Protective Effects of Mackerel Protein Hydrolysates Against Oxidative Stress-Induced Atrophy in C2C12 Myotubes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Mackerel Protein Hydrolysates
2.3. Determination of Degree of Hydrolysis by TNBS Assay
2.4. Determination of Protein Molecular Weight Patterns by SDS-PAGE
2.5. C2C12 Cell Culture, Differentiation, and Myotube Atrophy Induction
2.6. Measurement of Myotube Diameter
2.7. Immunofluorescence Assay for Myosin Heavy Chain (MYH) Expression in C2C12 Myotubes
2.8. Amino Acid Composition Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Mackerel Protein Hydrolysates Prepared Using Different Enzymes
3.2. Alcalase-Derived Mackerel Hydrolysate (MHA) Protects Myotube Atrophy in H2O2-Treated C2C12 Myotubes
3.3. MHA Modulates Akt/FoxO and NF-κB Pathways in H2O2-Induced Myotube Atrophy
3.4. Antioxidant Activity of MHA Contributes to Its Protective Effects Against H2O2-Induced Myotube Atrophy
3.5. Chemical and Nutritional Characteristics of MHA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs. World Population Ageing 2023: Challenges and Opportunities of Population Ageing in the Least Developed Countries; United Nations: New York, NY, USA, 2023. [Google Scholar]
- Haase, C.B.; Brodersen, J.B.; Bülow, J. Sarcopenia: Early prevention or overdiagnosis? BMJ 2022, 376, e052592. [Google Scholar] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar]
- Morgan, P.T.; Harris, D.O.; Marshall, R.N.; Quinlan, J.I.; Edwards, S.J.; Allen, S.L.; Breen, L. Protein Source and Quality for Skeletal Muscle Anabolism in Young and Older Adults: A Systematic Review and Meta-Analysis. J. Nutr. 2021, 151, 1901–1920. [Google Scholar]
- Yuan, S.; Larsson, S.C. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism 2023, 144, 155533. [Google Scholar] [PubMed]
- Zhang, H.; Qi, G.; Wang, K.; Yang, J.; Shen, Y.; Yang, X.; Chen, X.; Yao, X.; Gu, X.; Qi, L.; et al. Oxidative stress: Roles in skeletal muscle atrophy. Biochem. Pharmacol. 2023, 214, 115664. [Google Scholar]
- Chen, X.; Ji, Y.; Liu, R.; Zhu, X.; Wang, K.; Yang, X.; Liu, B.; Gao, Z.; Huang, Y.; Shen, Y.; et al. Mitochondrial dysfunction: Roles in skeletal muscle atrophy. J. Transl. Med. 2023, 21, 503. [Google Scholar]
- Yin, L.; Li, N.; Jia, W.; Wang, N.; Liang, M.; Yang, X.; Du, G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol. Res. 2021, 172, 105807. [Google Scholar]
- Schiaffino, S.; Dyar, K.A.; Ciciliot, S.; Blaauw, B.; Sandri, M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013, 280, 4294–4314. [Google Scholar] [PubMed]
- Choi, H.; Seo, E.; Yeon, M.; Kim, M.S.; Hur, H.J.; Oh, B.C.; Jun, H.S. Anti-Aging Effects of Schisandrae chinensis Fructus Extract: Improvement of Insulin Sensitivity and Muscle Function in Aged Mice. Evid. Based Complement. Altern. Med. 2019, 2019, 5642149. [Google Scholar]
- Lyu, W.; Kousaka, M.; Jia, H.; Kato, H. Effects of Turmeric Extract on Age-Related Skeletal Muscle Atrophy in Senescence-Accelerated Mice. Life 2023, 13, 941. [Google Scholar]
- Shin, J.E.; Park, S.J.; Ahn, S.I.; Choung, S.Y. Soluble Whey Protein Hydrolysate Ameliorates Muscle Atrophy Induced by Immobilization via Regulating the PI3K/Akt Pathway in C57BL/6 Mice. Nutrients 2020, 12, 3362. [Google Scholar] [PubMed]
- Oh, S.; Choi, C.H.; Lee, B.J.; Park, J.H.; Son, K.H.; Byun, K. Fermented Oyster Extract Attenuated Dexamethasone-Induced Muscle Atrophy by Decreasing Oxidative Stress. Molecules 2021, 26, 7128. [Google Scholar] [CrossRef]
- Hur, H.; Kim, H.J.; Lee, D.; Jo, C. Beef peptides mitigate skeletal muscle atrophy in C2C12 myotubes through protein degradation, protein synthesis, and the oxidative stress pathway. Food Funct. 2024, 15, 4564–4574. [Google Scholar] [PubMed]
- Cho, H.R.; Lee, S.O. Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor). Food Res. Int. 2020, 133, 109194. [Google Scholar]
- Gilmartin, S.; O’Brien, N.; Giblin, L. Whey for sarcopenia; Can whey peptides, hydrolysates or proteins play a beneficial role? Foods 2020, 9, 750. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xing, R.; Chen, Z.; Yu, H.; Li, R.; Li, P. Effect and mechanism of mackerel (Pneumatophorus japonicus) peptides for anti-fatigue. Food Funct. 2014, 5, 2113–2119. [Google Scholar]
- Bashir, K.M.I.; Mohibbullah, M.; An, J.H.; Choi, J.Y.; Hong, Y.K.; Sohn, J.H.; Choi, J.S. In vivo antioxidant activity of mackerel (Scomber japonicus) muscle protein hydrolysate. PeerJ 2018, 6, e6181. [Google Scholar]
- Im, S.T.; Kim, M.; Kim, W.C.; Kim, J.H. Anti-osteoporotic effects of enzymatic hydrolysates of mackerel (Scomber japonicus) byproduct in MC3T3-E1 cells and ovariectomized rat model. Fish. Sci. 2024, 90, 643–652. [Google Scholar]
- Ko, G.E.; Kwak, N.Y.; Nam, H.E.; Seo, S.J.; Lee, S.O. Enzymatic preparation and antioxidant activities of protein hydrolysates from defatted egg yolk. Food Sci. Preserv. 2024, 31, 444–451. [Google Scholar]
- Lee, H.S.; Yoon, H.J.; Lee, S.O. Fetal bovine serum substitution efficacy of mealworm (Tenebrio molitor) protein hydrolysates and its physicochemical properties. Food Res. Int. 2025, 208, 113335. [Google Scholar]
- Park, G.H.; Lee, J.M.; Lim, N.Y.; Lee, S.O. Enzymatic preparation and antioxidant activities of protein hydrolysates derived from tuna byproducts. Korean J. Food Preserv. 2023, 30, 885–895. [Google Scholar]
- Yu, M.H.; Lee, H.S.; Cho, H.R.; Lee, S.O. Enzymatic preparation and antioxidant activities of protein hydrolysates from Tenebrio molitor larvae (Mealworm). J. Korean Soc. Food Sci. Nutr. 2017, 46, 435–443. [Google Scholar]
- Yoon, H.J.; Park, G.H.; Lee, Y.R.; Lee, J.M.; Ahn, H.L.; Lee, S.O. Enzymatic preparation and antioxidant activities of protein hydrolysates from hemp (Cannabis sativa L.) seeds. Food Sci. Preserv. 2023, 30, 434–445. [Google Scholar]
- Park, C.; Jeong, J.W.; Choi, Y.H. Induction of muscle atrophy by dexamethasone and hydrogen peroxide in differentiated C2C12 myotubes. J. Life Sci. 2017, 27, 1479–1485. [Google Scholar]
- Wu, X.; Zhu, N.; He, L.; Xu, M.; Li, Y. 5′-Cytimidine Monophosphate Ameliorates H2O2-Induced Muscular Atrophy in C2C12 Myotubes by Activating IRS-1/Akt/S6K Pathway. Antioxidants 2024, 13, 249. [Google Scholar] [PubMed]
- Braun, T.P.; Marks, D.L. The regulation of muscle mass by endogenous glucocorticoids. Front. Physiol. 2015, 6, 12. [Google Scholar]
- McClung, J.M.; Judge, A.R.; Talbert, E.E.; Powers, S.K. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. Am. J. Physiol. Cell Physiol. 2009, 296, C363–C371. [Google Scholar] [PubMed]
- Schiaffino, S.; Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models. Skelet. Muscle 2011, 1, 4. [Google Scholar]
- Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-κB: At the borders of autoimmunity and inflammation. Front. Immunol. 2021, 12, 716469. [Google Scholar]
- Sartori, R.; Romanello, V.; Sandri, M. Mechanisms of muscle atrophy and hypertrophy: Implications in health and disease. Nat. Commun. 2021, 12, 330. [Google Scholar]
- Chen, Y.J.; Chang, C.F.; Angayarkanni, J.; Lin, W.T. Alcalase Potato Protein Hydrolysate-PPH902 Enhances Myogenic Differentiation and Enhances Skeletal Muscle Protein Synthesis under High Glucose Condition in C2C12 Cells. Molecules 2021, 26, 6577. [Google Scholar]
- Lee, H.J.; Kim, D.; Do, K.; Yang, C.B.; Jeon, S.W.; Jang, A. Effects of Horse Meat Hydrolysate on Oxidative Stress, Proinflammatory Cytokines, and the Ubiquitin-Proteasomal System of C2C12 Cells. Food Sci. Anim. Resour. 2024, 44, 132–145. [Google Scholar] [PubMed]
- Chang, Y.B.; Ahn, Y.; Suh, H.J.; Jo, K. Yeast hydrolysate ameliorates dexamethasone-induced muscle atrophy by suppressing MuRF-1 expression in C2C12 cells and C57BL/6 mice. J. Funct. Foods 2022, 90, 104985. [Google Scholar]
- Lee, C.W.; Chang, Y.B.; Park, C.W.; Han, S.H.; Suh, H.J.; Ahn, Y. Protein Hydrolysate from Spirulina platensis Prevents Dexamethasone-Induced Muscle Atrophy via Akt/Foxo3 Signaling in C2C12 Myotubes. Mar. Drugs 2022, 20, 365. [Google Scholar] [PubMed]
- Jeon, S.H.; Choung, S.Y. Oyster Hydrolysates Attenuate Muscle Atrophy via Regulating Protein Turnover and Mitochondria Biogenesis in C2C12 Cell and Immobilized Mice. Nutrients 2021, 13, 4385. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Kaur, N.; Kumar, V.; Gupta, A.; Gupta, S.; Dua, A.; Injeti, E.; Mittal, A. Evaluation of cinnamaldehyde derivatives as potential protective agents against oxidative-stress induced myotube atrophy using chemical, biological and computational analysis. Bioorg. Chem. 2023, 139, 106661. [Google Scholar]
- Kaur, N.; Gupta, P.; Saini, V.; Sherawat, S.; Gupta, S.; Dua, A.; Kumar, V.; Injeti, E.; Mittal, A. Cinnamaldehyde regulates H2O2-induced skeletal muscle atrophy by ameliorating the proteolytic and antioxidant defense systems. J. Cell Physiol. 2019, 234, 6194–6208. [Google Scholar]
- Ng, W.J.; Wong, F.C.; Abd Manan, F.; Chow, Y.L.; Ooi, A.L.; Ong, M.K.; Zhang, X.; Chai, T.T. Antioxidant Peptides and Protein Hydrolysates from Tilapia: Cellular and In Vivo Evidences for Human Health Benefits. Foods 2024, 13, 2945. [Google Scholar] [CrossRef]
- Ko, C.H.; Wu, S.J.; Wang, S.T.; Chang, Y.F.; Chang, C.S.; Kuan, T.S.; Chuang, H.Y.; Chang, C.M.; Chou, W.; Wu, C.H. Effects of enriched branched-chain amino acid supplementation on sarcopenia. Aging 2020, 12, 15091–15103. [Google Scholar]
- Mantuano, P.; Boccanegra, B.; Bianchini, G.; Conte, E.; De Bellis, M.; Sanarica, F.; Camerino, G.M.; Pierno, S.; Cappellari, O.; Allegretti, M.; et al. BCAAs and Di-Alanine supplementation in the prevention of skeletal muscle atrophy: Preclinical evaluation in a murine model of hind limb unloading. Pharmacol. Res. 2021, 171, 105798. [Google Scholar]
- Yamanashi, K.; Kinugawa, S.; Fukushima, A.; Kakutani, N.; Takada, S.; Obata, Y.; Nakano, I.; Yokota, T.; Kitaura, Y.; Shimomura, Y.; et al. Branched-chain amino acid supplementation ameliorates angiotensin II-induced skeletal muscle atrophy. Life Sci. 2020, 250, 117593. [Google Scholar] [PubMed]
- Morgan, P.T.; Breen, L. The role of protein hydrolysates for exercise-induced skeletal muscle recovery and adaptation: A current perspective. Nutr. Metab. 2021, 18, 44. [Google Scholar]
- Herningtyas, E.H.; Okimura, Y.; Handayaningsih, A.E.; Yamamoto, D.; Maki, T.; Iida, K.; Takahashi, Y.; Kaji, H.; Chihara, K. Branched-chain amino acids and arginine suppress MaFbx/atrogin-1 mRNA expression via mTOR pathway in C2C12 cell line. Biochim. Biophys. Acta 2008, 1780, 1115–1120. [Google Scholar] [PubMed]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef]
- Zhao, T.; Su, G.; Zhang, L.; Chen, J.; Zhang, Y.; Liu, W.; Zhao, M.; Zhang, J.; Huang, Q. A comprehensive review of specific activity and intrinsic connections of food-derived bioactive peptides for human health. Food Front. 2024, 5, 1145–1165. [Google Scholar]
- Amin, A.; Liu, H.; Liu, Y.; Shi, J. Zein-derived peptides promote myoblast proliferation and inhibit apoptosis through activation of mTORC1 and mTORC2 signaling pathways. Foods 2024, 13, 919. [Google Scholar]
H2O2 | ABTS | |||
---|---|---|---|---|
RC50 (μg/mL) (1) | TEAC (μg TE/mg) (3) | RC50 (μg/mL) (2) | TEAC (μg TE/mg) (3) | |
MHA | 63.24 ± 1.08 (4) | 96.32 ± 0.82 | 78.28 ± 0.96 | 58.72 ± 0.75 |
Trolox | 6.31 ± 0.09 | 5.20 ± 0.02 |
Component | Concentration (mg/g) | Percentage (% Dry Basis) | |
---|---|---|---|
Macronutrients | Carbohydrate | 6.8 | 0.93 |
Protein | 672.0 | 92.04 | |
Lipid | 8.8 | 1.21 | |
Minerals | Calcium | 2.1760 | 0.30 |
Sodium | 15.0532 | 2.06 | |
Magnesium | 2.6874 | 0.37 | |
Iron | 0.0034 | <0.01 | |
Copper | 0.0052 | <0.01 | |
Phosphorus | 8.3064 | 1.14 | |
Zinc | 0.0140 | <0.01 | |
Selenium | 0.0034 | <0.01 | |
Potassium | 14.2938 | 1.96 | |
Iodine | 0.0006 | <0.01 | |
Manganese | 0.0002 | <0.01 | |
Heavy metals (mg/kg) | Lead | 0.0020 | <0.01 |
Cadmium | − (1) | <0.01 | |
Mercury | 0.0010 | <0.01 | |
Total | 730.14 | 100 | |
Calorie (Kcal/g) | 2.794 |
Amino Acid | mg/g | % |
---|---|---|
Alanine | 48.87 | 7.04 |
Arginine | 43.17 | 6.22 |
Aspartic acid | 69.78 | 10.05 |
Cystine | 5.47 | 0.79 |
Glutamic acid | 109.29 | 15.75 |
Glycine | 47.97 | 6.91 |
Histidine | 39.36 | 5.67 |
Isoleucine | 27.49 | 3.96 |
Leucine | 54.24 | 7.82 |
Lysine | 62.75 | 9.04 |
Methionine | 16.99 | 2.45 |
Phenylalanine | 23.09 | 3.33 |
Proline | 27.22 | 3.92 |
Serine | 33.66 | 4.85 |
Threonine | 35.48 | 5.11 |
Tryptophan | <0.01 | <0.01 |
Tyrosine | 15.33 | 2.21 |
Valine | 33.87 | 4.88 |
Total amino acid | 694.02 | 100 |
AAA | 38.42 | 5.54 |
BCAA | 115.61 | 16.66 |
HAA | 268.22 | 38.65 |
EAA | 293.27 | 42.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, G.-H.; Lee, S.-O. Protective Effects of Mackerel Protein Hydrolysates Against Oxidative Stress-Induced Atrophy in C2C12 Myotubes. Foods 2025, 14, 2430. https://doi.org/10.3390/foods14142430
Park G-H, Lee S-O. Protective Effects of Mackerel Protein Hydrolysates Against Oxidative Stress-Induced Atrophy in C2C12 Myotubes. Foods. 2025; 14(14):2430. https://doi.org/10.3390/foods14142430
Chicago/Turabian StylePark, Gyu-Hyeon, and Syng-Ook Lee. 2025. "Protective Effects of Mackerel Protein Hydrolysates Against Oxidative Stress-Induced Atrophy in C2C12 Myotubes" Foods 14, no. 14: 2430. https://doi.org/10.3390/foods14142430
APA StylePark, G.-H., & Lee, S.-O. (2025). Protective Effects of Mackerel Protein Hydrolysates Against Oxidative Stress-Induced Atrophy in C2C12 Myotubes. Foods, 14(14), 2430. https://doi.org/10.3390/foods14142430