Optimization of Extraction Parameters for Phenolics Recovery from Avocado Peels Using Ultrasound and Microwave Technologies
Abstract
1. Introduction
2. Materials and Methods
2.1. Vegetal Material
2.2. Experimental Design
2.3. Phenolic Compound Ultrasound- and Microwave-Assisted Extraction and Quantitative Analysis
2.4. Total Phenolic Content and Total Antioxidant Capacity
2.5. Statistical Analyses
3. Results and Discussion
3.1. Central Composite Design Center Value
3.2. Extraction, Identification, and Quantification of Phenolic Compounds
- At the −1 level of the solvent (20.3% EtOH), the temperature and extracted procyanidins increased proportionally while the epicatechin content decreased, and a similar behavior was shown with the time, as the procyanidin extraction increased with longer times while the epicatechin was kept constant. At elevated temperatures (45 °C), differences in extraction times resulted in minimal variation (less than 10%). In contrast, at lower temperatures, an increase in extraction time led to a notable rise in the levels of extracted procyanidins B1 and C1. In fact, the maximum concentration of these compounds was observed under these low-temperature, extended-time conditions. At lower temperatures, the time did not affect the extraction of epicatechin.
- At the 0 level of the solvent (50% EtOH), with shorter extraction times, a decrease in extracted procyanidins was observed as the temperature decreased. By contrast, epicatechin extraction increased at lower temperatures and shorter times (violet colors). Variations throughout incubation time were not relevant (≈10%) at high temperatures (45 °C) for procyanidin extraction, while epicatechin showed the lowest extraction ratio, being highly affected by the time and increasing proportionally to this parameter.
- At the +1 level of the solvent (79.7% EtOH), the tendency followed with shorter times was like those of the results obtained at the −1 and 0 levels for procyanidins, whereas the temperature and time decreased, the extracted procyanidin content also decreased proportionally. By contrast, epicatechin extraction followed the contrary behavior, having higher yields at lower temperatures and shorter times. In fact, the same occurred at high temperatures (45 °C) and short times, obtaining the highest extraction yields for procyanidins and lower yields for epicatechin. Therefore, scarce variations were found between times (<10%) for procyanidin content, while the same lack of variation was found with temperature changes in epicatechin extraction. In this sense, with nearly these conditions of EtOH percentage, Table 3 shows a maximum content of procyanidin (7.793 and 49.04 g kg−1 dw for trimer C1 and dimer B1) at this % EtOH of 94.55% (45 °C and 5 min), being ~58% higher than our center. Similarly, the maximum epicatechin content (13.63 g kg−1 dw) was extracted with 94.55% EtOH, at 67.32 °C, and after 12.2 min, which supposes an increase of ~83% compared to the established centers.
3.3. Phenolic Content and Total Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado By-Products: Nutritional and Functional Properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Duarte, P.F.; Chaves, M.A.; Borges, C.D.; Mendonça, C.R.B. Avocado: Characteristics, Health Benefits and Uses. Cienc. Rural 2016, 46, 747–754. [Google Scholar] [CrossRef]
- FAO. Food Loss and Waste Database. 2025. Available online: https://www.fao.org/platform-food-loss-waste/flw-data/en/ (accessed on 20 April 2025).
- De Laurentiis, V.; Corrado, S.; Sala, S. Quantifying Household Waste of Fresh Fruit and Vegetables in the EU. Waste Manag. 2018, 77, 238–251. [Google Scholar] [CrossRef]
- García-Ramón, F.; Malnati-Ramos, M.; Rios-Mendoza, J.; Vivar-Méndez, J.; Nieva-Villegas, L.M.; Cornelio-Santiago, H.P.; Sotelo-Méndez, A. Avocado Hass Peel from Industrial By-Product: Effect of Extraction Process Variables on Yield, Phenolic Compounds and Antioxidant Capacity. Front. Sustain. Food Syst. 2023, 7, 1255941. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as Valuable Tools for the Determination of Phenolic and Other Polar Compounds in the Edible Part and by-Products of Avocado. LWT 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Salmerón-Ruiz, M.L.; Domínguez-Avila, J.A.; Villegas-Ochoa, M.A.; Ayala-Zavala, J.F.; González-Aguilar, G.A. Phenolic Compounds from ‘Hass’ Avocado Peel Are Retained in the Indigestible Fraction after an in Vitro Gastrointestinal Digestion. J. Food Meas. Charact. 2021, 15, 1982–1990. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. From By-Product to Functional Ingredient: Incorporation of Avocado Peel Extract as an Antioxidant and Antibacterial Agent. Innov. Food Sci. Emerg. Technol. 2022, 80, 103116. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional Ingredient from Avocado Peel: Microwave-Assisted Extraction, Characterization and Potential Applications for the Food Industry. Food Chem. 2021, 352, 129300. [Google Scholar] [CrossRef]
- Robles-Botero, M.V.; Ronquillo-de Jesús, E.; Quiroz-Reyes, C.N.; Aguilar-Méndez, M.A. Caracterización e Identificación de Compuestos Bioactivos Con Actividad Antioxidante de La Cáscara, Pulpa y Semilla Del Fruto de Tejocote (Crataegus mexicana). Tip. Rev. Espec. Cienc. Quim. Biol. 2020, 23, e20200233. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Artés–Hernández, F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2022, 11, 59. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Gul, Z.; Tian, M.; Wang, J.; Zheng, K.; Zhao, C.; Li, C. Advances of Responsive Deep Eutectic Solvents and Application in Extraction and Separation of Bioactive Compounds. J. Sep. Sci. 2023, 46, e2300098. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, K.; Sarker, M.Z.I.; Al-Juhaimi, F.Y.; Mohamed Ahmed, I.A.; Babiker, E.E.; Alkaltham, M.S.; Almubarak, A.K. Bioactive Compounds Extracted from Saudi Dates Using Green Methods and Utilization of These Extracts in Functional Yogurt. Foods 2023, 12, 847. [Google Scholar] [CrossRef] [PubMed]
- del Amo-Mateos, E.; Fernández-Delgado, M.; Lucas, S.; López-Linares, J.C.; García-Cubero, M.T.; Coca, M. Valorization of Discarded Red Beetroot through the Recovery of Bioactive Compounds and the Production of Pectin by Surfactant-Assisted Microwave Extraction. J. Clean. Prod. 2023, 389, 135995. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Martínez-Zamora, L.; Mozafari, L.; Bueso, M.C.; Kessler, M.; Artés-Hernández, F. Response Surface Methodology to Optimize the Extraction of Carotenoids from Horticultural By-Products—A Systematic Review. Foods 2023, 12, 4456. [Google Scholar] [CrossRef] [PubMed]
- Prado-Acebo, I.; Cubero-Cardoso, J.; Lu-Chau, T.A.; Eibes, G. Integral Multi-Valorization of Agro-Industrial Wastes: A Review. Waste Manag. 2024, 183, 42–52. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Céspedes-Acuña, C.; Silva, F.L.; Alarcón-Enos, J. Improvement of the Polyphenol Extraction from Avocado Peel by Assisted Ultrasound and Microwaves. J. Food Process Eng. 2019, 42, e13197. [Google Scholar] [CrossRef]
- Araujo, R.G.; Rodríguez-Jasso, R.M.; Ruíz, H.A.; Govea-Salas, M.; Pintado, M.; Aguilar, C.N. Recovery of Bioactive Components from Avocado Peels Using Microwave-Assisted Extraction. Food Bioprod. Process 2021, 127, 152–161. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Martínez-Gutiérrez, E. Study of Influence of Extraction Method on the Recovery Bioactive Compounds from Peel Avocado. Molecules 2023, 28, 2557. [Google Scholar] [CrossRef] [PubMed]
- Della Posta, S.; Gallo, V.; Ascrizzi, A.M.; Gentili, A.; De Gara, L.; Dugo, L.; Fanali, C. Development of a Green Ultrasound-Assisted Procedure for the Extraction of Phenolic Compounds from Avocado Peel with Deep Eutectic Solvents. Green. Anal. Chem. 2023, 7, 100083. [Google Scholar] [CrossRef]
- Hefzalrahman, T.; Morsi, M.K.S.; Morsy, N.F.S.; Hammad, K.S.M. Application of Enzyme and Ultrasound Assisted Extraction of Polyphenols from Avocado (Persea americana Mill.) Peel as Natural Antioxidants. Acta Sci. Pol. Technol. Aliment. 2022, 21, 129–138. [Google Scholar] [CrossRef]
- Razola-Díaz, M.d.C.; Verardo, V.; Guerra-Hernández, E.J.; García-Villanova Ruiz, B.; Gómez-Caravaca, A.M. Response Surface Methodology for the Optimization of Flavan-3-Ols Extraction from Avocado By-Products via Sonotrode Ultrasound-Assisted Extraction. Antioxidants 2023, 12, 1409. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Martínez-Zamora, L.; Castillejo, N.; Artés-Hernández, F. From Pomegranate Byproducts Waste to Worth: A Review of Extraction Techniques and Potential Applications for Their Revalorization. Foods 2022, 11, 2596. [Google Scholar] [CrossRef]
- Kosińska, A.; Karamać, M.; Estrella, I.; Hernández, T.; Bartolomé, B.; Dykes, G.A. Phenolic Compound Profiles and Antioxidant Capacity of Persea Americana Mill. Peels and Seeds of Two Varieties. J. Agric. Food Chem. 2012, 60, 4613–4619. [Google Scholar] [CrossRef] [PubMed]
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; De Alencar, S.M. Exploration of Avocado By-Products as Natural Sources of Bioactive Compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fuentes, E.; Cádiz-Gurrea, M.d.l.L.; Rodriguez, L.; Villegas-Aguilar, M.D.C.; Palomo, I.; Arráez-Román, D.; Segura-Carretero, A. Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. Antioxidants 2022, 11, 1049. [Google Scholar] [CrossRef]
- Rosero, J.C.; Cruz, S.; Osorio, C.; Hurtado, N. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules 2019, 24, 3209. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Arraez-Roman, D.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Extensive Characterisation of Bioactive Phenolic Constituents from Globe Artichoke (Cynara scolymus, L.) by HPLC-DAD-ESI-QTOF-MS. Food Chem. 2013, 141, 2269–2277. [Google Scholar] [CrossRef] [PubMed]
Input | Input Levels | |||||||
---|---|---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | ||||
UAE | X1 | Temperature (°C) | T | 13 | 20 | 30 | 40 | 47 |
X2 | Time (min) | t | 3 | 10 | 20 | 30 | 37 | |
X3 | % EtOH | S | 0 | 20.3 | 50 | 79.7 | 100 | |
MAE | X1 | Temperature (°C) | T | 55 | 63 | 75 | 87 | 95 |
X2 | Time (min) | t | 3 | 8 | 15 | 22 | 27 | |
X3 | % EtOH | S | 0 | 20.3 | 50 | 79.7 | 100 |
UAE | MAE | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Run Order | Inputs | Responses | Run Order | Inputs | Responses | |||||||||
T | t | S | Procyanidin C1 | Procyanidin B1 | Epicatechin | T | t | S | Procyanidin C1 | Procyanidin B1 | Epicatechin | |||
Block 1 | 2 | 20 | 30 | 20.3 | 4.33 | 20.66 | 3.64 | 4 | 63 | 22 | 79.7 | 6.02 | 35.39 | 9.18 |
1 | 40 | 10 | 20.3 | 3.18 | 7.60 | 1.53 | 3 | 87 | 8 | 79.7 | 6.78 | 39.54 | 9.74 | |
6 | 30 | 20 | 50.0 | 5.56 | 33.81 | 6.75 | 5 | 75 | 15 | 50.0 | 5.79 | 34.18 | 8.27 | |
3 | 40 | 10 | 79.7 | 6.96 | 43.64 | 9.76 | 2 | 63 | 22 | 20.3 | 3.08 | 10.44 | 3.63 | |
4 | 20 | 30 | 79.7 | 6.30 | 39.97 | 9.10 | 1 | 87 | 8 | 20.3 | 5.42 | 31.14 | 5.13 | |
5 | 30 | 20 | 50.0 | 4.82 | 31.86 | 7.42 | 6 | 75 | 15 | 50.0 | 5.45 | 31.26 | 7.82 | |
Block 2 | 2 | 40 | 30 | 20.3 | 3.39 | 15.34 | 3.29 | 5 | 75 | 15 | 50.0 | 5.72 | 32.53 | 7.93 |
1 | 20 | 10 | 20.3 | 2.94 | 5.00 | 3.53 | 2 | 87 | 22 | 20.3 | 5.84 | 35.13 | 5.94 | |
6 | 30 | 20 | 50.0 | 5.38 | 34.54 | 8.18 | 1 | 63 | 8 | 20.3 | 3.09 | 10.09 | 3.45 | |
4 | 40 | 30 | 79.7 | 6.51 | 40.60 | 9.95 | 3 | 63 | 8 | 79.7 | 6.50 | 40.34 | 9.10 | |
3 | 20 | 10 | 79.7 | 5.87 | 34.39 | 12.17 | 6 | 75 | 15 | 50.0 | 5.29 | 31.46 | 7.41 | |
5 | 30 | 20 | 50.0 | 4.49 | 25.65 | 6.96 | 4 | 87 | 22 | 79.7 | 5.45 | 42.02 | 8.65 | |
Block 3 | 2 | 47 | 20 | 50.0 | 4.53 | 30.71 | 8.15 | 2 | 95 | 15 | 50.0 | 4.65 | 27.07 | 5.89 |
3 | 30 | 3 | 50.0 | 4.20 | 28.02 | 8.16 | 5 | 75 | 15 | 0.0 | 3.84 | 21.50 | 3.82 | |
7 | 30 | 20 | 50.0 | 4.70 | 31.31 | 8.14 | 8 | 75 | 15 | 50.0 | 5.10 | 35.96 | 8.35 | |
8 | 30 | 20 | 50.0 | 4.60 | 29.65 | 7.12 | 4 | 75 | 27 | 50.0 | 4.92 | 29.34 | 7.25 | |
5 | 30 | 20 | 0.0 | 2.91 | 3.26 | 2.08 | 3 | 75 | 3 | 50.0 | 4.29 | 25.73 | 6.63 | |
4 | 30 | 37 | 50.0 | 4.78 | 26.99 | 7.48 | 6 | 75 | 15 | 100.0 | 4.10 | 24.63 | 9.37 | |
6 | 30 | 20 | 100.0 | 5.99 | 34.01 | 9.90 | 7 | 75 | 15 | 50.0 | 5.22 | 32.32 | 8.16 | |
1 | 13 | 20 | 50.0 | 4.23 | 23.40 | 7.07 | 1 | 55 | 15 | 50.0 | 4.55 | 28.53 | 7.34 |
Compound | R2 | p-Value | Optimized S (% EtOH) | Optimized T (°C) | Optimized t (min) | Optimized Concentration (g kg−1) | |
---|---|---|---|---|---|---|---|
UAE | Procyanidin trimer C1 | 0.888 | 0.00105 | 94.55 | 45 | 5 | 7.793 |
Procyanidin dimer B1 | 0.928 | 0.000132 | 94.55 | 45 | 5 | 49.04 | |
Epicatechin | 0.929 | 0.000121 | 94.55 | 15 | 5 | 13.63 | |
MAE | Procyanidin trimer C1 | 0.624 | ns (0.176) | 94.55 | 57 | 4.5 | 6.61 |
Procyanidin dimer B1 | 0.67 | ns (0.11) | 94.55 | 57 | 4.5 | 41.59 | |
Epicatechin | 0.920 | 0.000215 | 94.55 | 67.32 | 12.2 | 10.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Zamora, L.; Bueso, M.C.; Kessler, M.; Zapata, R.; Gómez, P.A.; Artés-Hernández, F. Optimization of Extraction Parameters for Phenolics Recovery from Avocado Peels Using Ultrasound and Microwave Technologies. Foods 2025, 14, 2431. https://doi.org/10.3390/foods14142431
Martínez-Zamora L, Bueso MC, Kessler M, Zapata R, Gómez PA, Artés-Hernández F. Optimization of Extraction Parameters for Phenolics Recovery from Avocado Peels Using Ultrasound and Microwave Technologies. Foods. 2025; 14(14):2431. https://doi.org/10.3390/foods14142431
Chicago/Turabian StyleMartínez-Zamora, Lorena, María Carmen Bueso, Mathieu Kessler, Rosa Zapata, Perla A. Gómez, and Francisco Artés-Hernández. 2025. "Optimization of Extraction Parameters for Phenolics Recovery from Avocado Peels Using Ultrasound and Microwave Technologies" Foods 14, no. 14: 2431. https://doi.org/10.3390/foods14142431
APA StyleMartínez-Zamora, L., Bueso, M. C., Kessler, M., Zapata, R., Gómez, P. A., & Artés-Hernández, F. (2025). Optimization of Extraction Parameters for Phenolics Recovery from Avocado Peels Using Ultrasound and Microwave Technologies. Foods, 14(14), 2431. https://doi.org/10.3390/foods14142431