxygenase from the shipworm symbiont Teredinibacter turnerae. Biotechnol. Biofuels 2019, 12, 232. [Google Scholar] [CrossRef]
- Votvik, A.K.; Røhr, Å.K.; Bissaro, B.; Stepnov, A.A.; Sørlie, M.; Eijsink, V.G.H.; Forsberg, Z. Structural and functional characterization of the catalytic domain of a cell-wall anchored bacterial lytic polysaccharide monooxygenase from Streptomyces coelicolor. Sci. Rep. 2023, 13, 5345. [Google Scholar] [CrossRef] [PubMed]
- Bissaro, B.; Streit, B.; Isaksen, I.; Eijsink, V.G.H.; Beckham, G.T.; DuBois, J.L.; Røhr, Å.K. Molecular mechanism of the chitinolytic peroxygenase reaction. Proc. Natl. Acad. Sci. USA 2020, 117, 1504–1513. [Google Scholar] [CrossRef]
- Eibinger, M.; Ganner, T.; Bubner, P.; Rošker, S.; Kracher, D.; Haltrich, D.; Ludwig, R.; Plank, H.; Nidetzky, B. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J. Biol. Chem. 2014, 289, 35929–35938. [Google Scholar] [CrossRef] [PubMed]
- Tsurkan, M.V.; Voronkina, A.; Khrunyk, Y.; Wysokowski, M.; Petrenko, I.; Ehrlich, H. Progress in chitin analytics. Carbohydr. Polym. 2021, 252, 117204. [Google Scholar] [CrossRef] [PubMed]
- Barandiaran, L.; Alonso-Lerma, B.; Reifs, A.; Larraza, I.; Olmos-Juste, R.; Fernandez-Calvo, A.; Jabalera, Y.; Eceiza, A.; Perez-Jimenez, R. Enzymatic upgrading of nanochitin using an ancient lytic polysaccharide monooxygenase. Commun. Mater. 2022, 3, 55. [Google Scholar] [CrossRef]
- Nakagawa, Y.S.; Eijsink, V.G.H.; Totani, K.; Vaaje-Kolstad, G. Conversion of α-Chitin Substrates with Varying Particle Size and Crystallinity Reveals Substrate Preferences of the Chitinases and Lytic Polysaccharide Monooxygenase of Serratia marcescens. J. Agric. Food Chem. 2013, 61, 11061–11066. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Y.; Xu, L.; Song, X.; Yuan, X.; Sun, J.; Zhang, J. Superfine grinding induced amorphization and increased solubility of α-chitin. Carbohydr. Polym. 2020, 237, 116145. [Google Scholar] [CrossRef]
- Margoutidis, G.; Parsons, V.H.; Bottaro, C.S.; Yan, N.; Kerton, F.M. Mechanochemical amorphization of α-chitin and conversion into oligomers of N-acetyl-d-glucosamine. ACS Sustain. Chem. Eng. 2018, 6, 1662–1669. [Google Scholar] [CrossRef]
- Zarei, M.; Aminzadeh, S.; Zolgharnein, H.; Safahieh, A.; Daliri, M.; Noghabi, K.A.; Ghoroghi, A.; Motallebi, A. Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz. J. Microbiol. 2011, 42, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Duan, S.; Miao, J.; Zhai, M.; Cao, Y. Purification and characterization of chitinase from Paenibacillus sp. Biotechnol. Appl. Biochem. 2021, 68, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Solhi, L.; Goddard-Borger, E.D.; Mathieu, Y.; Wakarchuk, W.W.; Withers, S.G.; Brumer, H. Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species. Biotechnol. Biofuels 2021, 14, 29. [Google Scholar] [CrossRef]
Peak | Compound | Peak Area (×104) (mV·min) | FWHM (min) |
---|---|---|---|
a-4 | NAG | 17.4369 | 0.5869 |
a-5 | (NAG)2 | 3.6131 | 0.7215 |
b-5 | NAG | 40.0459 | 0.6127 |
c-5 | NAG | 22.9042 | 0.6066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Dan, M.; Kao, M.-R.; Li, Y.; Song, J.; Zheng, Y.; Zhao, G.; Hsieh, Y.S.Y.; Wang, D. The Functional Characterization of an AA10 Lytic Polysaccharide Monooxygenase from Saccharophagus degradans 2-40T for Enhanced Chitin Biodegradation. Foods 2025, 14, 2839. https://doi.org/10.3390/foods14162839
Wu D, Dan M, Kao M-R, Li Y, Song J, Zheng Y, Zhao G, Hsieh YSY, Wang D. The Functional Characterization of an AA10 Lytic Polysaccharide Monooxygenase from Saccharophagus degradans 2-40T for Enhanced Chitin Biodegradation. Foods. 2025; 14(16):2839. https://doi.org/10.3390/foods14162839
Chicago/Turabian StyleWu, Dan, Meiling Dan, Mu-Rong Kao, Yanping Li, Jiajia Song, Yuting Zheng, Guohua Zhao, Yves S. Y. Hsieh, and Damao Wang. 2025. "The Functional Characterization of an AA10 Lytic Polysaccharide Monooxygenase from Saccharophagus degradans 2-40T for Enhanced Chitin Biodegradation" Foods 14, no. 16: 2839. https://doi.org/10.3390/foods14162839
APA StyleWu, D., Dan, M., Kao, M.-R., Li, Y., Song, J., Zheng, Y., Zhao, G., Hsieh, Y. S. Y., & Wang, D. (2025). The Functional Characterization of an AA10 Lytic Polysaccharide Monooxygenase from Saccharophagus degradans 2-40T for Enhanced Chitin Biodegradation. Foods, 14(16), 2839. https://doi.org/10.3390/foods14162839