Composites of Pea Protein Nanofibril and Epigallocatechin Gallate: Formation Mechanism, Structural Characterization, and Antioxidant Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PPI Nanofibril Fabrication
2.3. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.4. Composites of PPN and EGCG
2.5. Turbidity
2.6. Zeta Potential
2.7. UV Spectroscopy
2.8. Fluorescence Spectroscopy
2.9. Circular Dichroism (CD)
2.10. Thioflavin T (ThT) Assay
2.11. Surface Hydrophobicity
2.12. Transmission Electron Microscopy (TEM)
2.13. Antioxidant Activity
2.13.1. DPPH Scavenging Activity
2.13.2. ABTS Radical Scavenging Activity
2.13.3. Reducing Power
2.14. Statistical Analysis
3. Results and Discussion
3.1. SDS-PAGE
3.2. Turbidity
3.3. Zeta Potential
3.4. UV Spectroscopy
3.5. Fluorescence Spectroscopy
3.6. CD
3.7. ThT Fluorescence
3.8. Surface Hydrophobicity (H0)
3.9. TEM
3.10. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lam, A.C.Y.; Karaca, A.C.; Tyler, R.T.; Nickerson, M.T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- Huang, Z.; Qu, Y.; Hua, X.; Wang, F.; Jia, X.; Yin, L. Recent advances in soybean protein processing technologies: A review of preparation, alterations in the conformational and functional properties. Int. J. Biol. Macromol. 2023, 248, 125862. [Google Scholar] [CrossRef]
- Chen, D.; Jones, O.G.; Campanella, O.H. Plant protein-based fibers: Fabrication, characterization, and potential food applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 4554–4578. [Google Scholar] [CrossRef]
- Li, T.; Kambanis, J.; Sorenson, T.L.; Sunde, M.; Shen, Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024, 25, 5–23. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, L.; Bhutto, R.A.; Fan, Y.; Yi, J. Formation of pea protein amyloid-like nanofibrils-derived hydrogels mediated by epigallocatechin gallate. Food Chem. 2024, 459, 140381. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ma, C.-M.; Yang, Y.; Bian, X.; Liu, X.-F.; Wang, Y.; Zhang, N. Food-derived protein amyloid-like fibrils: Fibrillation mechanism, structure, and recent advances for the stabilization of emulsions. Food Hydrocoll. 2023, 145, 109146. [Google Scholar] [CrossRef]
- Yi, J.; He, Q.; Peng, G.; Fan, Y. Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils. Food Chem. 2022, 377, 131942. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Xiong, W.; Li, B. Binding interaction between β-conglycinin/glycinin and cyanidin-3-O-glucoside in acidic media assessed by multi-spectroscopic and thermodynamic techniques. Int. J. Biol. Macromol. 2019, 137, 366–373. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Chakrawarti, L.; Agrawal, R.; Dang, S.; Gupta, S.; Gabrani, R. Therapeutic effects of EGCG: A patent review. Expert Opin. Ther. Pat. 2016, 26, 907–916. [Google Scholar] [CrossRef]
- Hu, B.; Shen, Y.; Adamcik, J.; Fischer, P.; Schneider, M.; Loessner, M.J.; Mezzenga, R. Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS Nano 2018, 12, 3385–3396. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Su, Z.; Reynolds, N.P.; Arosio, P.; Hamley, I.W.; Gazit, E.; Mezzenga, R. Self-assembling peptide and protein amyloids: From structure to tailored function in nanotechnology. Chem. Soc. Rev. 2017, 46, 4661–4708. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, S.; Chen, Q.; Liu, Q.; Kong, B. Antioxidant activities and emulsifying properties of porcine plasma protein hydrolysates modified by oxidized tannic acid and oxidized chlorogenic acid. Process Biochem. 2019, 79, 105–113. [Google Scholar] [CrossRef]
- Chen, X.T.; Yi, J.; Wen, Z.; Fan, Y.T. Ultrasonic pretreatment and epigallocatechin gallate incorporation enhance the formation, apparent viscosity, and antioxidant activity of pea protein amyloid-like fibrils. Food Hydrocoll. 2024, 149, 9. [Google Scholar] [CrossRef]
- Nian, Y.; Zhang, Y.; Ruan, C.; Hu, B. Update of the interaction between polyphenols and amyloid fibrils. Curr. Opin. Food Sci. 2022, 43, 99–106. [Google Scholar] [CrossRef]
- Nilsson, M.R. Techniques to study amyloid fibril formation in vitro. Methods 2004, 34, 151–160. [Google Scholar] [CrossRef]
- Kato, A.; Nakai, S. Hydrophobicity determined by a fluorescence probe method and its corrrelation with surface-properties of proteins. Biochim. Biophys. Acta 1980, 624, 13–20. [Google Scholar] [CrossRef]
- Fan, Y.; Peng, G.; Pang, X.; Wen, Z.; Yi, J. Physicochemical, emulsifying, and interfacial properties of different whey protein aggregates obtained by thermal treatment. LWT-Food Sci. Technol. 2021, 149, 111904. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, T.W.; Baik, B.-K. Relationship between proportion and composition of albumins, and in vitro protein digestibility of raw and cooked pea seeds (Pisum sativum L.). J. Sci. Food Agric. 2010, 90, 1719–1725. [Google Scholar] [CrossRef]
- Munialo, C.D.; Martin, A.H.; van der Linden, E.; de Jongh, H.H.J. Fibril Formation from Pea Protein and Subsequent Gel Formation. J. Agric. Food Chem. 2014, 62, 2418–2427. [Google Scholar] [CrossRef]
- Han, S.; Cui, F.; McClements, D.J.; Xu, X.; Ma, C.; Wang, Y.; Liu, X.; Liu, F. Structural Characterization and Evaluation of Interfacial Properties of Pea Protein Isolate–EGCG Molecular Complexes. Foods 2022, 11, 2895. [Google Scholar] [CrossRef]
- Feng, J.; Liu, S.; Sun, N.; Dong, H.; Miao, L.; Wang, H.; Tong, X.; Jiang, L. Combining different ionic polysaccharides and pH treatment improved functional properties of soybean protein amyloid fibrils through structural modifications. Food Hydrocoll. 2024, 153, 110027. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, H.; Liu, S.; Miao, L.; Dong, H.; Tong, X.; Jiang, L. Complexes of soybean protein fibrils and chlorogenic acid: Interaction mechanism and antibacterial activity. Food Chem. 2024, 452, 139551. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Gan, C.; Zhang, H.; Yi, J. Characteristics, physicochemical stability and in vitro release of curcumin-loaded glycated bovine serum albumin nanofibrils: Effects of molecular weight of saccharide. Food Hydrocoll. 2024, 155, 110210. [Google Scholar] [CrossRef]
- Feng, Z.; Li, L.; Zhang, Y.; Li, X.; Liu, C.; Jiang, B.; Xu, J.; Sun, Z. Formation of whey protein isolate nanofibrils by endoproteinase GluC and their emulsifying properties. Food Hydrocoll. 2019, 94, 71–79. [Google Scholar] [CrossRef]
- Amadeo, B.B.; Pollet, J.; Chen, W.-H.; Strych, U.; Hotez, P.J.; Elena, B.M. A method to probe protein structure from UV absorbance spectra. Anal. Biochem. 2019, 587, 113450. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, M.; Liu, X. Insight into the conformational and functional properties of myofibrillar protein modified by mulberry polyphenols. Food Chem. 2020, 308, 125592. [Google Scholar] [CrossRef]
- Calinsky, R.; Levy, Y. Aromatic Residues in Proteins: Re-Evaluating the Geometry and Energetics of π–π, Cation–π, and CH–π Interactions. J. Phys. Chem. B 2024, 128, 8687–8700. [Google Scholar] [CrossRef]
- Liu, J.; Ghanizadeh, H.; Li, X.; Han, Z.; Qiu, Y.; Zhang, Y.; Chen, X.; Wang, A. A Study of the Interaction, Morphology, and Structure in Trypsin-Epigallocatechin-3-Gallate Complexes. Molecules 2021, 26, 4567. [Google Scholar]
- Shevkani, K.; Sharma, P.; Singh, B.; Kaur, A.; Singh, N. Structural, techno-functional and nutraceutical properties of lentil proteins—A concise review. Int. J. Food Sci. Technol. 2024, 59, 6875–6884. [Google Scholar] [CrossRef]
- Zhao, W.; Fan, X.; Shen, J.; Meng, F.; Lv, F.; Lu, Z.; Zhao, H. Extraction, structural characterization and functional properties of protein fractions from millet bran. Sustain. Food Technol. 2025, 3, 648–664. [Google Scholar] [CrossRef]
- Fan, Y.; Gan, C.; Li, Y.; Kang, L.; Yi, J. Fabrication of bovine serum albumin nanofibrils: Physicochemical characteristics, emulsifying and foaming activities. Int. J. Biol. Macromol. 2024, 271 Pt 1, 132549. [Google Scholar] [CrossRef]
- Yan, X.; Chu, Y.; Hang, J.; Zhang, S.; Yu, P.; Gong, X.; Zeng, Z.; Chen, L. Enhancing emulsifying properties of lentil protein fibrils through EGCG mediation and the mechanism study. Food Hydrocoll. 2024, 153, 109972. [Google Scholar] [CrossRef]
- Tong, X.; Cao, J.; Tian, T.; Lyu, B.; Miao, L.; Lian, Z.; Cui, W.; Liu, S.; Wang, H.; Jiang, L. Changes in structure, rheological property and antioxidant activity of soy protein isolate fibrils by ultrasound pretreatment and EGCG. Food Hydrocoll. 2022, 122, 107084. [Google Scholar] [CrossRef]
- Chen, J.; Liang, X.; Kong, B.; Wang, H.; Zhang, H.; Tang, J.; Liu, Q.; Li, X. Underlying mechanisms and effects of EGCG on the interfacial composition and protein-lipid co-oxidation of whey protein isolate-stabilised O/W emulsions. LWT 2023, 184, 115055. [Google Scholar] [CrossRef]
- Fan, Y.; Li, G.; Yi, J.; Huang, H. Structural characteristics, emulsifying and foaming properties of laccase-crosslinked bovine α-lactalbumin mediated by caffeic acid. Food Hydrocoll. 2022, 133, 107948. [Google Scholar] [CrossRef]
- Gantumur, M.-A.; Sukhbaatar, N.; Shi, R.; Hu, J.; Bilawal, A.; Qayum, A.; Tian, B.; Jiang, Z.; Hou, J. Structural, functional, and physicochemical characterization of fermented whey protein concentrates recovered from various fermented-distilled whey. Food Hydrocoll. 2023, 135, 108130. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, H.; Yi, J. Effect of (−)-epigallocatechin-3-gallate on physicochemical properties, emulsifying and foaming activities of α-lactalbumin under oxidative stress. LWT 2024, 203, 116359. [Google Scholar] [CrossRef]
- Zhao, C.; Chu, Z.; Miao, Z.; Liu, J.; Liu, J.; Xu, X.; Wu, Y.; Qi, B.; Yan, J. Ultrasound heat treatment effects on structure and acid-induced cold set gel properties of soybean protein isolate. Food Biosci. 2021, 39, 100827. [Google Scholar] [CrossRef]
- Zhang, Y.; Dee, D.R. Morphology, Formation Kinetics and Core Composition of Pea and Soy 7S and 11S Globulin Amyloid Fibrils. J. Agric. Food Chem. 2023, 71, 4755–4765. [Google Scholar] [CrossRef]
- Romano, A.; Engelberg, Y.; Landau, M.; Lesmes, U. Alpha-lactalbumin amyloid-like fibrils for intestinal delivery: Formation, physiochemical characterization, and digestive fate of capsaicin-loaded fibrils. Food Hydrocoll. 2023, 136, 108248. [Google Scholar] [CrossRef]
- Hu, Y.; He, C.; Woo, M.W.; Xiong, H.; Hu, J.; Zhao, Q. Formation of fibrils derived from whey protein isolate: Structural characteristics and protease resistance. Food Funct. 2019, 10, 8106–8115. [Google Scholar] [CrossRef] [PubMed]
- Loveday, S.M.; Wang, X.L.; Rao, M.A.; Anema, S.G.; Singh, H. Effect of pH, NaCl, CaCl2 and Temperature on Self-Assembly of β-Lactoglobulin into Nanofibrils: A Central Composite Design Study. J. Agric. Food Chem. 2011, 59, 8467–8474. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.J.; Shan, G.C.; Hao, N.R.; Li, L.W.; Lan, T.; Dong, Y.B.; Wen, J.Y.; Tian, R.; Zhang, Y.; Jiang, L.Z.; et al. Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate. Biomaterials 2022, 283, 14. [Google Scholar] [CrossRef]
- Li, T.; Wang, D.; Zhang, X.; Wang, L. Structural characterization and binding interaction of rice glutelin fibrils complexing with curcumin. Food Chem. 2024, 448, 139063. [Google Scholar] [CrossRef]
- Mohammadian, M.; Salami, M.; Momen, S.; Alavi, F.; Emam-Djomeh, Z.; Moosavi-Movahedi, A.A. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocoll. 2019, 87, 902–914. [Google Scholar] [CrossRef]
- Bu, K.; Huang, D.; Li, D.; Zhu, C. Encapsulation and sustained release of curcumin by hawthorn pectin and Tenebrio Molitor protein composite hydrogel. Int. J. Biol. Macromol. 2022, 222, 251–261. [Google Scholar] [CrossRef]
[EGCG]/[PPN] Ratio (w/w) | Content (%) | |||
---|---|---|---|---|
α-Helix | β-Sheet | β-Turn | Random Coil | |
PPI | 56 | 18 | 9 | 18 |
PPN | 44 | 24 | 7 | 14 |
0.025 | 46 | 25 | 8 | 21 |
0.05 | 45 | 27 | 8 | 21 |
0.075 | 42 | 30 | 8 | 21 |
0.1 | 42 | 31 | 7 | 21 |
0.15 | 40 | 32 | 8 | 21 |
0.2 | 37 | 33 | 7 | 23 |
0.25 | 36 | 35 | 6 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yang, Y.; Fan, Y.; Yi, J. Composites of Pea Protein Nanofibril and Epigallocatechin Gallate: Formation Mechanism, Structural Characterization, and Antioxidant Activity. Foods 2025, 14, 2418. https://doi.org/10.3390/foods14142418
Zhang H, Yang Y, Fan Y, Yi J. Composites of Pea Protein Nanofibril and Epigallocatechin Gallate: Formation Mechanism, Structural Characterization, and Antioxidant Activity. Foods. 2025; 14(14):2418. https://doi.org/10.3390/foods14142418
Chicago/Turabian StyleZhang, Hailing, Yangxuan Yang, Yuting Fan, and Jiang Yi. 2025. "Composites of Pea Protein Nanofibril and Epigallocatechin Gallate: Formation Mechanism, Structural Characterization, and Antioxidant Activity" Foods 14, no. 14: 2418. https://doi.org/10.3390/foods14142418
APA StyleZhang, H., Yang, Y., Fan, Y., & Yi, J. (2025). Composites of Pea Protein Nanofibril and Epigallocatechin Gallate: Formation Mechanism, Structural Characterization, and Antioxidant Activity. Foods, 14(14), 2418. https://doi.org/10.3390/foods14142418