A Novel Natural Chromogenic Visual and Luminescent Sensor Platform for Multi-Target Analysis in Strawberries and Shape Memory Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nitrogen-Doped Carbon Quantum Dots (Betalains-N–CQDs)
2.3. Preparation of Cellulose
2.4. Preparation of Carboxymethyl Cellulose (CMC)
2.5. Preparation of Nitrogen-Doped Carbon Quantum Dots-Carboxymethyl Cellulose Hydrogel Film (CMC-Betalains-N–CQDs)
2.6. Nitrogen-Doped Carbon Quantum Dots-Carboxymethyl Cellulose Hydrogel Film Application to Monitor and Preserve Lead, Bacteria and Fungi in Strawberries
2.7. Shape Memory Test
2.8. Instruments
3. Results and Discussion
3.1. Optical Study
3.2. DFT Calculations
3.3. Shape Memory Test
3.4. Fourier Transform Infrared Spectroscopy (FTIR) Spectra and Morphological Observations
3.5. Antibacterial Activity and Molecular Docking Study
3.6. CMC-Betalains-N–CQD Film as a Probe for Imaging Lead, Fungi, Bacteria
3.7. CMC-Betalains-N–CQD Film as a Heavy Metal, Bacteria, Fungi and pH-Sensor for Tomatoes Spoilage by Naked Eye
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Tohamy, H.-A.S. Novel, speedy, and eco-friendly carboxymethyl cellulose-nitrogen doped carbon dots biosensors with DFT calculations, molecular docking, and experimental validation. Gels 2024, 10, 686. [Google Scholar] [CrossRef] [PubMed]
- Tohamy, H.-A.S. Speedy synthesis of magnetite/carbon dots for efficient chromium removal and reduction: A combined experimental and DFT approach. Emergent Mater. 2024, 1–13. [Google Scholar] [CrossRef]
- Tohamy, H.-A.S. Cellulosic schiff base hydrogel biosensor for bacterial detection with pH/thermo-responsitivity: DFT calculations and molecular docking. Int. J. Biol. Macromol. 2024, 283, 137389. [Google Scholar] [CrossRef] [PubMed]
- Behrooznia, Z.; Nourmohammadi, J. Polysaccharide-based materials as an eco-friendly alternative in biomedical, environmental, and food packaging. Giant 2024, 19, 100301. [Google Scholar] [CrossRef]
- Shahbazi, M.; Ahmadi, S.J.; Seif, A.; Rajabzadeh, G. Carboxymethyl cellulose film modification through surface photo-crosslinking and chemical crosslinking for food packaging applications. Food Hydrocoll. 2016, 61, 378–389. [Google Scholar] [CrossRef]
- Sharma, S.; Bhende, M. An overview: Non-toxic and eco-friendly polysaccharides—Its classification, properties, and diverse applications. Polym. Bull. 2024, 81, 12383–12429. [Google Scholar] [CrossRef]
- Tohamy, H.-A.S. Greener, Safer Packaging: Carbon Nanotubes/Gelatin-Enhanced Recycled Paper for Fire Retardation with DFT Calculations. J. Renew. Mater. 2024, 12, 1963-1983. [Google Scholar] [CrossRef]
- Viscusi, G.; Mottola, S.; Tohamy, H.-A.S.; Gorrasi, G.; De Marco, I. Design of cellulose acetate electrospun membranes loaded with N-doped carbon quantum dots for water remediation. In Proceedings of the IWA Regional Membrane Technology Conference, Palermo, Italy, 18–21 January 2024; pp. 133–137. [Google Scholar] [CrossRef]
- Abkenar, S.D.; Hosseini, M. Carbon dots in environmental remediation: Removal of inorganic compounds and many other complex compounds. In Carbon Dots: Recent Developments and Future Perspectives; ACS Publications: Washington, DC, USA, 2024; pp. 227–257. [Google Scholar] [CrossRef]
- Joseph, A.M.; George, B. Cross-linking biopolymers for biomedical applications. In Handbook of Biopolymers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–38. [Google Scholar] [CrossRef]
- Li, W.; Xu, Y.; Wang, G.; Xu, T.; Wang, K.; Zhai, S.; Si, C. Sustainable Carbon-Based Catalyst Materials Derived From Lignocellulosic Biomass for Energy Storage and Conversion: Atomic Modulation and Properties Improvement. Carbon Energy 2024, 7, e708. [Google Scholar] [CrossRef]
- Ritika; Rizwana. Edible Packaging: Extension of Shelf Life and Improvement of Food Quality. In Food Coatings and Preservation Technologies; Wiley: Hoboken, NJ, USA, 2024; pp. 167–210. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Li, C.; Xu, Y.; Luo, Y.; Liang, D.; Huang, C. Comprehensive review of polysaccharide-based materials in edible packaging: A sustainable approach. Foods 2021, 10, 1845. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Ngai, T. Recent advances in chemically modified cellulose and its derivatives for food packaging applications: A review. Polymers 2022, 14, 1533. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.C.; Sharma, R.; Mahapatra, U.; Mohanta, Y.K.; Rustagi, S.; Sharma, M.; Mahajan, S.; Nayak, P.K.; Sridhar, K. Sustainable production of cellulosic biopolymers for enhanced smart food packaging: An up-to-date review. Int. J. Biol. Macromol. 2024, 273, 133090. [Google Scholar] [CrossRef] [PubMed]
- Ojogbo, E.; Ogunsona, E.O.; Mekonnen, T.H. Chemical and physical modifications of starch for renewable polymeric materials. Mater. Today Sustain. 2020, 7, 100028. [Google Scholar] [CrossRef]
- Wang, X.; Huang, L.; Zhang, C.; Deng, Y.; Xie, P.; Liu, L.; Cheng, J. Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydr. Polym. 2020, 240, 116292. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, J.; Zheng, D.; Qi, F.; Li, L. Multifunctional films based on tannic acid-coated cellulose nanocrystals and zinc-coating reinforced sodium carboxymethyl cellulose/polyvinyl alcohol for food active packaging. Int. J. Biol. Macromol. 2025, 302, 140587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Su, S.; Liu, S.; Qiao, C.; Wang, E.; Chen, H.; Zhang, C.; Yang, X.; Li, T. Effects of chitosan and cellulose derivatives on sodium carboxymethyl cellulose-based films: A study of rheological properties of film-forming solutions. Molecules 2023, 28, 5211. [Google Scholar] [CrossRef] [PubMed]
- Charton, C.; Schiller, N.; Fahland, M.; Holländer, A.; Wedel, A.; Noller, K. Development of high barrier films on flexible polymer substrates. Thin Solid Film. 2006, 502, 99–103. [Google Scholar] [CrossRef]
- Lewis, J.S.; Weaver, M.S. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 45–57. [Google Scholar] [CrossRef]
- Affinito, J.; Gross, M.; Coronado, C.; Graff, G.; Greenwell, I.; Martin, P. A new method for fabricating transparent barrier layers. Thin Solid Film. 1996, 290, 63–67. [Google Scholar] [CrossRef]
- Yildirim-Yalcin, M.; Tornuk, F.; Toker, O.S. Recent advances in the improvement of carboxymethyl cellulose-based edible films. Trends Food Sci. Technol. 2022, 129, 179–193. [Google Scholar] [CrossRef]
- Fu, S.; Tian, C.; Lucia, L.A. Water sorption and barrier properties of cellulose nanocomposites. Handb. Nanocellulose Cellul. Nanocomposites 2017, 2, 649–681. [Google Scholar]
- Huang, H.; Nong, X.; Zhang, P.; Xu, Y.; Chen, J.; Yu, F.; Zhang, C.; Xiao, X.; Wang, S.; Nie, S. Multiscale Confinement-Modulated Cellulosic Dielectric Materials for Energy Harvesting and Self-Powered Devices. Adv. Funct. Mater. 2025, 35, 2417509. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hasan, M.S.; Nitai, A.S.; Nam, S.; Karmakar, A.K.; Ahsan, M.S.; Shiddiky, M.J.; Ahmed, M.B. Recent developments of carboxymethyl cellulose. Polymers 2021, 13, 1345. [Google Scholar] [CrossRef] [PubMed]
- Tohamy, H.-A.S. Carboxymethyl hemicellulose hydrogel as a fluorescent biosensor for bacterial and fungal detection with DFT and molecular docking studies. Sci. Rep. 2025, 15, 741. [Google Scholar] [CrossRef] [PubMed]
- Ulbrich, K.; Hola, K.; Subr, V.; Bakandritsos, A.; Tucek, J.; Zboril, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 2016, 116, 5338–5431. [Google Scholar] [CrossRef] [PubMed]
- Mavila, S.; Eivgi, O.; Berkovich, I.; Lemcoff, N.G. Intramolecular cross-linking methodologies for the synthesis of polymer nanoparticles. Chem. Rev. 2016, 116, 878–961. [Google Scholar] [CrossRef] [PubMed]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [PubMed]
- Saputra, A.M.A.; Piliang, A.F.R.; Goei, R.; HTS, R.R.; Gea, S. Synthesis, properties, and utilization of carbon quantum dots as photocatalysts on degradation of organic dyes: A mini review. Catal. Commun. 2024, 187, 106914. [Google Scholar] [CrossRef]
- Janus, Ł.; Piątkowski, M.; Radwan-Pragłowska, J.; Bogdał, D.; Matysek, D. Chitosan-based carbon quantum dots for biomedical applications: Synthesis and characterization. Nanomaterials 2019, 9, 274. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Wang, Q.; Guo, Z.; Kuang, J.; Cao, W. Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity. Ceram. Int. 2018, 44, 11828–11834. [Google Scholar] [CrossRef]
- Dager, A.; Baliyan, A.; Kurosu, S.; Maekawa, T.; Tachibana, M. Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: Application of C-QDs to grow fluorescent protein crystals. Sci. Rep. 2020, 10, 12333. [Google Scholar] [CrossRef] [PubMed]
- Tohamy, H.-A.S. Novel intelligent naked-eye food packaging pH-sensitive and fluorescent sulfur, nitrogen-carbon dots biosensors for tomato spoilage detection including DFT and molecular docking characterization. Int. J. Biol. Macromol. 2025, 310, 143330. [Google Scholar] [CrossRef] [PubMed]
- Tohamy, H.-A.S. Nanoemulsion mediated approaches for wound healing. In Recent Advances in Nanomedicines Mediated Wound Healing; Elsevier: Amsterdam, The Netherlands, 2025; pp. 109–129. [Google Scholar]
- Tohamy, H.-A.S. Novel colored hydroxypropyl methyl cellulose/magnetite carbon dots films for beef packaging with DFT calculations and molecular docking study. Sci. Rep. 2025, 15, 10337. [Google Scholar] [CrossRef] [PubMed]
- Goel, P.; Hansda, A.; Master, Y.; Mandal, P.; Mohapatra, S. Experimental Evaluation of Nanocomposites in Polymer Matrix. In Advances in Polymer Composite Research; CRC Press: Boca Raton, FL, USA, 2025; pp. 197–211. [Google Scholar]
- Baalousha, M. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 2009, 407, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Abdul Malek, N.S.; Omar, H.; Rosman, N.; Hajar, N.; Aizamddin, M.F.; Bonnia, N.N.; Khusaimi, Z.; Mahmood, M.R.; Asli, N.A. Tailoring Synergistic Polylactic Acid–Based Nanocomposites for Sustainable Antimicrobial Fruit Packaging. Packag. Technol. Sci. 2025, 38, 163–192. [Google Scholar] [CrossRef]
- Tohamy, H.-A.S.; El-Sakhawy, M.; Kamel, S. Fullerenes and tree-shaped/fingerprinted carbon quantum dots for chromium adsorption via microwave-assisted synthesis. RSC Adv. 2024, 14, 25785–25792. [Google Scholar] [CrossRef] [PubMed]
- Tohamy, H.-A.S. Artistic anti-counterfeiting with a pH-responsive fluorescent ink using DFT and molecular electrostatic potential mapping insights. Sci. Rep. 2025, 15, 19335. [Google Scholar] [CrossRef] [PubMed]
- El-Nasharty, M.; El-Sakhawy, M.; Tohamy, H.-A.S. Temperature responsive aluminum manganese doped carbon dot sensors for enhanced electrical conductivity with DFT calculations. Sci. Rep. 2025, 15, 19754. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N.; Kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 2012, 7, 480. [Google Scholar] [CrossRef] [PubMed]
- Tsolekile, N.; Parani, S.; Matoetoe, M.C.; Songca, S.P.; Oluwafemi, O.S. Evolution of ternary I–III–VI QDs: Synthesis, characterization and application. Nano-Struct. Nano-Objects 2017, 12, 46–56. [Google Scholar] [CrossRef]
- Tohamy, H.-A.S. Chapter 13—Quantum dots as an emerging nanocarrier for drug delivery. In Quantum Dot Nanocarriers for Drug Delivery; Kesharwani, P., Singh, S., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 363–384. [Google Scholar]
- Farshbaf, M.; Davaran, S.; Rahimi, F.; Annabi, N.; Salehi, R.; Akbarzadeh, A. Carbon quantum dots: Recent progresses on synthesis, surface modification and applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1331–1348. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef] [PubMed]
- Pechnikova, N.A.; Domvri, K.; Porpodis, K.; Istomina, M.S.; Iaremenko, A.V.; Yaremenko, A.V. Carbon quantum dots in biomedical applications: Advances, challenges, and future prospects. Aggregate 2025, 6, e707. [Google Scholar] [CrossRef]
- Lukitasari, D.M.; Indrawati, R.; Chandra, R.D.; Heriyanto, H.; Limantara, L. Color Alteration of Encapsulated Beetroot (Beta vulgaris L.) Extract Upon Dissolving in Various pH Treatment. Indones. J. Nat. Pigment. 2020, 2, 48. [Google Scholar] [CrossRef]
- El-Sakhawy, M.; Tohamy, H.-A.S.; AbdelMohsen, M.M.; El-Missiry, M. Biodegradable carboxymethyl cellulose based material for sustainable/active food packaging application. J. Thermoplast. Compos. Mater. 2024, 37, 2035–2050. [Google Scholar] [CrossRef]
- El-Sakhawy, M.; Abdel-Halim, S.A.; Tohamy, H.-A.S.; El-Masry, H.M.; AbdelMohsen, M.M. Amphiphilic Carboxymethyl Cellulose Stearate for Pickering Emulsions and Antimicrobial Activity of Chrysanthemum Essential Oil. J. Renew. Mater. 2025, 13, 981-995. [Google Scholar] [CrossRef]
- Tohamy, H.-A.S.; El-Sakhawy, M.; Abdel-Halim, S.A.; El-Masry, H.M.; AbdelMohsen, M.M. Antimicrobial Plectranthus amboinicus emulsions prepared with amphiphilic cellulose stearate. Euro-Mediterr. J. Environ. Integr. 2024, 10, 2007–2018. [Google Scholar] [CrossRef]
- Munir, N.; Jahangeer, M.; Bouyahya, A.; El Omari, N.; Ghchime, R.; Balahbib, A.; Aboulaghras, S.; Mahmood, Z.; Akram, M.; Ali Shah, S.M. Heavy metal contamination of natural foods is a serious health issue: A review. Sustainability 2021, 14, 161. [Google Scholar] [CrossRef]
- Gourama, H. Foodborne pathogens. In Food Safety Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 25–49. [Google Scholar]
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on major food-borne zoonotic bacterial pathogens. J. Trop. Med. 2020, 2020, 4674235. [Google Scholar] [CrossRef] [PubMed]
- Nag, R.; Cummins, E. Human health risk assessment of lead (Pb) through the environmental-food pathway. Sci. Total Environ. 2022, 810, 151168. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, A.; MMS, C.-P.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [PubMed]
- Santa Maria, M.P.; Hill, B.D.; Kline, J. Lead (Pb) neurotoxicology and cognition. Appl. Neuropsychol. Child 2019, 8, 272–293. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environ. Res. 2019, 177, 108641. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Doré, E.; Lytle, D.A.; Wasserstrom, L.; Swertfeger, J.; Triantafyllidou, S. Field analyzers for lead quantification in drinking water samples. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2357–2388. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; Clough, R.; Fisher, A.; Gibson, B.; Russell, B.; Waack, J. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. J. Anal. At. Spectrom. 2018, 33, 1802–1848. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Qiu, S.; Sooranna, S.R.; Deng, X.; Qu, X.; Yin, W.; Chen, Q.; Niu, B. Risk assessment and early warning of the presence of heavy metal pollution in strawberries. Ecotoxicol. Environ. Saf. 2022, 243, 114001. [Google Scholar] [CrossRef] [PubMed]
- Dziedzinska, R.; Vasickova, P.; Hrdy, J.; Slany, M.; Babak, V.; Moravkova, M. Foodborne bacterial, viral, and protozoan pathogens in field and market strawberries and environment of strawberry farms. J. Food Sci. 2018, 83, 3069–3075. [Google Scholar] [CrossRef] [PubMed]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Delbeke, S.; Ceuppens, S.; Hessel, C.T.; Castro, I.; Jacxsens, L.; De Zutter, L.; Uyttendaele, M. Microbial safety and sanitary quality of strawberry primary production in Belgium: Risk factors for Salmonella and Shiga toxin-producing Escherichia coli contamination. Appl. Environ. Microbiol. 2015, 81, 2562–2570. [Google Scholar] [CrossRef] [PubMed]
- Mahunu, G.; Osei-Kwarteng, M.; Ogwu, M.C.; Afoakwah, N.A. Safe food handling techniques to prevent microbial contamination. In Food Safety and Quality in the Global South; Springer: Berlin/Heidelberg, Germany, 2024; pp. 427–461. [Google Scholar]
- Hassanein, H.D.; Tohamy, H.-A.S.; AbdelMohsen, M.M.; El-Masry, H.M.; El-Sakhawy, M. Preparation and characterization of cellulose acetate/corn silk extract films for potential antimicrobial application. Egypt. J. Chem. 2025, 68, 287–294. [Google Scholar] [CrossRef]
- Veloo, K.V.; Tan, H. Comparison of heavy metal residue in selected processed canned tomato paste and bottled tomato sauce using atomic absorption spectrometry. Food Res. 2024, 8, 7-13. [Google Scholar] [CrossRef] [PubMed]
- Staszczak, M.; Nabavian Kalat, M.; Golasiński, K.M.; Urbański, L.; Takeda, K.; Matsui, R.; Pieczyska, E.A. Characterization of Polyurethane Shape Memory Polymer and Determination of Shape Fixity and Shape Recovery in Subsequent Thermomechanical Cycles. Polymers 2022, 14, 4775. [Google Scholar] [CrossRef] [PubMed]
- Tohamy, H.-A.S. Fullerene-Functionalized Cellulosic Hydrogel Biosensor with Bacterial Turn-on Fluorescence Response Derived from Carboxymethyl Cellulose for Intelligent Food Packaging with DFT Calculations and Molecular Docking. Gels 2025, 11, 329. [Google Scholar] [CrossRef] [PubMed]
- Tohamy, H.-A.S. Fluorescence ‘Turn-on’ probe for Chromium reduction, adsorption and detection based on Cellulosic Nitrogen-Doped Carbon Quantum dots Hydrogels. Gels 2024, 10, 296. [Google Scholar] [CrossRef] [PubMed]
- Amberg-Schwab, S.; Hoffmann, M.; Bader, H.; Gessler, M. Inorganic-organic polymers with barrier properties for water vapor, oxygen and flavors. J. Sol-Gel Sci. Technol. 1998, 13, 141–146. [Google Scholar] [CrossRef]
- Sangaj, N.S.; Malshe, V. Permeability of polymers in protective organic coatings. Prog. Org. Coat. 2004, 50, 28–39. [Google Scholar] [CrossRef]
- Sengupta, T.; Han, J.H. Surface chemistry of food, packaging, and biopolymer materials. In Innovations in Food Packaging; Elsevier: Amsterdam, The Netherlands, 2014; pp. 51–86. [Google Scholar] [CrossRef]
- Wicochea-Rodríguez, J.D.; Chalier, P.; Ruiz, T.; Gastaldi, E. Active food packaging based on biopolymers and aroma compounds: How to design and control the release. Front. Chem. 2019, 7, 398. [Google Scholar] [CrossRef] [PubMed]
- Feliziani, E.; Romanazzi, G. Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. J. Berry Res. 2016, 6, 47–63. [Google Scholar] [CrossRef]
- Bhat, R.; Stamminger, R. Preserving strawberry quality by employing novel food preservation and processing techniques–Recent updates and future scope–An overview. J. Food Process Eng. 2015, 38, 536–554. [Google Scholar] [CrossRef]
- Mangaraj, S.; Goswami, T.; Mahajan, P. Applications of plastic films for modified atmosphere packaging of fruits and vegetables: A review. Food Eng. Rev. 2009, 1, 133–158. [Google Scholar] [CrossRef]
- Qu, P.; Zhang, M.; Fan, K.; Guo, Z. Microporous modified atmosphere packaging to extend shelf life of fresh foods: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Berry, V. Impermeability of graphene and its applications. Carbon 2013, 62, 1–10. [Google Scholar] [CrossRef]
- Tenea, G.N.; Reyes, P.; Flores, C. Crosslinking bacterial postbiotics for microbial and quality control of strawberries postharvest: Bacteriological and 16S amplicon metagenome evidence. Front. Microbiol. 2025, 16, 1570312. [Google Scholar] [CrossRef] [PubMed]
- El-Araby, A.; Azzouzi, A.; Ayam, I.M.; Samouh, K.F.; Errachidi, F. Survey on technical management of strawberries in Morocco and evaluation of their post-harvest microbial load. Front. Microbiol. 2023, 13, 1115340. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Yuan, Y.; He, M.; Zhang, X.; Li, L.; Zhang, Y.; Li, B. Development of a multifunctional food packaging for meat products by incorporating carboxylated cellulose nanocrystal and beetroot extract into sodium alginate films. Food Chem. 2023, 415, 135799. [Google Scholar] [CrossRef] [PubMed]
DFT B3LYP/6–31G (d) | CMC Film | Betalains-N–CQDs | CMC-Betalains-N–CQDs |
---|---|---|---|
E LUMO (eV) | −0.121 | 0.077 | −0.043 |
EHOMO (eV) | −0.165 | −0.373 | −0.244 |
Eg (eV) | 0.041 | 0.450 | 0.201 |
ET (au) | −1134.55 | −244.29 | −2006.20 |
μ (Debye) | 11.14 | 2.98 | 4.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tohamy, H.-A.S. A Novel Natural Chromogenic Visual and Luminescent Sensor Platform for Multi-Target Analysis in Strawberries and Shape Memory Applications. Foods 2025, 14, 2791. https://doi.org/10.3390/foods14162791
Tohamy H-AS. A Novel Natural Chromogenic Visual and Luminescent Sensor Platform for Multi-Target Analysis in Strawberries and Shape Memory Applications. Foods. 2025; 14(16):2791. https://doi.org/10.3390/foods14162791
Chicago/Turabian StyleTohamy, Hebat-Allah S. 2025. "A Novel Natural Chromogenic Visual and Luminescent Sensor Platform for Multi-Target Analysis in Strawberries and Shape Memory Applications" Foods 14, no. 16: 2791. https://doi.org/10.3390/foods14162791
APA StyleTohamy, H.-A. S. (2025). A Novel Natural Chromogenic Visual and Luminescent Sensor Platform for Multi-Target Analysis in Strawberries and Shape Memory Applications. Foods, 14(16), 2791. https://doi.org/10.3390/foods14162791