Comparative Evaluation of Puffing Effects on Physicochemical and Volatile Profiles of Brown and Refined Rice
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Puffed Rice
2.3. Physicochemical Analysis
2.4. Scanning Electron Microscopy Analysis
2.5. X-Ray Diffraction Analysis
2.6. Fourier Transform Infrared Spectrum Measurements
2.7. Thermogravimetry Analysis
2.8. Sensory Evaluation
2.9. GC-MS Analysis
2.10. Statistical Analysis
3. Results
3.1. Analysis of Physicochemical Components
3.2. Microstructure Analysis
3.3. Relative Crystallinity Analysis
3.4. FT-IR Spectra Analysis
3.5. Thermal Stability
3.6. Sensory Quality of Native and Puffing Rice
3.7. GC-MS Analysis of Volatile Compounds in Native and Puffing Rice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Program | Total | Standard | |
---|---|---|---|
Refined Rice | Brown Rice | ||
Color | 20 | White and uniform (17-20) Yellowish and uniform (13-16) Burnt yellow and uniform (10-12) | Caramel color, texture rules (17-20) Deepened caramel color and uniform (13-16) Dark brown, uneven color (10-12) |
Appearance | 20 | Full shape and consistent the overall appearance (17-20) Part not all brown open (13-16) A large number of not all blow up (10-12) | Full shape and consistent the overall appearance (17-20) Part not all brown open (13-16) A large number of not all blow up (10-12) |
Taste | 20 | Consistent the inside and outside, tender and crisp (17-20) Uniform the taste (13-16) Internal cotton flocculent, uneven taste (10-12) | Consistent the inside and outside, tender and crisp (17-20) Uniform the taste (13-16) Internal cotton flocculent, uneven taste (10-12) |
Flavor | 20 | Full the taste and thick the aftertaste (17-20) More aftertaste (13-16) Flat the taste and no aftertaste (10-13) | Full the taste and thick the aftertaste (17-20) More aftertaste (13-16) Flat the taste and no aftertaste (10-13) |
Shell hardness | 10 | High brittleness for 10 score The brittleness difference for 0 score | High brittleness for 10 score The brittleness difference for 0 score |
Overall acceptability | 10 | Highly acceptable for 10 score Low acceptability for 0 score | Highly acceptable for 10 score Low acceptability for 0 score |
No | CAS | Volatile Compounds | Formula | Relative Amount (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
450C | 450CH | 450J | 450JH | 1212C | 1212CH | 1212J | 1212JH | ||||
Alkanes | |||||||||||
1 | 112-40-3 | Dodecane | C12H26 | 2.59 ± 0.34 | 1.29 ± 0.43 | 1.29 ± 1.20 | 1.44 ± 0.56 | 7.25 ± 0.49 | 0.72 ± 0.07 | 1.83 ± 0.24 | 0.41 ± 0.25 |
2 | 556-67-2 | Cyclotetrasiloxane, octamethyl- | C8H24O4Si4 | 1.61 ± 0.87 | 0.36 ± 0.05 | 1.92 ± 0.23 | 0.99 ± 0.53 | 1.50 ± 0.07 | 0.26 ± 0.03 | 1.29 ± 0.16 | 0.86 ± 0.06 |
3 | 2847-72-5 | Decane, 4-methyl- | C11H24 | 2.42 ± 0.05 | 0.25 ± 0.02 | 0.59 ± 0.18 | 0.21 ± 0.13 | 1.70 ± 0.71 | 0.07 ± 0.01 | 0.24 ± 0.11 | 0.10 ± 0.07 |
4 | 6117-97-1 | Dodecane, 4-methyl- | C13H28 | 0.73 ± 0.13 | 0.40 ± 0.10 | 1.56 ± 0.33 | 0.59 ± 0.19 | 0.92 ± 0.18 | 0.15 ± 0.03 | 1.03 ± 0.28 | 0.30 ± 0.11 |
Ketones | |||||||||||
5 | 67-64-1 | Acetone | C3H6O | 1.01 ± 0.08 | 0.29 ± 0.01 | 0.65 ± 0.07 | 0.56 ± 0.16 | 0.71 ± 0.06 | 0.32 ± 0.10 | 0.58 ± 0.15 | 1.04 ± 0.02 |
6 | 116-09-6 | 1-Hydroxy-2-propanone, | C3H6O2 | / | 1.26 ± 0.03 | / | 1.31 ± 0.09 | / | 1.73 ± 0.05 | / | 1.48 ± 0.05 |
7 | 513-86-0 | Acetoin | C4H8O2 | / | 0.20 ± 0.18 | / | / | / | / | / | / |
8 | 431-03-8 | 2,3-Butanedione | C4H6O2 | / | 0.14 ± 0.00 | / | / | / | / | / | / |
9 | 592-20-1 | 2-Propanone, 1-(acetyloxy)- | C5H8O3 | / | 0.30 ± 0.01 | / | / | / | 0.23 ± 0.01 | / | / |
10 | 930-60-9 | 4-Cyclopentene-1,3-dione | C5H4O2 | / | 0.02 ± 0.03 | / | / | / | 0.10 ± 0.01 | / | / |
11 | 1604-28-0 | 6-Methyl-3,5-heptadiene-2-one | C8H12O | 0.17 ± 0.02 | 0.11 ± 0.02 | / | / | 0.14 ± 0.12 | 0.13 ± 0.02 | / | / |
12 | 22047-26-3 | 1-(6-Methyl-2-pyrazinyl)-1-ethanone | C7H8N2O | / | 1.49 ± 0.30 | / | / | / | 1.49 ± 0.49 | / | / |
13 | 1004-37-1 | 2,6-Dimethyl-4-thiopyrone | C7H8OS | / | 0.43 ± 0.00 | / | / | / | / | / | / |
14 | 689-67-8 | 5,9-Undecadien-2-one, 6,10-dimethyl- | C13H22O | 0.58 ± 0.20 | 0.21 ± 0.19 | 0.45 ± 0.16 | 0.45 ± 0.05 | 0.71 ± 0.02 | 0.19 ± 0.02 | 1.14 ± 0.12 | 0.56 ± 0.49 |
15 | 3658-77-3 | Furaneol | C6H8O3 | / | 0.90 ± 0.03 | / | / | / | / | / | / |
16 | 68755-49-7 | 2,5-Dimethylfuran-3,4(2H,5H)-dione | C6H8O3 | / | 0.90 ± 0.03 | / | / | / | / | / | / |
17 | 111-13-7 | 2-Octanone | C8H16O | 0.13 ± 0.12 | / | / | / | / | / | / | / |
18 | 28564-83-2 | 2,3-Dihydro-3,5-dihydroxy-6-me | C6H8O4 | / | 4.26 ± 0.14 | / | 0.03 ± 0.03 | / | 1.75 ± 0.09 | / | 0.05 ± 0.04 |
19 | 18402-82-9 | 3-Octen-2-one, (E)- | C8H14O | 0.23 ± 0.04 | / | / | / | / | / | / | / |
20 | 85-90-5 | Methylchromone | C10H8O2 | / | 0.13 ± 0.11 | / | / | / | / | / | / |
21 | 110-93-0 | 6-Methyl-5-hepten-2-one | C8H14O | 1.44 ± 0.07 | / | 0.15 ± 0.14 | / | 1.56 ± 0.04 | / | 1.23 ± 0.11 | / |
22 | 30086-02-3 | 3,5-Octadien-2-one, (E, E)- | C8H12O | 0.12 ± 0.10 | / | / | / | / | / | / | / |
23 | 13297-35-3 | 3-Ethyl-1,2-dihydro-2-oxoquinoxaline | C10H10N2O | / | / | / | / | / | 0.18 ± 0.15 | / | / |
24 | 616-45-5 | 2-Pyrrolidinone | C4H7NO | / | / | / | / | / | 0.26 ± 0.01 | / | 0.09 ± 0.01 |
25 | 14309-57-0 | 3-Nonen-2-one | C9H16O | / | / | / | / | / | 0.21 ± 0.01 | / | / |
26 | 1125-21-9 | 2,6,6-Trimethyl-2-cyclohexene-1,4-dione | C9H12O2 | / | / | / | / | / | 0.13 ± 0.00 | / | / |
27 | 821-55-6 | 2-Nonanone | C9H18O | / | / | / | / | / | / | 0.31 ± 0.01 | / |
Alcohols | |||||||||||
28 | 14852-31-4 | 2-Hexadecanol | C16H34O | 0.52 ± 0.22 | 0.25 ± 0.07 | 0.44 ± 0.09 | 0.11 ± 0.08 | 0.40 ± 0.32 | 0.24 ± 0.01 | 0.14 ± 0.03 | 0.24 ± 0.13 |
29 | 3391-86-4 | 1-Octen-3-ol | C8H16O | 1.47 ± 0.17 | 0.13 ± 0.01 | 1.74 ± 0.26 | 0.40 ± 0.34 | 1.47 ± 0.32 | 0.15 ± 0.01 | 2.57 ± 0.19 | 0.52 ± 0.46 |
30 | 100-55-0 | Nicotinyl alcohol | C6H7NO | / | 0.34 ± 0.00 | / | / | / | / | / | / |
31 | 67-56-1 | Methyl Alcohol | CH4O | / | 0.31 ± 0.02 | / | 0.24 ± 0.06 | / | 0.23 ± 0.05 | / | 0.20 ± 0.17 |
32 | 64-17-5 | Ethanol | C2H6O | 1.79 ± 0.12 | 0.36 ± 0.02 | 1.42 ± 0.35 | 0.92 ± 0.20 | 1.39 ± 0.05 | 0.33 ± 0.07 | 1.53 ± 0.26 | 1.02 ± 0.04 |
33 | 2490-48-4 | 1-Hexadecanol, 2-methyl- | C17H36O | 0.47 ± 0.08 | 0.20 ± 0.10 | 0.67 ± 0.18 | 0.35 ± 0.16 | 0.83 ± 0.04 | 0.16 ± 0.04 | 0.89 ± 0.31 | 0.20 ± 0.04 |
34 | 3857-25-8 | 2-Furanmethanol, 5-methyl- | C6H8O2 | / | 0.25 ± 0.01 | / | / | / | 0.19 ± 0.00 | / | / |
35 | 10042-59-8 | 2-Propyl-1-Heptanol | C10H22O | 0.40 ± 0.34 | / | / | / | / | / | / | / |
36 | 98-00-0 | 2-Furanmethanol | C5H6O2 | / | 2.61 ± 2.26 | / | 6.42 ± 0.65 | / | 3.30 ± 2.86 | / | 3.69 ± 3.20 |
37 | 1724-39-6 | Cyclododecanol | C12H24O | / | / | / | / | / | / | / | 0.48 ± 0.42 |
38 | 1502-24-5 | Cyclohexanol, 2,3-dimethyl- | C8H16O | 0.61 ± 0.23 | / | / | / | / | / | / | / |
39 | 513-85-9 | 2,3-Butanediol | C4H10O2 | 1.72 ± 0.96 | / | / | / | / | / | / | / |
40 | 111-87-5 | 1-Octanol | C8H18O | 3.60 ± 0.18 | / | / | / | 3.08 ± 0.07 | / | / | / |
41 | 5715-23-1 | 3,4-Dimethylcyclohexanol | C8H16O | 0.24 ± 0.21 | / | / | / | / | / | / | / |
42 | 143-08-8 | 1-Nonanol | C9H20O | 0.83 ± 0.04 | / | 1.24 ± 0.35 | ± | 0.70 ± 0.04 | / | 0.63 ± 0.01 | / |
43 | 58670-89-6 | 2-Decyl-1-tetradecanol | C24H50O | / | / | 0.89 ± 0.24 | / | / | / | 0.45 ± 0.39 | / |
44 | 112-53-8 | 1-Dodecanol | C12H26O | / | / | / | 0.09 ± 0.08 | / | / | / | 0.15 ± 0.13 |
45 | 110-98-5 | 2-Propanol, 1,1’-oxybis- | C6H14O3 | / | / | / | 0.16 ± 0.02 | / | / | / | / |
46 | 636-72-6 | 2-Thiophenemethanol | C5H6OS | / | / | / | 0.36 ± 0.05 | / | / | / | / |
47 | 515-03-7 | 1-Naphthalenepropanol, à-ethenyldecahydro-2-hydroxy-à,2,5,5,8a-pentamethyl-, [1R-[1à(R*),2á,4aá,8aà]]- | C20H36O2 | / | / | 0.17 ± 0.17 | / | / | / | / | / |
48 | 88728-58-9 | (1aR,4S,4aR,7R,7aS,7bS)-1,1,4,7-Tetramethyldecahydro-1H-cyclopropa[e]azulen-4-ol | C15H26O | / | / | / | / | 0.11 ± 0.10 | / | / | / |
49 | 75039-84-8 | trans-2-Undecen-1-ol | C11H22O | / | / | / | / | 0.43 ± 0.38 | / | / | / |
50 | 23238-40-6 | 2-(Decyloxy)ethanol | C12H26O2 | / | / | / | / | / | / | 0.18 ± 0.02 | / |
51 | 2136-72-3 | 2-(Octadecyloxy)-ethanol | C20H42O2 | / | / | / | / | / | / | 0.32 ± 0.14 | / |
52 | 142-50-7 | Nerolidol, cis- | C15H26O | / | / | / | / | / | / | / | 0.51 ± 0.02 |
53 | 629-96-9 | 1-Eicosanol | C20H42O | / | / | / | / | / | / | / | 0.37 ± 0.07 |
Aldehydes | |||||||||||
54 | 620-02-0 | 2-Furancarboxaldehyde, 5-methyl- | C6H6O2 | / | 4.27 ± 0.05 | / | 0.69 ± 0.04 | / | 3.66 ± 0.02 | / | 0.33 ± 0.29 |
55 | 100-52-7 | Benzaldehyde | C7H6O | 0.15 ± 0.02 | 1.63 ± 0.02 | 0.24 ± 0.02 | 1.50 ± 0.02 | 0.11 ± 0.09 | 2.68 ± 0.17 | 0.60 ± 0.03 | 3.55 ± 0.06 |
56 | 112-31-2 | Decanal | C10H20O | / | 0.31 ± 0.02 | / | 1.95 ± 0.39 | / | 0.66 ± 0.57 | / | 2.75 ± 0.25 |
57 | 124-19-6 | Nonanal | C9H18O | 6.28 ± 0.18 | 2.88 ± 1.03 | 7.86 ± 2.17 | 14.63 ± 0.71 | 11.95 ± 0.17 | 3.47 ± 0.16 | 15.05 ± 1.24 | 13.29 ± 1.53 |
58 | 98-01-1 | Furfural | C5H4O2 | / | 10.13 ± 0.19 | / | 3.34 ± 0.14 | / | 11.16 ± 0.29 | / | 2.22 ± 0.09 |
59 | 1003-29-8 | 1H-Pyrrole-2-carboxaldehyde | C5H5NO | / | 1.13 ± 0.02 | / | 1.09 ± 0.04 | / | 2.48 ± 0.20 | / | 0.45 ± 0.03 |
60 | 120-25-2 | 4-Ethoxy-3-anisaldehyde | C10H12O3 | / | 1.43 ± 0.09 | / | / | / | / | / | / |
61 | 56599-95-2 | Octadecanal, 2-bromo- | C18H35BrO | / | / | 0.21 ± 0.08 | 0.07 ± 0.01 | / | / | 0.05 ± 0.04 | 0.06 ± 0.05 |
62 | 2548-87-0 | 2-Octenal, (E)- | C8H14O | / | / | / | / | / | 0.50 ± 0.04 | / | / |
63 | 98-03-3 | 2-Thiophenecarboxaldehyde | C5H4OS | / | / | / | 0.50 ± 0.03 | / | / | / | / |
64 | 57266-86-1 | (Z)-2-Heptenal | C7H12O | / | / | / | / | 0.19 ± 0.02 | / | / | / |
65 | 498-62-4 | 3-Thiophenecarboxaldehyde | C5H4OS | / | / | / | / | / | / | / | 0.37 ± 0.32 |
Esters | |||||||||||
66 | 18202-24-9 | 10,13-Octadecadiynoic acid, methyl ester | C19H30O2 | / | 0.10 ± 0.08 | / | / | / | 0.06 ± 0.08 | / | / |
67 | 57156-91-9 | 2,5-Octadecadiynoic acid, methyl ester | C19H30O2 | / | 0.16 ± 0.02 | / | / | / | / | / | / |
68 | 56687-68-4 | [1,1’-Bicyclopropyl]-2-octanoic acid, 2’-hexyl-, methyl ester | C21H38O2 | 0.14 ± 0.04 | 0.18 ± 0.14 | 0.11 ± 0.12 | 0.21 ± 0.19 | 0.12 ± 0.06 | 0.13 ± 0.01 | 0.17 ± 0.05 | 0.41 ± 0.11 |
69 | 112-23-2 | Formic acid, heptyl ester | C8H16O2 | 0.20 ± 0.18 | / | 1.43 ± 0.88 | / | / | / | / | / |
70 | 112-32-3 | Formic acid, octyl ester | C9H18O2 | / | / | / | / | / | / | 1.15 ± 0.09 | 1.21 ± 0.07 |
71 | 2046-21-1 | Methyl 6-oxoheptanoate | C8H14O3 | / | 0.13 ± 0.11 | / | / | / | / | / | / |
72 | 13058-52-1 | Methyl 9-cis,11-trans-octadecadienoate | C19H34O2 | / | / | / | / | / | / | / | / |
73 | 544-35-4 | Linoleic acid ethyl ester | C20H36O2 | 0.11 ± 0.09 | / | 0.02 ± 0.01 | / | 0.16 ± 0.01 | / | 0.04 ± 0.01 | / |
74 | 3050-69-9 | n-Caproic acid vinyl ester | C8H14O2 | / | / | 0.20 ± 0.18 | / | / | / | / | / |
75 | 7493-69-8 | Allyl 2-ethyl butyrate | C9H16O2 | / | / | / | / | 0.16 ± 0.14 | / | / | / |
76 | 2305-05-7 | ç-Dodecalactone | C12H22O2 | / | / | / | / | / | 0.15 ± 0.01 | / | / |
77 | 142-91-6 | Isopropyl palmitate | C19H38O2 | / | / | / | / | / | / | 0.19 ± 0.00 | 0.26 ± 0.03 |
78 | 2306-78-7 | Nerolidyl acetate | C17H28O2 | / | / | / | / | / | / | / | 0.26 ± 0.22 |
Acids | |||||||||||
79 | 16714-85-5 | 10-Heptadecen-8-ynoic acid, methyl ester, (E)- | C18H30O2 | / | 0.10 ± 0.01 | / | 0.09 ± 0.02 | / | / | / | / |
80 | 142-62-1 | Hexanoic acid | C6H12O2 | / | 0.48 ± 0.12 | / | 0.99 ± 0.05 | / | 0.51 ± 0.05 | / | / |
81 | 112-05-0 | Nonanoic acid | C9H18O2 | 0.47 ± 0.10 | 0.43 ± 0.11 | 0.60 ± 0.58 | 1.16 ± 0.20 | 0.63 ± 0.10 | 0.37 ± 0.02 | 0.40 ± 0.35 | 0.26 ± 0.22 |
82 | 544-63-8 | Tetradecanoic acid | C14H28O2 | 0.89 ± 0.18 | 0.14 ± 0.05 | 0.57 ± 0.44 | 0.06 ± 0.07 | 0.90 ± 0.25 | 0.20 ± 0.11 | 0.61 ± 0.20 | 0.52 ± 0.16 |
83 | 10024-70-1 | Butanoic acid, 3-methoxy- | C5H10O3 | / | / | / | 0.10 ± 0.09 | / | / | / | / |
84 | 506-17-2 | cis-Vaccenic acid | C18H34O2 | / | / | / | 0.17 ± 0.15 | / | / | / | / |
85 | 60-33-3 | 9,12-Octadecadienoic acid (Z,Z)- | C18H32O2 | / | / | 0.22 ± 0.19 | / | / | / | / | / |
86 | 112-80-1 | Oleic Acid | C18H34O2 | / | / | / | / | 0.34 ± 0.30 | / | / | / |
87 | 64-19-7 | Acetic acid | C2H4O2 | / | / | / | / | / | 1.82 ± 0.12 | / | / |
88 | 111-14-8 | Heptanoic acid | C7H14O2 | / | / | / | / | / | / | / | 0.11 ± 0.01 |
Alkenes | |||||||||||
89 | 1120-36-1 | 1-Tetradecene | C14H28 | 0.26 ± 0.23 | / | / | / | / | / | / | / |
90 | 4984-01-4 | 1-Octene, 3,7-dimethyl- | C10H20 | / | / | / | / | 0.18 ± 0.16 | / | / | / |
91 | 2628-17-3 | 4-Vinylphenol | C8H8O | / | / | / | / | / | 1.09 ± 0.94 | / | / |
92 | 87-44-5 | Caryophyllene | C15H24 | / | / | / | / | / | / | / | 0.23 ± 0.20 |
Ethers | |||||||||||
93 | 3055-98-9 | Octaethylene glycol monododecyl ether | C28H58O9 | 0.43 ± 0.15 | 0.19 ± 0.04 | 0.70 ± 0.33 | 0.09 ± 0.01 | 0.42 ± 0.09 | 0.23 ± 0.06 | 0.40 ± 0.12 | 0.27 ± 0.11 |
94 | 108-61-2 | 2,2’-Oxydipropanol | C6H14O3 | / | / | / | 0.30 ± 0.12 | / | / | / | / |
95 | 140-67-0 | Estragole | C10H12O | / | / | / | / | 0.60 ± 0.00 | / | 1.57 ± 0.08 | / |
96 | 3055-93-4 | Diethylene glycol monododecyl ether | C16H34O3 | / | / | / | / | / | / | 0.13 ± 0.08 | / |
97 | 2179-59-1 | Allyl propyl disulfide | C6H12S2 | / | / | / | / | / | 0.10 ± 0.08 | / | / |
98 | 10020-43-6 | Ethanol, 2-(octyloxy)- | C10H22O2 | / | / | / | / | / | / | 0.18 ± 0.16 | 0.08 ± 0.07 |
99 | 107-98-2 | 2-Propanol, 1-methoxy- | C4H10O2 | / | / | / | / | / | / | / | 0.11 ± 0.01 |
Pyrazines | |||||||||||
100 | 64608-60-2 | 4-Methylpyrrolo[1,2-a] pyrazine | C8H8N2 | / | 0.21 ± 0.02 | / | / | / | / | / | / |
101 | 13925-03-6 | 2-Ethyl-6-methyl- Pyrazine | C7H10N2 | / | 1.54 ± 0.07 | / | 1.18 ± 1.02 | / | / | / | 1.30 ± 0.05 |
102 | 290-37-9 | Pyrazine | C4H4N2 | / | 0.21 ± 0.19 | / | 0.24 ± 0.21 | / | 0.26 ± 0.03 | / | 1.06 ± 0.05 |
103 | 109-08-0 | Methyl-pyrazine | C5H6N2 | / | 3.10 ± 0.08 | / | 5.90 ± 0.52 | / | 3.61 ± 0.23 | / | 6.08 ± 0.05 |
104 | 123-32-0 | 2,5-Dimethyl-pyrazine | C6H8N2 | / | 3.15 ± 0.04 | / | 4.37 ± 0.92 | / | 3.58 ± 0.28 | / | 4.58 ± 0.11 |
105 | 108-50-9 | 2,6-Dimethyl-pyrazine | C6H8N2 | / | 60.8 | / | 1.24 ± 1.10 | / | 2.73 ± 0.28 | / | 2.02 ± 0.04 |
106 | 13925-00-3 | Ethyl-pyrazine | C6H8N2 | / | 0.79 ± 0.05 | / | 1.16 ± 0.11 | / | 0.71 ± 0.31 | / | 0.93 ± 0.03 |
107 | 5910-89-4 | 2,3-Dimethyl-pyrazine | C6H8N2 | / | 0.38 ± 0.02 | / | 0.39 ± 0.03 | / | 0.34 ± 0.02 | / | 0.52 ± 0.02 |
108 | 14667-55-1 | Trimethyl-pyrazine | C7H10N2 | / | 1.14 ± 0.99 | / | 0.77 ± 0.67 | / | 1.43 ± 0.11 | / | 0.95 ± 0.82 |
109 | 13360-65-1 | 3-Ethyl-2,5-dimethyl-pyrazine | C8H12N2 | / | 3.19 ± 0.47 | / | 1.00 ± 0.23 | / | 2.01 ± 0.09 | / | 1.12 ± 0.07 |
110 | 18217-82-8 | 2-Methyl-5-(1-propenyl)-, (E)-pyrazine, | C8H10N2 | / | 0.22 ± 0.01 | / | / | / | 0.14 ± 0.01 | / | / |
111 | 13360-64-0 | 2-Ethyl-5-methyl-pyrazine, | C7H10N2 | / | / | / | / | / | 0.36 ± 0.32 | / | / |
Others | |||||||||||
112 | 97-53-0 | Eugenol | C10H12O2 | / | / | / | / | / | 0.14 ± 0.01 | / | / |
113 | 90-05-1 | 2-Methoxy-phenol | C7H8O2 | / | / | / | / | / | 0.9813.24 ± 0.03 | / | / |
114 | 96-76-4 | 2,4-Di-tert-butylphenol | C14H22O | 0.04 ± 0.02 | / | 0.10 ± 0.03 | 0.15 ± 0.02 | 0.15 ± 0.02 | / | 1.04 ± 0.10 | 0.88 ± 0.05 |
115 | 103-90-2 | Acetaminophen | C8H9NO2 | / | 0.39 ± 0.23 | / | / | / | / | / | / |
116 | 128-37-0 | Butylated Hydroxytoluene | C15H24O | / | / | / | 0.23 ± 0.03 | / | / | / | 0.16 ± 0.01 |
117 | 1020-31-1 | 1,2-Benzenediol, 3,5-bis(1,1-dimethylethyl)- | C14H22O2 | / | / | / | 0.04 ± 0.03 | / | / | / | 0.08 ± 0.07 |
118 | 142-08-5 | 2(1H)-Pyridinone | C5H5NO | / | / | / | 0.54 ± 0.47 | / | / | / | / |
119 | 2294-76-0 | Pyridine, 2-pentyl- | C10H15N | / | / | / | / | / | 0.25 ± 0.02 | / | / |
120 | 1122-62-9 | Ethanone, 1-(2-pyridinyl)- | C7H7NO | / | 0.14 ± 0.00 | / | / | / | 0.15 ± 0.02 | / | / |
121 | 1438-94-4 | 1H-Pyrrole, 1-(2-furanylmethyl)- | C9H9NO | / | 0.88 ± 0.02 | / | 0.24 ± 0.01 | / | 0.88 ± 0.01 | / | 0.06 ± 0.05 |
122 | 1072-83-9 | Ethanone, 1-(1H-pyrrol-2-yl)- | C6H7NO | 0.07 ± 0.00 | 0.81 ± 0.02 | 0.06 ± 0.01 | 0.11 ± 0.00 | / | 0.96 ± 0.02 | / | 0.08 ± 0.01 |
123 | 19549-87-2 | 2,4-Dimethyl-1-heptene | C9H18 | 0.23 ± 0.03 | / | / | / | 0.06 ± 0.01 | / | / | / |
124 | 137-00-8 | 5-Thiazoleethanol, 4-methyl- | C6H9NOS | / | 0.16 ± 0.02 | / | / | / | 0.10 ± 0.01 | / | / |
125 | 85213-22-5 | 2-Acetyl-1-pyrroline | C6H9NO | 2.96 ± 0.13 | / | 1.47 ± 0.17 | / | / | / | / | / |
126 | 7467-91-6 | 6-Quinoxalinol | C8H6N2O | / | 0.14 ± 0.12 | / | / | / | / | / | / |
127 | 95-16-9 | Benzothiazole | C7H5NS | / | / | / | / | 0.15 ± 0.00 | / | / | / |
128 | 541-58-2 | 2,4-Dimethyl-thiazole | C5H7NS | / | / | / | / | / | / | / | 0.34 ± 0.10 |
129 | 106-46-7 | 1,4-Dichloro-Benzene | C6H4Cl2 | / | / | / | / | 0.61 ± 0.00 | / | / | / |
130 | 108-88-3 | Toluene | C7H8 | / | / | / | / | 0.14 ± 0.12 | / | 0.09 ± 0.02 | / |
131 | 122-39-4 | Diphenylamine | C12H11N | / | / | / | / | 0.03 ± 0.00 | / | 0.24 ± 0.03 | / |
132 | 88-15-3 | Ethanone, 1-(2-thienyl)- | C6H6OS | / | / | / | 0.13 ± 0.11 | / | / | / | 0.12 ± 0.10 |
133 | 126-52-3 | Ethinamate | C9H13NO2 | 0.38 ± 0.01 | / | / | / | / | / | / | / |
134 | 120-72-9 | Indole | C8H7N | 0.40 ± 0.02 | 0.20 ± 0.02 | 0.58 ± 0.07 | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.13 ± 0.02 | 0.48 ± 0.01 | 0.13 ± 0.00 |
No | CAS | Compounds | Threshold (mg/kg) | ROVA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
450C | 450CH | 450J | 450JH | 1212C | 1212CH | 1212J | 1212JH | ||||
1 | 30086-02-3 | 3,5-Octadien-2-one, (E, E)- | 0.15 | 89.61 | / | / | / | / | / | / | / |
2 | 64-17-5 | Ethanol | 7.8 | 25.71 | 0.00 | 2.32 | 0.02 | 1.49 | 0.09 | 1.30 | 0.98 |
3 | 100-52-7 | Benzaldehyde | 0.44 | 38.19 | 0.09 | 6.94 | 0.44 | 2.09 | 13.64 | 9.06 | 60.71 |
4 | 98-01-1 | Furfural | 0.25 | / | 0.99 | / | 1.73 | / | 100.00 | / | 66.82 |
5 | 2548-87-0 | 2-Octenal, (E)- | 0.014 | / | / | / | / | / | 80.01 | / | / |
6 | 57266-86-1 | (Z)-2-Heptenal | 0.056 | / | / | / | / | 28.39 | / | / | / |
7 | 2305-05-7 | ç-Dodecalactone | 0.007 | / | / | / | / | / | 44.83 | / | / |
8 | 108-50-9 | 2,6-Dimethyl-pyrazine | 0.25 | / | 0.23 | / | 0.64 | / | 24.46 | / | 60.80 |
9 | 14667-55-1 | Trimethyl-pyrazine | 0.19 | / | 0.15 | / | 0.53 | / | 16.86 | / | 37.62 |
10 | 90-05-1 | 2-Methoxy-phenol | 0.04 | / | / | / | / | / | 54.88 | / | / |
References
- Lu, Y.; Hou, Y.; Liu, S.; Jia, S.; Zhu, Y.; Zhang, X. Comparative analysis of the characteristics and content of γ-oryzanol in 19 Chinese brown rice cultivars. J. Food Compos. Anal. 2025, 142, 107521. [Google Scholar] [CrossRef]
- Fitri, N.; Chan, S.X.Y.; Qadi, W.S.M.; Wong, P.L.; Hellal, K.; Hamezah, H.S.; Mediani, A.; Abas, F. A comprehensive review on the processing, composition, and safety of fermented rice products and advanced methods for improving its quality. J. Food Compos. Anal. 2025, 140, 107184. [Google Scholar] [CrossRef]
- Wang, J.; Ren, G.; Fan, H.; Song, X. Textural, nutritional and aromatic characteristics of fragrant rice in relation to milling degrees. J. Cereal Sci. 2024, 120, 104041. [Google Scholar] [CrossRef]
- Kowsalya, P.; Sharanyakanth, P.S.; Mahendran, R. Traditional rice varieties: A comprehensive review on its nutritional, medicinal, therapeutic and health benefit potential. J. Food Compos. Anal. 2022, 114, 104742. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, P.; Li, Y.; Li, P.; Zhao, Z.; Wang, J.; Zhong, L.; Liu, G.; Zhang, M.; Liu, D.; et al. Cyclic trace enzymatic hydrolysis pretreatment enhances brown rice: Cooking and taste. Food Chem. 2025, 479, 143853. [Google Scholar] [CrossRef]
- Saha, S.; Roy, A. Selecting high amylose rice variety for puffing: A correlation between physicochemical parameters and sensory preferences. Meas. Food 2022, 5, 100021. [Google Scholar] [CrossRef]
- Majzoobi, M.; Farahnaky, A. Granular cold-water swelling starch; properties, preparation and applications, a review. Food Hydrocoll. 2021, 111, 106393. [Google Scholar] [CrossRef]
- Park, B.R.; No, J.; Oh, H.; Park, C.S.; You, K.M.; Chewaka, L.S. Exploring puffed rice as a novel ink for 3D food printing: Rheological characterization and printability analysis. J. Food Eng. 2025, 387, 112313. [Google Scholar] [CrossRef]
- Kuo, C.H.; Shieh, C.J.; Huang, S.M.; David Wang, H.M.; Huang, C.Y. The effect of extrusion puffing on the physicochemical properties of brown rice used for saccharification and Chinese rice wine fermentation. Food Hydrocoll. 2019, 94, 363–370. [Google Scholar] [CrossRef]
- Mir, S.A.; Bosco, S.J.D.; Shah, M.A.; Mir, M.M. Effect of puffing on physical and antioxidant properties of brown rice. Food Chem. 2016, 191, 139–146. [Google Scholar] [CrossRef]
- Saha, S.; Saha, R.; Sarkhel, S.; Kumari, A.; Chatterjee, K.; Chatterjee, A.; Sahoo, B.; Deb, P.K.; Jha, S.; Mazumder, P.M.; et al. Physicochemical properties, micronutrient uptake and bioavailability of iron-fortified intact grain puffed rice. J. Cereal Sci. 2025, 123, 104158. [Google Scholar] [CrossRef]
- Hu, X.; Lu, L.; Guo, Z.; Zhu, Z. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Technol. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Choi, S.; Seo, H.S.; Lee, K.R.; Lee, S.; Lee, J.; Lee, J. Effect of milling and long-term storage on volatiles of black rice (Oryza sativa L.) determined by headspace solid-phase microextraction with gas chromatography–mass spectrometry. Food Chem. 2019, 276, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Buechler, A.E.; Lee, S.Y. Drivers of liking for reduced sodium potato chips and puffed rice. J. Food Sci. 2020, 85, 173–181. [Google Scholar] [CrossRef]
- Sun, Z.; Lyu, Q.; Chen, L.; Zhuang, K.; Wang, G.; Ding, W.; Wang, Y.; Chen, X. An HS-GC-IMS analysis of volatile flavor compounds in brown rice flour and brown rice noodles produced using different methods. LWT 2022, 161, 113358. [Google Scholar] [CrossRef]
- He, W.; Liu, Z.; Liu, H.; Sun, J.; Chen, H.; Sun, B. Characterization of key volatile flavor compounds in dried sausages by HS-SPME and SAFE, which combined with GC-MS, GC-O and OAV. J. Food Compos. Anal. 2024, 133, 106438. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, W.; Sui, Y.; Zhu, Z.; Li, S.; Shi, J.; Xiong, T.; Cai, F.; Wen, J.; Zheng, Z.; et al. Characterization of volatile organic compounds in selenium-enriched brown rice tea of different colors using E-nose, HS-GC-IMS and HS-SPME-GC-MS. LWT 2025, 224, 117830. [Google Scholar] [CrossRef]
- Yan, X.; Liu, C.; Huang, A.; Chen, R.; Chen, J.; Luo, S. The nutritional components and physicochemical properties of brown rice flour ground by a novel low temperature impact mill. J. Cereal Sci. 2020, 92, 102927. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Li, S.; Chen, Z. Ordered structural changes of retrograded instant rice noodles during the long-term storage. Food Res. Int. 2024, 175, 113727. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Lu, L.; Shao, G.; Guo, Z.; He, Y.; Wang, Y.; Yang, X.; Chen, M.; Hu, X. Analysis of rice characteristic volatiles and their influence on rice aroma. Curr. Res. Food Sci. 2024, 9, 100794. [Google Scholar] [CrossRef]
- Wu, S.; Chen, B.; Wang, X.; Wang, C.; Hu, Y.; Cai, X.; Zhang, Y.; Qiao, Y. Analysis of the effects of steaming and spray-drying on volatile flavor components of sweet corn beverage based on HS-SPME-GC–MS and HS-GC-IMS. Food Chem. X 2025, 27, 102478. [Google Scholar] [CrossRef]
- Sonsomboonsuk, S.; Junyusen, T.; Moolkaew, P.; Junyusen, P.; Treeamnuk, T.; Taengsopha, P.; Chatchavanthatri, N.; Nawong, S.; Pakawanit, P. Effects of cooking methods on the physicochemical, textural and microstructural properties of hot salt puffed germinated brown rice. J. Agric. Food Res. 2024, 15, 101001. [Google Scholar] [CrossRef]
- Hu, D.; Yang, G.; Tian, Y.; Li, M.; Fan, L.; Li, R.; Wang, S. Effect of radio frequency heating on structure and physicochemical properties of protein and starch based on gelatinization degree of rice flour. Food Res. Int. 2025, 218, 116902. [Google Scholar] [CrossRef]
- Ye, P.; Cui, B.; Mao, C.; Wang, K.; Xie, Y.; Sun, Y.; Chen, X.; Wang, Y.; Wang, Y. Effect of radio frequency explosion puffing on physicochemical, functional and crystalline properties, and in vitro digestibility of yam flour. Food Chem. 2024, 437, 137925. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Y.; Wang, R.; Zhang, G.; Sun, Y.; Li, X.; Liang, J. Effects of adding blueberry residue powder and extrusion processing on microstructure and in vitro digestibility of indica rice flour. Bioact. Carbohydr. Diet. Fibre 2024, 32, 100435. [Google Scholar] [CrossRef]
- Yılmaz, T.N.; Andac, A.E.; Polat, K.H.; Tuncel, N.B. The impact of milling degree on physicochemical, nutritional, rheological, textural properties, and in vitro digestibility of rice: From brown rice to white rice. Food Chem. 2025, 464, 141795. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Wang, Y.; Zhang, W.; Ma, Y.; Chen, J. Impact of ultra-high pressure on the microstructure, emulsification, and physicochemical properties of rice starch. Int. J. Biol. Macromol. 2024, 283, 137919. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Sarkhel, S.; Saha, S.; Sahoo, B.; Kumari, A.; Chatterjee, K.; Mazumder, P.M.; Sarkhel, G.; Mohan, A.; Roy, A. Expanded porous-starch matrix as an alternative to porous starch granule: Present status, challenges, and future prospects. Food Res. Int. 2024, 175, 113771. [Google Scholar] [CrossRef]
- Pathaw, P.M.S.; Bhattacharya, S.; Mahanta, C.L. Properties of heat moisture treated red rice paddy and its puffed product. Cereal Chem. 2023, 100, 784–797. [Google Scholar] [CrossRef]
- Wang, B.; Yu, B.; Yuan, C.; Guo, L.; Liu, P.; Guo, W.; Li, D.; Cui, B.; Abd El-Aty, A.M. An overview on plasticized biodegradable corn starch-based films: The physicochemical properties and gelatinization process. Crit. Rev. Food Sci. Nutr. 2022, 62, 2569–2579. [Google Scholar] [CrossRef]
- Jia, M.; Wang, X.; Liu, J.; Wang, R.; Wang, A.; Strappe, P.; Shang, W.; Zhou, Z. Physicochemical and volatile characteristics present in different grain layers of various rice cultivars. Food Chem. 2022, 371, 131119. [Google Scholar] [CrossRef]
- Oh, H.; Nam, J.H.; Park, B.R.; Kim, K.M.; Kim, H.Y.; Cho, Y.S. Physicochemical and rheological properties of ultrasonic-assisted pregelatinized rice flour. Ultrason. Sonochem. 2024, 109, 106977. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.I.; Tsai, Y.H.; David Wang, H.M.; Dong, C.D.; Huang, C.Y.; Kuo, C.H. Extrusion puffing pretreated cereals for rapid production of high-maltose syrup. Food Chem. X 2022, 15, 100445. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; Ram, V.; Verma, A. Formulation and investigation of crushed puffed rice-chitosan-HPMC based polymeric blends as carrier for sustained stomach specific drug delivery of piroxicam using 3(2) Taguchi mathematical design studies. Int. Curr. Pharm. J. 2018, 6, 61–80. [Google Scholar] [CrossRef]
- Saha, S.; Sarkhel, S.; Sahoo, B.; Kumari, A.; Jha, S.; Mukherjee, A.; Biswas, D.; Saha, R.; Chatterjee, A.; Sarkar, B.; et al. Impact of fortificants on the powder properties of a gluten-free porous starch matrix of puffed rice flour. LWT 2023, 175, 114432. [Google Scholar] [CrossRef]
- Colussi, R.; Pinto, V.Z.; El Halal, S.L.M.; Vanier, N.L.; Villanova, F.A.; e Silva, R.M.; Zavareze, E.D.R.; Dias, A.R.G. Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches. Carbohydr. Polym. 2014, 103, 405–413. [Google Scholar] [CrossRef]
- Bi, S.; Wang, A.; Wang, Y.; Xu, X.; Luo, D.; Shen, Q.; Wu, J. Effect of cooking on aroma profiles of Chinese foxtail millet (Setaria italica) and correlation with sensory quality. Food Chem. 2019, 289, 680–692. [Google Scholar] [CrossRef]
- Deng, Y.; Zhong, Y.; Yu, W.; Yue, J.; Liu, Z.; Zheng, Y.; Zhao, Y. Effect of hydrostatic high pressure pretreatment on flavor volatile profile of cooked rice. J. Cereal Sci. 2013, 58, 479–487. [Google Scholar] [CrossRef]
- Zhao, Y.; Zeng, Z.; Fang, Y.; Zhong, G. Impact of milling on the sensory quality and flavor profile of an aromatic rice variety produced in Chongqing. J. Cereal Sci. 2024, 116, 103844. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, Y.; Lao, F.; Wu, J. Protein structural properties, proteomics and flavor characterization analysis of rice during cooking. Food Chem. 2025, 465, 142101. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Guan, L.; Li, S.; He, Y.; Zhang, M. Dynamic changes in aroma compounds and precursor substances during rice cooking. J. Cereal Sci. 2024, 120, 104044. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Wang, X.; Cao, H.; Wang, J.; Jiang, Y.; Zhu, Z.; Guan, X. Characterization of key flavor components in flavor enhanced rice bran oil prepared by high-pressure steamed bran. LWT 2025, 222, 117649. [Google Scholar] [CrossRef]
- Todhanakasem, T.; Van Tai, N.; Kunyanee, K.; Pitinidhipat, N. Physicochemical characteristics and metabolite content of roasted arabica coffee in relation to consumer preference. LWT 2025, 217, 117438. [Google Scholar] [CrossRef]
- Verma, D.K.S.; Rivastav, P.P. A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review. Food Res. Int. 2020, 130, 108924. [Google Scholar] [CrossRef]
Varieties | Moisture | Starch | Protein | Fat |
---|---|---|---|---|
1212J | 14.63 ± 0.29 c | 59.34 ± 0.26 d | 6.28 ± 0.14 a | 0.54 ± 0.10 a |
1212JH | 7.50 ± 0.04 a | 61.53 ± 1.54 e | 7.72 ± 0.03 d | 0.11 ± 0.00 a |
1212C | 13.10 ± 1.36 b | 51.80 ± 0.13 a | 7.4 ± 0.2 c | 2.55 ± 0.52 c |
1212CH | 7.23 ± 0.02 a | 57.02 ± 0.73 bc | 8.63 ± 0.03 f | 1.98 ± 0.03 b |
450J | 12.82 ± 0.02 b | 61.47 ± 0.37 e | 6.89 ± 0.15 b | 0.40 ± 0.04 a |
450JH | 6.42 ± 0.09 a | 62.25 ± 0.25 e | 7.70 ± 0.05 cd | 0.35 ± 0.00 a |
450C | 12.60 ± 0.15 b | 55.57 ± 0.06 b | 8.12 ± 0.04 e | 2.23 ± 0.05 bc |
450CH | 7.05 ± 0.08 a | 58.01 ± 1.32 cd | 8.99 ± 0.03 g | 1.97 ± 0.02 b |
Varieties | Relative Crystallinity (%) |
---|---|
1212J | 24.20 ± 1.45 |
1212JH | 12.72 ± 1.39 |
1212C | 26.83 ± 2.93 |
1212CH | 15.97 ± 0.19 |
450J | 20.90 ± 0.90 |
450JH | 14.17 ± 1.02 |
450C | 22.11 ± 3.22 |
450CH | 14.78 ± 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, Y.; Zhu, K.; Xie, F.; Si, H.; Wu, S.; Chen, B.; Zheng, Q.; Wang, X.; Zhao, Y.; et al. Comparative Evaluation of Puffing Effects on Physicochemical and Volatile Profiles of Brown and Refined Rice. Foods 2025, 14, 2812. https://doi.org/10.3390/foods14162812
Liu X, Zhang Y, Zhu K, Xie F, Si H, Wu S, Chen B, Zheng Q, Wang X, Zhao Y, et al. Comparative Evaluation of Puffing Effects on Physicochemical and Volatile Profiles of Brown and Refined Rice. Foods. 2025; 14(16):2812. https://doi.org/10.3390/foods14162812
Chicago/Turabian StyleLiu, Xiaomei, Yi Zhang, Kai Zhu, Fan Xie, Haoyu Si, Songheng Wu, Bingjie Chen, Qi Zheng, Xiao Wang, Yong Zhao, and et al. 2025. "Comparative Evaluation of Puffing Effects on Physicochemical and Volatile Profiles of Brown and Refined Rice" Foods 14, no. 16: 2812. https://doi.org/10.3390/foods14162812
APA StyleLiu, X., Zhang, Y., Zhu, K., Xie, F., Si, H., Wu, S., Chen, B., Zheng, Q., Wang, X., Zhao, Y., & Qiao, Y. (2025). Comparative Evaluation of Puffing Effects on Physicochemical and Volatile Profiles of Brown and Refined Rice. Foods, 14(16), 2812. https://doi.org/10.3390/foods14162812