Polyethylene Packaging as a Source of Microplastics: Current Knowledge and Future Directions on Food Contamination
Abstract
1. Introduction
- Degradation of packaging—how are MPs generated; and how can their formation be prevented?
- The role of MPs as carriers of contaminants—what is the extent of adsorption and desorption; and how can these processes affect human exposure?
- Toxicity and bioavailability—what are the external and internal effects of MP exposure; and how can they be measured?
2. Materials and Methods
3. Degradation of Polyethylene
3.1. General Factors Influencing Degradation
3.2. Degradation Through Contact with Packaged Contents
3.3. Degradation Through Sterilization
3.4. Release of PE–MPs Through Packaging
3.5. Occurrence and Detection of PE–MPs
4. Polyethylene as a Carrier of Contaminants and Its Interactions
4.1. Adsorption on Polyethylene Microplastics
4.1.1. Mechanisms and Factors Influencing Adsorption on Polyethylene
4.1.2. Influence of Other Substances on the Adsorption Process
4.1.3. Influence of Erosion and Weathering on the Adsorption Process
4.1.4. Adsorption Equilibrium
4.1.5. Desorption and Influential Factors
4.1.6. Kinetic and Isotherm Models
4.2. Interactions Between Polyethylene Microplastics and Other Substances
5. Toxicity of Polyethylene
5.1. Bioaccessibility
5.2. The Fate of Microplastics After Ingestion
5.3. Health Implications for Humans
5.4. Environmental Contamination and Its Dangers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plastics Europe AISBL. Plastics—The Fast Facts 2024; Plastics Europe AISBL: Brussels, Belgium, 2024. [Google Scholar]
- Kojnoková, T.; Nový, F.; Markovicová, L.; Liptáková, T. Changes of Mechanical Properties of Protective Polyethylene Films Applied in Transport Bottles and Containers for Liquid Media after Exposure to Selected Liquid Media. Transp. Res. Proc. 2021, 55, 731–736. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Presence of Microplastics and Nanoplastics in Food, with Particular Focus on Seafood. EFSA J. 2016, 14, e04501. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Knez, E.; Grembecka, M. Food and Human Safety: The Impact of Microplastics. Crit. Rev. Food Sci. Nutr. 2024, 64, 3502–3521. [Google Scholar] [CrossRef]
- Ain Bhutto, S.U.; You, X. Spatial Distribution of Microplastics in Chinese Freshwater Ecosystem and Impacts on Food Webs. Environ. Pollut. 2022, 293, 118494. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, H.; Gu, W.; Wang, S.; Li, Y. Biodegradation of Aged Polyethylene (PE) and Polystyrene (PS) Microplastics by Yellow Mealworms (Tenebrio Molitor Larvae). Sci. Total Environ. 2024, 927, 172243. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zheng, N.; Zhu, H.; An, Q.; Pan, J.; Li, X.; Ji, Y.; Li, N.; Sun, S. Co-Exposure to UV-Aged Microplastics and Cadmium Induces Intestinal Toxicity and Metabolic Responses in Earthworms. J. Hazard. Mater. 2024, 462, 132737. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Zhou, N.; Chen, Y.; Ling, Z.; Xiang, P. Microplastics in the Human Body: A Comprehensive Review of Exposure, Distribution, Migration Mechanisms, and Toxicity. Sci. Total Environ. 2024, 946, 174215. [Google Scholar] [CrossRef]
- Hu, C.J.; Garcia, M.A.; Nihart, A.; Liu, R.; Yin, L.; Adolphi, N.; Gallego, D.F.; Kang, H.; Campen, M.J.; Yu, X. Microplastic Presence in Dog and Human Testis and Its Potential Association with Sperm Count and Weights of Testis and Epididymis. Toxicol. Sci. 2024, 200, 235–240. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.; Chen, Y.; Yang, F.; Yao, W.; Xie, Y. Microplastics Contamination in Eggs: Detection, Occurrence and Status. Food Chem. 2022, 397, 133771. [Google Scholar] [CrossRef]
- Tong, H.; Zhong, X.; Duan, Z.; Yi, X.; Cheng, F.; Xu, W.; Yang, X. Micro- and Nanoplastics Released from Biodegradable and Conventional Plastics during Degradation: Formation, Aging Factors, and Toxicity. Sci. Total Environ. 2022, 833, 155275. [Google Scholar] [CrossRef]
- Dimassi, S.N.; Hahladakis, J.N.; Daly Yahia, M.N.; Ahmad, M.I.; Sayadi, S.; Al-Ghouti, M.A. Insights into the Degradation Mechanism of PET and PP under Marine Conditions Using FTIR. J. Hazard. Mater. 2023, 447, 130796. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Han, T.; Chen, X.; Rushimisha, I.E.; Liu, Y.; Yang, S.; Miao, X.; Li, X.; Weng, L.; Li, Y. Insights into Behavior and Mechanism of Tetracycline Adsorption on Virgin and Soil-Exposed Microplastics. J. Hazard. Mater. 2022, 440, 129770. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, D.D.; Chen, M.; Cao, Y.W.; Zhuang, L.Y.; Lu, Z.H.; Yang, Z.H. Adsorption Behavior of Azole Fungicides on Polystyrene and Polyethylene Microplastics. Chemosphere 2022, 308, 136280. [Google Scholar] [CrossRef] [PubMed]
- Jahan, I.; Chowdhury, G.; Rafi, S.; Ashab, M.A.; Sarker, M.; Chakraborty, A.; Couetard, N.; Kabir, M.A.; Hossain, M.A.; Iqbal, M.M. Assessment of Dietary Polyvinylchloride, Polypropylene and Polyethylene Terephthalate Exposure in Nile Tilapia, Oreochromis Niloticus: Bioaccumulation, and Effects on Behaviour, Growth, Hematology and Histology. Environ. Pollut. 2024, 345, 123548. [Google Scholar] [CrossRef]
- Alaraby, M.; Abass, D.; Velázquez, A.; Hernández, A.; Marcos, R. Occurrence, Analysis, and Toxicity of Polyethylene Terephthalate Microplastics: A Review. Environ. Chem. Lett. 2025, 23, 1025–1059. [Google Scholar] [CrossRef]
- Yuan, Z.; Nag, R.; Cummins, E. Ranking of Potential Hazards from Microplastics Polymers in the Marine Environment. J. Hazard. Mater. 2022, 429, 128399. [Google Scholar] [CrossRef]
- Wang, X.Y.; Gao, Y.; Tang, Y. Sustainable Developments in Polyolefin Chemistry: Progress, Challenges, and Outlook. Prog. Polym. Sci. 2023, 143, 101713. [Google Scholar] [CrossRef]
- Kashfi, F.S.; Mohammadi, A.; Rostami, F.; Savari, A.; De-la-Torre, G.E.; Spitz, J.; Saeedi, R.; Kalantarhormozi, M.; Farhadi, A.; Dobaradaran, S. Microplastics and Phthalate Esters Release from Teabags into Tea Drink: Occurrence, Human Exposure, and Health Risks. Environ. Sci. Pollut. Res. 2023, 30, 104209–104222. [Google Scholar] [CrossRef]
- Noguchi, M.; Yamasaki, A. Volatile and Semivolatile Organic Compound Emissions from Polymers Used in Commercial Products during Thermal Degradation. Heliyon 2020, 6, e03314. [Google Scholar] [CrossRef]
- Kovinchuk, I.; Haiuk, N.; Lazzara, G.; Cavallaro, G.; Sokolsky, G. Enhanced Photocatalytic Degradation of PE Film by Anatase/γ-MnO2. Polym. Degrad. Stab. 2023, 210, 110295. [Google Scholar] [CrossRef]
- Taghavi, N.; Zhuang, W.Q.; Baroutian, S. Enhanced Biodegradation of Non-Biodegradable Plastics by UV Radiation: Part 1. J. Environ. Chem. Eng. 2021, 9, 106464. [Google Scholar] [CrossRef]
- Zha, S.; Lan, H.Q.; Lin, N.; Meng, T. Degradation and Characterization Methods for Polyethylene Gas Pipes after Natural and Accelerated Aging. Polym. Degrad. Stab. 2023, 208, 110247. [Google Scholar] [CrossRef]
- Haque, M.A.; Candlen, K.; Froio-Blumsack, D.; Peterson, A.M.; Ratto, J.A.; Chen, W.T. Degradation Behavior of Multilayer Pouches Containing Liquid and Powder Hot Sauce for Meal, Ready-to-Eat (MRE) Rations. Food Packag. Shelf Life 2023, 40, 101209. [Google Scholar] [CrossRef]
- Dimassi, S.N.; Hahladakis, J.N.; Chamkha, M.; Ahmad, M.I.; Al-Ghouti, M.A.; Sayadi, S. Investigation on the Effect of Several Parameters Involved in the Biodegradation of Polyethylene (PE) and Low-Density Polyethylene (LDPE) under Various Seawater Environments. Sci. Total Environ. 2024, 912, 168870. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.A.; Candlen, K.; Peterson, A.M.; Ratto, J.A.; Chen, W.T. Degradation Behavior of Multilayer Packaging Films in the Presence of a Highly Acidic Sauce. J. Food Eng. 2023, 340, 111318. [Google Scholar] [CrossRef]
- Michailidou, K.; Palisidou, C.; Feidantsis, K.; Ainali, N.M.; Kastrinaki, G.; Lambropoulou, D.A.; Kyzas, G.Z.; Bikiaris, D.N.; Kaloyianni, M.; Bobori, D.C. Impact of Aged and Virgin Polyethylene Microplastics on Multi End-Points Effects of Freshwater Fish Tissues. Sci. Total Environ. 2024, 948, 174704. [Google Scholar] [CrossRef]
- Hee, Y.Y.; Weston, K.; Suratman, S. The Effect of Storage Conditions and Washing on Microplastic Release from Food and Drink Containers. Food Packag. Shelf Life 2022, 32, 100826. [Google Scholar] [CrossRef]
- Habib, T.; Muhammad, M.; Liu, Y.-H.; Fang, B.-Z.; Li, W.-J. Biodegradation of Plastics—An Overview. In Microbiome-Assisted Bioremediation; Elsevier: Amsterdam, The Netherlands, 2024; pp. 171–197. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Bochentyn, B.; Maślarz, A.; Mahlik, S.; Grembecka, M. Methodology Approach for Microplastics Isolation from Samples Containing Sucrose. Molecules 2024, 29, 3996. [Google Scholar] [CrossRef]
- Xie, M.; Ren, D.; Muhmood, A.; Tian, P.; Su, Y.; Wang, X. Revealing the Effect of Humic Substance Compounds on the Aged Characteristics and Release Compounds Profiles from Photodegradation of Polyethylene Microplastics. Arab. J. Chem. 2023, 16, 105257. [Google Scholar] [CrossRef]
- Tang, Y.; Fan, K.; Herath, I.; Gustave, W.; Lin, C.; Qin, J.; Qiu, R. Contribution of Free Hydroxyl Radical to the Formation of Micro(Nano)Plastics and Release of Additives during Polyethylene Degradation in Water. Environ. Pollut. 2023, 337, 122590. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Zhou, A.; Chen, X.; Cheng, X.; Lai, Y.; Li, C.; Ji, Q.; Ji, Q.; Kong, J.; Ding, Y.; et al. Insight into the Adsorption Behaviors and Bioaccessibility of Three Altered Microplastics through Three Types of Advanced Oxidation Processes. Sci. Total Environ. 2024, 917, 170420. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, V.P.; Joseph, A.; Sharma, H.B.; Goel, S. Preliminary Investigation on Effects of Size, Polymer Type, and Surface Behaviour on the Vertical Mobility of Microplastics in a Porous Media. Sci. Total Environ. 2023, 864, 161148. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wei, S.Y.; He, G.J. Ozone-Based in-Situ Reactive Extrusion for Rapid Functionalisation and Degradation of Low Density Polyethylene. Polym. Degrad. Stab. 2024, 220, 110640. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, P.; Zheng, Y.; Li, Q.; Bian, J.; Liang, Q.; Su, T.; Dian, L.; Qi, Q. Unique Raoultella Species Isolated from Petroleum Contaminated Soil Degrades Polystyrene and Polyethylene. Ecotoxicol. Environ. Saf. 2023, 263, 115232. [Google Scholar] [CrossRef]
- Wu, X.; Tan, Z.; Liu, R.; Liao, Z.; Ou, H. Gaseous Products Generated from Polyethylene and Polyethylene Terephthalate during Ultraviolet Irradiation: Mechanism, Pathway and Toxicological Analyses. Sci. Total Environ. 2023, 876, 162717. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, H.; Liu, Y.; Wang, M. Phthalate Acid Ester Release from Microplastics in Water Environment and Their Comparison between Single and Competitive Adsorption. Environ. Sci. Pollut. Res. 2023, 30, 118964–118975. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; An, S.; Wang, P.; Xie, C.; Jia, P.; Huang, Q.; Wang, B. Mulch-Derived Microplastic Aging Promotes Phthalate Esters and Alters Organic Carbon Fraction Content in Grassland and Farmland Soils. J. Hazard. Mater. 2024, 461, 132619. [Google Scholar] [CrossRef]
- Cecon, V.S.; Da Silva, P.F.; Vorst, K.L.; Curtzwiler, G.W. The Effect of Post-Consumer Recycled Polyethylene (PCRPE) on the Properties of Polyethylene Blends of Different Densities. Polym. Degrad. Stab. 2021, 190, 109627. [Google Scholar] [CrossRef]
- Ballestar de las Heras, R.; Colom, X.; Cañavate, J. Comparative Analysis of the Effects of Incorporating Post-Industrial Recycled LLDPE and Post-Consumer PE in Films: Macrostructural and Microstructural Perspectives in the Packaging Industry. Polymers 2024, 16, 916. [Google Scholar] [CrossRef]
- Plastics Europe AISBL. The Circular Economy for Plastics—A European Analysis; Plastics Europe AISBL: Brussels, Belgium, 2024. [Google Scholar]
- McGlynn, W. Importance of Food PH in Commercial Canning Operations. 2003. Available online: https://extension.okstate.edu/fact-sheets/print-publications/fapc-food-and-agricultural-products-center/the-importance-of-food-ph-in-commercial-canning-operations-fapc-118.pdf (accessed on 5 July 2025).
- Hu, K.; Huyan, Z.; Ding, S.; Dong, Y.; Yu, X. Investigation on Food Packaging Polymers: Effects on Vegetable Oil Oxidation. Food Chem. 2020, 315, 126299. [Google Scholar] [CrossRef] [PubMed]
- Girard-Perier, N.; Gaston, F.; Dupuy, N.; Marque, S.R.A.; Delaunay, L.; Dorey, S. Study of the Mechanical Behavior of Gamma-Irradiated Single-Use Bag Seals. Food Packag. Shelf Life 2020, 26, 100582. [Google Scholar] [CrossRef]
- Roxby, P.; Michel, H.; Huart, C.; Dorey, S. Effect of Gamma and X-Ray Irradiation on Polymers Commonly Used in Healthcare Products. Biomed. Instrum. Technol. 2024, 58, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Samal, R.R.; Navani, H.S.; Saha, S.; Kisan, B.; Subudhi, U. Evidence of Microplastics Release from Polythene and Paper Cups Exposed to Hot and Cold: A Case Study on the Compromised Kinetics of Catalase. J. Hazard. Mater. 2023, 454, 131496. [Google Scholar] [CrossRef]
- Sturm, M.T.; Myers, E.; Schober, D.; Korzin, A.; Schuhen, K. Development of an Inexpensive and Comparable Microplastic Detection Method Using Fluorescent Staining with Novel Nile Red Derivatives. Analytica 2023, 4, 27–44. [Google Scholar] [CrossRef]
- Wang, H.P.; Huang, X.H.; Chen, J.N.; Dong, M.; Zhang, Y.Y.; Qin, L. Pouring Hot Water through Drip Bags Releases Thousands of Microplastics into Coffee. Food Chem. 2023, 415, 135717. [Google Scholar] [CrossRef]
- Mei, T.; Wang, J.; Xiao, X.; Lv, J.; Li, Q.; Dai, H.; Liu, X.; Pi, F. Identification and Evaluation of Microplastics from Tea Filter Bags Based on Raman Imaging. Foods 2022, 11, 2871. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Jia, P.; He, S.; Dai, H.; Deng, S.; Han, J. Release of Microplastics from Breastmilk Storage Bags and Assessment of Intake by Infants: A Preliminary Study. Environ. Pollut. 2023, 323, 121197. [Google Scholar] [CrossRef]
- Bai, C.L.; Liu, L.Y.; Guo, J.L.; Zeng, L.X.; Guo, Y. Microplastics in Take-out Food: Are We over Taking It? Environ. Res. 2022, 215, 114390. [Google Scholar] [CrossRef]
- Visentin, E.; Niero, G.; Benetti, F.; Perini, A.; Zanella, M.; Pozza, M.; De Marchi, M. Preliminary Characterization of Microplastics in Beef Hamburgers. Meat Sci. 2024, 217, 109626. [Google Scholar] [CrossRef]
- Dessì, C.; Okoffo, E.D.; O’Brien, J.W.; Gallen, M.; Samanipour, S.; Kaserzon, S.; Rauert, C.; Wang, X.; Thomas, K.V. Plastics Contamination of Store-Bought Rice. J. Hazard. Mater. 2021, 416, 125778. [Google Scholar] [CrossRef] [PubMed]
- Al-Mansoori, M.; Stephenson, M.; Harrad, S.; Abdallah, M.A.E. Synthetic Microplastics in UK Tap and Bottled Water; Implications for Human Exposure. Emerg. Contam. 2025, 11, 100417. [Google Scholar] [CrossRef]
- Shruti, V.C.; Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Roy, P.D.; Elizalde-Martínez, I. First Evidence of Microplastic Contamination in Ready-to-Use Packaged Food Ice Cubes. Environ. Pollut. 2023, 318, 120905. [Google Scholar] [CrossRef] [PubMed]
- Kadac-Czapska, K.; Jutrzenka Trzebiatowska, P.; Mazurkiewicz, M.; Kowalczyk, P.; Knez, E.; Behrendt, M.; Mahlik, S.; Zaleska-Medynska, A.; Grembecka, M. Isolation and Identification of Microplastics in Infant Formulas—A Potential Health Risk for Children. Food Chem. 2024, 440, 138246. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Park, S.; Kim, D.; Jung, J.; Cho, D. Determination of Microplastics in Omega-3 Oil Supplements. Foods 2024, 13, 1434. [Google Scholar] [CrossRef]
- Taghipour, H.; Ghayebzadeh, M.; Mousavi, S.M.S.; Sharifi, H.; Payandeh, A. Incidence and Exposure to Microplastics in Table Salt Present in the Iran Market. Toxicol. Rep. 2023, 11, 129–140. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Shruti, V.C.; Pérez-Guevara, F. Microplastic Contamination in Commercially Packaged Edible Seaweeds and Exposure of the Ethnic Minority and Local Population in Mexico. Food Res. Int. 2024, 176, 113840. [Google Scholar] [CrossRef]
- Hoseinzadeh, E.; Hossini, H.; Makhdoumi, P.; Taha, P.; Parsa, S.; Massahi, T. Microplastics Contamination in Popular Soft Drinks and Non-Alcoholic Beverages Marketed in Iran: Quantity and Characteristics. Results Eng. 2024, 24, 103158. [Google Scholar] [CrossRef]
- Battaglini, E.; Miralles, P.; Lotti, N.; Soccio, M.; Fiorini, M.; Coscollà, C. Analysis of Microplastics in Commercial Vegetable Edible Oils from Italy and Spain. Food Chem. 2024, 443, 138567. [Google Scholar] [CrossRef]
- López, Y.C.; Ortega, G.A.; Reguera, E. Applications of Engineered Magnetite Nanoparticles for Water Pollutants Removal. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Applications of Advanced Nanostructured Materials in Wastewater Remediation; Elsevier: Amsterdam, The Netherlands, 2023; pp. 23–68. [Google Scholar] [CrossRef]
- Matsushima, T. Desorption Kinetics. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 59–63. [Google Scholar] [CrossRef]
- Zhou, S.; Ai, J.; Qiao, J.; Sun, H.; Jiang, Y.; Yin, X. Effects of Neonicotinoid Insecticides on Transport of Non-Degradable Agricultural Film Microplastics. Water Res. 2023, 236, 119939. [Google Scholar] [CrossRef]
- Zhang, D.L.; Yang, S.T.; Wang, J.; Zeng, Y.L.; Chen, M.; Zeng, Z.Y.; Gang, Z.; Yang, Z.H. Adsorption Behavior of Nano Polyethylene for Bensulfuron-Methyl in an Aqueous Environment. J. Environ. Chem. Eng. 2024, 12, 114377. [Google Scholar] [CrossRef]
- Junck, J.; Diagboya, P.N.; Peqini, A.; Rohnke, M.; Düring, R.A. Mechanistic Interpretation of the Sorption of Terbuthylazine Pesticide onto Aged Microplastics. Environ. Pollut. 2024, 345, 123502. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Ong, M.C.; Mohd Zanuri, N.B. Polyethylene Degradation and Heavy Metals Leaching under Realistic Tropical Marine Climate. Mar. Environ. Res. 2023, 191, 106113. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Yuan, L.; Liang, Z.; Zhang, X.; Lin, D.; Hu, X. Influence of Adhesion Force on CroRS Gene Expression and Antibiotic Resistance of Enterococcus Faecalis. J. Biomed. Mater. Res. A 2024, 112, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Bi, X.; Du, J.; Rao, L.; Vasanthakumar, V.; Hu, Y.B.; Fu, M.L.; Sun, W.; Yuan, B. The Effect of Polyethylene Microplastics on the Disinfection of Escherichia Coli by Sodium Hypochlorite. Sci. Total Environ. 2022, 834, 155322. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, J.; Wang, F.; Yang, H.; Liu, L. Adsorption of Tetracyclines onto Polyethylene Microplastics: A Combined Study of Experiment and Molecular Dynamics Simulation. Chemosphere 2021, 265, 129133. [Google Scholar] [CrossRef]
- Atugoda, T.; Wijesekara, H.; Werellagama, D.R.I.B.; Jinadasa, K.B.S.N.; Bolan, N.S.; Vithanage, M. Adsorptive Interaction of Antibiotic Ciprofloxacin on Polyethylene Microplastics: Implications for Vector Transport in Water. Environ. Technol. Innov. 2020, 19, 100971. [Google Scholar] [CrossRef]
- Yu, F.; Qin, Q.; Zhang, X.; Ma, J. Characteristics and Adsorption Behavior of Typical Microplastics in Long-Term Accelerated Weathering Simulation. Environ. Sci. Process Impacts 2024, 26, 882–890. [Google Scholar] [CrossRef]
- He, J.; Chen, S.; Xu, Y.; Sun, M.; Yang, T.; Liang, L.; Xiong, X. Reduced Adsorption of Norfloxacin on UV Aging Microplastics in Anoxic Environment. Environ. Sci. Pollut. Res. 2023, 30, 67174–67186. [Google Scholar] [CrossRef]
- Kuang, B.; Chen, X.; Zhan, J.; Zhou, L.; Zhong, D.; Wang, T. Interaction Behaviors of Sulfamethoxazole and Microplastics in Marine Condition: Focusing on the Synergistic Effects of Salinity and Temperature. Ecotoxicol. Environ. Saf. 2023, 259, 115009. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, J.; Razanajatovo, R.M.; Huang, J.; Zheng, L.; Zou, H.; Wang, Z.; Liu, J. Sorption of Selected Pharmaceutical Compounds on Polyethylene Microplastics: Roles of PH, Aging, and Competitive Sorption. Chemosphere 2022, 307, 135561. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Z.; Sui, J.; Ma, H.; Zhu, L.; Jiang, H.; Zhou, R.; Wang, S.; Dai, Y. The Sword of Damocles: Microplastics and the Molecular Dynamics of Sulfamonomethoxine Revealed. Ecotoxicol. Environ. Saf. 2024, 285, 117058. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Ju, C.; Tang, Z.; Qin, Y. Enhanced Adsorption of Tetracycline on Polypropylene and Polyethylene Microplastics after Anaerobically Microbial-Mediated Aging Process. J. Hazard. Mater. Adv. 2022, 6, 100075. [Google Scholar] [CrossRef]
- Ho, T.B.C.; Nguyen, T.B.; Chen, C.W.; Huang, C.P.; Chen, W.H.; Hsieh, S.; Nguyen, P.T.; Dong, C. Di Influence of Aging Processes on PE Microplastics with Various Oxidants: Morphology, Chemical Structure, and Adsorption Behavior toward Tetracycline. Environ. Technol. Innov. 2023, 31, 103173. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Ho, T.B.C.; Huang, C.P.; Chen, C.W.; Hsieh, S.L.; Tsai, W.P.; Dong, C. Di Adsorption Characteristics of Tetracycline onto Particulate Polyethylene in Dilute Aqueous Solutions. Environ. Pollut. 2021, 285, 117398. [Google Scholar] [CrossRef]
- Sheng, C.; Zhang, S.; Zhang, Y. The Influence of Different Polymer Types of Microplastics on Adsorption, Accumulation, and Toxicity of Triclosan in Zebrafish. J. Hazard. Mater. 2021, 402, 123733. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Wang, K.; Guo, C.; Kou, Y.; Hassan, A.; Lu, Y.; Wang, J.; Wang, W. Competition Adsorption of Malachite Green and Rhodamine B on Polyethylene and Polyvinyl Chloride Microplastics in Aqueous Environment. Water Sci. Technol. 2022, 86, 894–908. [Google Scholar] [CrossRef]
- Li, S.; Ma, R.; Zhu, X.; Liu, C.; Li, L.; Yu, Z.; Chen, X.; Li, Z.; Yang, Y. Sorption of Tetrabromobisphenol A onto Microplastics: Behavior, Mechanisms, and the Effects of Sorbent and Environmental Factors. Ecotoxicol. Environ. Saf. 2021, 210, 111842. [Google Scholar] [CrossRef]
- Hai, N.; Liu, X.; Li, Y.; Kong, F.; Zhang, Y.; Fang, S. Effects of Microplastics on the Adsorption and Bioavailability of Three Strobilurin Fungicides. ACS Omega 2020, 5, 30679–30686. [Google Scholar] [CrossRef]
- Mo, Q.; Yang, X.; Wang, J.; Xu, H.; Li, W.; Fan, Q.; Gao, S.; Yang, W.; Gao, C.; Liao, D.; et al. Adsorption Mechanism of Two Pesticides on Polyethylene and Polypropylene Microplastics: DFT Calculations and Particle Size Effects. Environ. Pollut. 2021, 291, 118120. [Google Scholar] [CrossRef]
- Tubić, A.; Lončarski, M.; Apostolović, T.; Kragulj Isakovski, M.; Tričković, J.; Molnar Jazić, J.; Agbaba, J. Adsorption Mechanisms of Chlorobenzenes and Trifluralin on Primary Polyethylene Microplastics in the Aquatic Environment. Environ. Sci. Pollut. Res. 2021, 28, 59416–59429. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Y.; Yuan, Q.Y.; Chen, B.; Kong, Q.P.; Huang, S.S.; Cheng, L.; Wang, S.H.; Lian, J.J. Adsorption Behaviors of Atrazine and Imidacloprid on High Temperature Aged Microplastics: Mechanism and Influencing Factors. Desal Water Treat. 2025, 321, 100931. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, X.; Dai, Y. The Carrier Effect Mechanism of Butachlor in Water by Three Typical Microplastics. Environ. Sci. Pollut. Res. 2022, 30, 99232–99246. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Dong, Z.; Li, Z.; Zhou, W.; Li, Y.; Xing, L.; Wu, T.; Lin, W.; Chang, H.; Li, B. Adsorption-Desorption Behavior of Florpyrauxifen-Benzyl on Three Microplastics in Aqueous Environment as Well as Its Mechanism and Various Influencing Factors. Ecotoxicol. Environ. Saf. 2024, 272, 116066. [Google Scholar] [CrossRef] [PubMed]
- Santana, G.B.; Conceição, K.G.A.; Silva, E.M.; Diaz, G.Z.; Oliveira, J.T.; Oliveira, A.G.; Melo, D.Q.; Nascimento, R.F.; Prola, L.D.T.; Liz, M.V.; et al. Photoaging Effects on Polyethylene Microplastics: Structural Changes and Chlorpyrifos Adsorption. Mar. Environ. Res. 2025, 203, 106844. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, H.; Liang, H.; Zhao, T.; Ren, B.; Li, Y.; Liang, H.; Liu, Y.; Cao, H.; Cui, N.; et al. Combined Toxic Effects of Polyethylene Microplastics and Lambda-Cyhalothrin on Gut of Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2024, 276, 116296. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; He, H.; Cheng, X.; Ma, T.; Hu, J.; Yang, S.; Li, S.; Zhang, L. Adsorption Behavior and Mechanism of 9-Nitroanthracene on Typical Microplastics in Aqueous Solutions. Chemosphere 2020, 245, 125628. [Google Scholar] [CrossRef]
- Khoshmanesh, M.; Sanati, A.M.; Ramavandi, B. Influence of Cephalexin on Cadmium Adsorption onto Microplastic Particles in Water: Human Health Risk Evaluation. Heliyon 2024, 10, e37775. [Google Scholar] [CrossRef]
- Yan, S.; Biswal, B.K.; Balasubramanian, R. Insights into Interactions of Biodegradable and Non-Biodegradable Microplastics with Heavy Metals. Environ. Sci. Pollut. Res. 2023, 30, 107419–107434. [Google Scholar] [CrossRef]
- Ma, L.; Liu, T.; Li, J.; Yang, Q. Interaction Characteristics and Mechanism of Cr(VI)/Cr(III) with Microplastics: Influence Factor Experiment and DFT Calculation. J. Hazard. Mater. 2024, 476, 134957. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Hua, T.; Li, Y.; Zhou, X.; Wang, W.; You, Z.; Wang, H.; Li, M. The Mechanism for Adsorption of Cr(VI) Ions by PE Microplastics in Ternary System of Natural Water Environment. Environ. Pollut. 2020, 257, 113440. [Google Scholar] [CrossRef]
- Sewwandi, M.; Wijesekara, H.; Rajapaksha, A.U.; Soysa, S.; Nanayakkara, N.; Vithanage, M. Interactions and Transport of Hexavalent Chromium with Microplastics in Detergent-Dissolved Water. Phys. Chem. Earth Parts A B C 2024, 133, 103528. [Google Scholar] [CrossRef]
- Chen, P.W.; Hsiao, M.N.; Xiao, L.W.; Liu, Z.S. Adsorption Behavior of Heavy Metals onto Microplastics Derived from Conventional and Biodegradable Commercial Plastic Products. Sci. Total Environ. 2024, 951, 175537. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-H.; Wang, H.-Y.; Kuo, J.; Lo, S.-L. Adsorption and Desorption Characteristics of Heavy Metals onto Conventional and Biodegradable Plastics. Chemosphere 2023, 333, 138920. [Google Scholar] [CrossRef]
- Nguyen, T.-B.; Ho, T.-B.-C.; Huang, C.P.; Chen, C.-W.; Chen, W.-H.; Hsieh, S.; Hsieh, S.-L.; Dong, C.-D. Adsorption of Lead(II) onto PE Microplastics as a Function of Particle Size: Influencing Factors and Adsorption Mechanism. Chemosphere 2022, 304, 135276. [Google Scholar] [CrossRef]
- Yan, P.; Zhuang, S.; Li, M.; Zhang, J.; Wu, S.; Xie, H.; Wu, H. Combined Environmental Pressure Induces Unique Assembly Patterns of Micro-Plastisphere Biofilm Microbial Communities in Constructed Wetlands. Water Res. 2024, 260, 121958. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, S.-X.; Zeng, X.-Y.; He, Y.; Huang, W.; Zheng, S.-J.; Zhang, J.-Q. Effect of Aging on Adsorption of Tetracycline by Microplastics and the Mechanisms. Huan Jing Ke Xue 2022, 43, 4511–4521. [Google Scholar] [CrossRef]
- Sun, M.; Yang, Y.; Huang, M.; Fu, S.; Hao, Y.; Hu, S.; Lai, D.; Zhao, L. Adsorption Behaviors and Mechanisms of Antibiotic Norfloxacin on Degradable and Nondegradable Microplastics. Sci. Total Environ. 2022, 807, 151042. [Google Scholar] [CrossRef]
- McDougall, L.; Thomson, L.; Brand, S.; Wagstaff, A.; Lawton, L.A.; Petrie, B. Adsorption of a Diverse Range of Pharmaceuticals to Polyethylene Microplastics in Wastewater and Their Desorption in Environmental Matrices. Sci. Total Environ. 2022, 808, 152071. [Google Scholar] [CrossRef]
- Hu, X.; Yu, Q.; Gatheru Waigi, M.; Ling, W.; Qin, C.; Wang, J.; Gao, Y. Microplastics-Sorbed Phenanthrene and Its Derivatives Are Highly Bioaccessible and May Induce Human Cancer Risks. Environ. Int. 2022, 168, 107459. [Google Scholar] [CrossRef]
- Chen, C.; Chen, L.; Li, Y.; Fu, W.; Shi, X.; Duan, J.; Zhang, W. Impacts of Microplastics on Organotins’ Photodegradation in Aquatic Environments. Environ. Pollut. 2020, 267, 115686. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Ho, T.B.C.; Chen, C.W.; Bui, X.T.; Chen, W.H.; Dong, C. Di Influence of UV Wavelength Variations on Tetracycline Adsorption by Polyethylene Microplastics in Aquatic Environments. Sci. Total Environ. 2025, 959, 178144. [Google Scholar] [CrossRef]
- Zafar, R.; Paracha, R.Z.; Alrefaei, A.F.; Albeshr, M.F.; Baloch, M.Y.J.; Kallerhoff, J.; Arshad, M. Removal of Four Antibiotics from the Aqueous Phase Using Polyethylene Adsorbent: Mechanistic Understanding and Reusability Potential. Environ. Technol. Innov. 2024, 36, 103831. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Sheng, Y.; Xiang, Q.; Zhou, Y.; Cizdziel, J.V. Effect of Prothioconazole on the Degradation of Microplastics Derived from Mulching Plastic Film: Apparent Change and Interaction with Heavy Metals in Soil. Environ. Pollut. 2020, 260, 113988. [Google Scholar] [CrossRef]
- Yu, F.; Yang, C.; Huang, G.; Zhou, T.; Zhao, Y.; Ma, J. Interfacial Interaction between Diverse Microplastics and Tetracycline by Adsorption in an Aqueous Solution. Sci. Total Environ. 2020, 721, 137729. [Google Scholar] [CrossRef]
- Zhu, S.; Qin, L.; Li, Z.; Hu, X.; Yin, D. Effects of Nanoplastics and Microplastics on the Availability of Pharmaceuticals and Personal Care Products in Aqueous Environment. J. Hazard. Mater. 2023, 458, 131999. [Google Scholar] [CrossRef]
- Guan, Y.; Gong, J.; Song, B.; Li, J.; Fang, S.; Tang, S.; Cao, W.; Li, Y.; Chen, Z.; Ye, J.; et al. The Effect of UV Exposure on Conventional and Degradable Microplastics Adsorption for Pb (II) in Sediment. Chemosphere 2022, 286, 131777. [Google Scholar] [CrossRef]
- Ioannidis, I.; Antoniou, E.; Pashalidis, I. Enhanced Radionuclide (U-232) Adsorption by Humic Acid-Coated Microplastics. J. Environ. Chem. Eng. 2025, 13, 115064. [Google Scholar] [CrossRef]
- Budhiraja, V.; Urh, A.; Horvat, P.; Krzan, A. Synergistic Adsorption of Organic Pollutants on Weathered Polyethylene Microplastics. Polymers 2022, 14, 2674. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, K.; Han, F.; Huang, C.; He, T.; Wen, H.; Shen, Z. Adsorption of Oxytetracycline in Hyporheic Zone Sediments Mediated by Microplastics: Experimental Revelations and Mechanistic Insights. J. Clean. Prod. 2024, 455, 142283. [Google Scholar] [CrossRef]
- Liao, Y.L.; Yang, J.Y. Microplastic Serves as a Potential Vector for Cr in an In-Vitro Human Digestive Model. Sci. Total Environ. 2020, 703, 134805. [Google Scholar] [CrossRef]
- Gao, Z.; Cizdziel, J.V.; Wontor, K.; Olubusoye, B.S. Adsorption/Desorption of Mercury (II) by Artificially Weathered Microplastics: Kinetics, Isotherms, and Influencing Factors. Environ. Pollut. 2023, 337, 122621. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, D.; Chu, W. Adsorption of Highly Toxic Chlorophenylacetonitriles on Typical Microplastics in Aqueous Solutions: Kinetics, Isotherm, Impact Factors and Mechanism. Sci. Total Environ. 2023, 880, 163261. [Google Scholar] [CrossRef]
- Tang, S.; Sun, P.; Ma, S.; Jin, W.; Zhao, Y. The Interfacial Behaviors of Different Arsenic Species on Polyethylene Mulching Film Microplastics: Roles of the Plastic Additives. J. Hazard. Mater. 2023, 442, 130037. [Google Scholar] [CrossRef]
- Godoy, V.; Martín-Lara, M.A.; Calero, M.; Blázquez, G. The Relevance of Interaction of Chemicals/Pollutants and Microplastic Samples as Route for Transporting Contaminants. Process Saf. Environ. Prot. 2020, 138, 312–323. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Maryam, B.; Chen, X.; Zong, Y.; Tu, J.; Zhang, P.; Liu, X. Microplastic Aging Alters the Adsorption-Desorption Behaviors of Sulfamethoxazole in Marine Animals: A Study in Simulated Biological Liquids. Mar. Pollut. Bull. 2023, 195, 115473. [Google Scholar] [CrossRef]
- Hao, X.; Zhang, Y.; Sun, Y.; Liu, H.; Zhang, X.; Li, X.; Ma, Y.; Niu, Z. Biofilms Retard the Desorption of Benzo(a)Pyrene from Polyethylene Pellets in the Marine Environment. Mar. Pollut. Bull. 2023, 195, 115453. [Google Scholar] [CrossRef]
- Trujillo-Rodríguez, M.J.; Gomila, R.M.; Martorell, G.; Miró, M. Microscale Extraction versus Conventional Approaches for Handling Gastrointestinal Extracts in Oral Bioaccessibility Assays of Endocrine Disrupting Compounds from Microplastic Contaminated Beach Sand. Environ. Pollut. 2021, 272, 115992. [Google Scholar] [CrossRef]
- Fan, X.; Xie, Y.; Qian, S.; Xiang, Y.; Chen, Q.; Yang, Y.; Liu, J.; Zhang, J.; Hou, J. Insights into the Characteristics, Adsorption and Desorption Behaviors of Microplastics Aged with or without Fulvic Acid. Environ. Sci. Pollut. Res. 2022, 30, 10484–10494. [Google Scholar] [CrossRef]
- Liu, X.; Gharasoo, M.; Shi, Y.; Sigmund, G.; Hüffer, T.; Duan, L.; Wang, Y.; Ji, R.; Hofmann, T.; Chen, W. Key Physicochemical Properties Dictating Gastrointestinal Bioaccessibility of Microplastics-Associated Organic Xenobiotics: Insights from a Deep Learning Approach. Environ. Sci. Technol. 2020, 54, 12051–12062. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Cao, W.; Hu, Y.; Shen, W. The Influence of Pb(II) Adsorption on (Non) Biodegradable Microplastics by UV/O3 Oxidation Treatment. J. Environ. Chem. Eng. 2022, 10, 108615. [Google Scholar] [CrossRef]
- Hu, X.; Hua, Z.; Ding, Z.; Sun, J.; Wang, T.; Li, Y.; Li, B.L.; Zhang, H. Carbendazim Adsorption on Polyethylene Microplastics and the Toxicity Mechanisms on Cotton Plants, Soil Enzyme Activity and Rhizosphere Bacterial Community under Combined Stress Conditions. J. Environ. Chem. Eng. 2024, 12, 114219. [Google Scholar] [CrossRef]
- Chen, K.; Chen, L.; Shao, H.; Li, J.; Wang, H.; Mao, C.; Xu, G. Investigation into the Characteristics of Electron Beam-Aged Microplastics and Adsorption Behavior of Dibutyl Phthalate. Chemosphere 2024, 360, 142342. [Google Scholar] [CrossRef]
- Fan, X.; Gan, R.; Liu, J.; Xie, Y.; Xu, D.; Xiang, Y.; Su, J.; Teng, Z.; Hou, J. Adsorption and Desorption Behaviors of Antibiotics by Tire Wear Particles and Polyethylene Microplastics with or without Aging Processes. Sci. Total Environ. 2021, 771, 145451. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Guo, M.H.; Wang, Z.; Zheng, X. Adsorption of Antibiotics on Different Microplastics (MPs): Behavior and Mechanism. Sci. Total Environ. 2023, 863, 161022. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Proctor, A.; Toro-Vazquez, J.F. The Freundlich Isotherm in Studying Adsorption in Oil Processing. In Bleaching and Purifying Fats and Oils: Theory and Practice; AOCS Publishing: Champaign, IL, USA, 2009; pp. 209–219. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef]
- Leng, Y.; Wang, W.; Cai, H.; Chang, F.; Xiong, W.; Wang, J. Sorption Kinetics, Isotherms and Molecular Dynamics Simulation of 17β-Estradiol onto Microplastics. Sci. Total Environ. 2023, 858, 159803. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Liu, M.; Yu, H.; Peng, J.; Cao, X.; Wang, C.; Liu, R.; Kamali, M.; Qu, J. Press Perturbations of Microplastics and Antibiotics on Freshwater Micro-Ecosystem: Case Study for the Ecological Restoration of Submerged Plants. Water Res. 2022, 226, 119248. [Google Scholar] [CrossRef]
- Diao, T.; Liu, R.; Meng, Q.; Sun, Y. Microplastics Derived from Polymer-Coated Fertilizer Altered Soil Properties and Bacterial Community in a Cd-Contaminated Soil. Appl. Soil. Ecol. 2023, 183, 104694. [Google Scholar] [CrossRef]
- Gong, K.; Zhang, Q.; Shao, X.; Wu, Y.; Qiao, Z.; Qiu, L.; Zhang, W.; Peng, C. Microplastics Alter Cr Accumulation and Fruit Quality in Cr(VI) Contaminated Soil-Cucumber System during the Lifecycle: Insight from Rhizosphere Bacteria and Root Metabolism. Sci. Total Environ. 2024, 912, 168792. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Gong, J.; Zeng, G.; Song, B.; Cao, W.; Shen, M.; Chen, Z. The Role of Microplastics in Altering Arsenic Fractionation and Microbial Community Structures in Arsenic-Contaminated Riverine Sediments. J. Hazard. Mater. 2022, 433, 128801. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Xiong, Z.; Wei, Z.; Wang, L.; Xu, M. Interactive Effects of Polyethylene Microplastics and Cadmium on Growth of Microcystis Aeruginosa. Toxics 2024, 12, 254. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, H.; Kong, X.; Cheng, X.; Ma, T.; He, H.; Du, W.; Yang, S.; Li, S.; Zhang, L. Combined Effects of Polyethylene and Organic Contaminant on Zebrafish (Danio rerio): Accumulation of 9-Nitroanthracene, Biomarkers and Intestinal Microbiota. Environ. Pollut. 2021, 277, 116767. [Google Scholar] [CrossRef]
- Vega-Herrera, A.; Savva, K.; Lacoma, P.; Santos, L.H.M.L.M.; Hernández, A.; Marmelo, I.; Marques, A.; Llorca, M.; Farré, M. Bioaccumulation and Dietary Bioaccessibility of Microplastics Composition and Cocontaminants in Mediterranean Mussels. Chemosphere 2024, 363, 142934. [Google Scholar] [CrossRef]
- Rodrigues, C.C.; Harayashiki, C.A.Y.; S. Pereira, E.; Rodrigues, G.L.S.; Neves, B.J.; Rocha, T.L. How Do Microplastics Alter Molluscicidal Activity? Effects of Weathered Microplastics and Niclosamide in Developing Freshwater Snails. Sci. Total Environ. 2024, 922, 171165. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.; Zeng, H.; Zhu, L.; Lu, X. Microplastics Decrease the Toxicity of Sulfamethoxazole to Marine Algae (Skeletonema costatum) at the Cellular and Molecular Levels. Sci. Total Environ. 2022, 824, 153855. [Google Scholar] [CrossRef]
- Lusher, A.; Hollman, P.; Mendoza-Hill, J. Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety; FAO: Rome, Italy, 2017; ISBN 9251098824. [Google Scholar]
- Kwon, W.; Kim, D.; Kim, H.Y.; Jeong, S.W.; Lee, S.G.; Kim, H.C.; Lee, Y.J.; Kwon, M.K.; Hwang, J.S.; Han, J.E.; et al. Microglial Phagocytosis of Polystyrene Microplastics Results in Immune Alteration and Apoptosis in Vitro and in Vivo. Sci. Total Environ. 2022, 807, 150817. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, A.; Vincent, R.M.; Perkins, A.C.; Spiller, R.C. Effect of Bran, Ispaghula, and Inert Plastic Particles on Gastric Emptying and Small Bowel Transit in Humans: The Role of Physical Factors. Gut 1997, 40, 223–227. [Google Scholar] [CrossRef]
- van Raamsdonk, L.W.D.; van der Zande, M.; Koelmans, A.A.; Hoogenboom, R.L.A.P.; Peters, R.J.B.; Groot, M.J.; Peijnenburg, A.A.C.M.; Weesepoel, Y.J.A. Current Insights into Monitoring, Bioaccumulation, and Potential Health Effects of Microplastics Present in the Food Chain. Foods 2020, 9, 72. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Yang, J.Y. Oral Bioaccessibility and Health Risk Assessment of Vanadium(IV) and Vanadium(V) in a Vanadium Titanomagnetite Mining Region by a Whole Digestive System in-Vitro Method (WDSM). Chemosphere 2019, 215, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C. Airborne Microplastics: Consequences to Human Health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, C.; Duan, X.; Liang, B.; Genbo Xu, E.; Huang, Z. Micro- and Nanoplastics: A New Cardiovascular Risk Factor? Environ. Int. 2023, 171, 107662. [Google Scholar] [CrossRef] [PubMed]
- Menichetti, A.; Mordini, D.; Montalti, M. Penetration of Microplastics and Nanoparticles Through Skin: Effects of Size, Shape, and Surface Chemistry. J. Xenobiot. 2024, 15, 6. [Google Scholar] [CrossRef]
- Sakagami, M. In Vitro, Ex Vivo and in Vivo Methods of Lung Absorption for Inhaled Drugs. Adv. Drug Deliv. Rev. 2020, 161–162, 63–74. [Google Scholar] [CrossRef]
- Donaldson, K.; Brown, R.C.; Brown, G.M. New Perspectives on Basic Mechanisms in Lung Disease. 5. Respirable Industrial Fibres: Mechanisms of Pathogenicity. Thorax 1993, 48, 390–395. [Google Scholar] [CrossRef]
- Stock, V.; Fahrenson, C.; Thuenemann, A.; Dönmez, M.H.; Voss, L.; Böhmert, L.; Braeuning, A.; Lampen, A.; Sieg, H. Impact of Artificial Digestion on the Sizes and Shapes of Microplastic Particles. Food Chem. Toxicol. 2020, 135, 111010. [Google Scholar] [CrossRef]
- Sánchez, A.; Rodríguez-Viso, P.; Domene, A.; Orozco, H.; Vélez, D.; Devesa, V. Dietary Microplastics: Occurrence, Exposure and Health Implications. Environ. Res. 2022, 212, 113150. [Google Scholar] [CrossRef]
- Hartmann, C.; Lomako, I.; Schachner, C.; El Said, E.; Abert, J.; Satrapa, V.; Kaiser, A.M.; Walch, H.; Köppel, S. Assessment of Microplastics in Human Stool: A Pilot Study Investigating the Potential Impact of Diet-Associated Scenarios on Oral Microplastics Exposure. Sci. Total Environ. 2024, 951, 175825. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, Y.; Zhang, T.; Zhang, F.; Ren, H.; Zhang, Y. Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environ. Sci. Technol. 2022, 56, 414–421. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, G.; Sun, K.; Ren, J.; Zhou, J.; Liu, X.; Lin, F.; Yang, H.; Cao, J.; Nie, L.; et al. Association of Mixed Exposure to Microplastics with Sperm Dysfunction: A Multi-Site Study in China. EBioMedicine 2024, 108, 105369. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Nor, N.H.; Kooi, M.; Diepens, N.J.; Koelmans, A.A. Lifetime Accumulation of Microplastic in Children and Adults. Environ. Sci. Technol. 2021, 55, 5084–5096. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Liu, S.; Lin, G.; Liu, X.; Yang, R.; Wang, H.; Sun, Y.; Chen, B.; Dong, R. Detection of Various Microplastics in Placentas, Meconium, Infant Feces, Breastmilk and Infant Formula: A Pilot Prospective Study. Sci. Total Environ. 2023, 854, 158699. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yi, Z.; Liu, X.; Cai, Y.; Huang, X.; Fang, J.; Shen, R.; Lu, W.; Xiao, Y.; Zhuang, W.; et al. Multimodal Detection and Analysis of Microplastics in Human Thrombi from Multiple Anatomically Distinct Sites. EBioMedicine 2024, 103, 105118. [Google Scholar] [CrossRef]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Cao, X.; Coreas, R.; Bitounis, D.; Singh, D.; Zhong, W.; Demokritou, P. Incineration-Generated Polyethylene Micro-Nanoplastics Increase Triglyceride Lipolysis and Absorption in an In Vitro Small Intestinal Epithelium Model. Environ. Sci. Technol. 2022, 56, 12288–12297. [Google Scholar] [CrossRef]
- Nihart, A.J.; Garcia, M.A.; El Hayek, E.; Liu, R.; Olewine, M.; Kingston, J.D.; Castillo, E.F.; Gullapalli, R.R.; Howard, T.; Bleske, B.; et al. Bioaccumulation of Microplastics in Decedent Human Brains. Nat. Med. 2025, 31, 1114–1119. [Google Scholar] [CrossRef]
- Rauert, C.; Pan, Y.; Okoffo, E.D.; O’Brien, J.W.; Thomas, K.V. Extraction and Pyrolysis-GC-MS Analysis of Polyethylene in Samples with Medium to High Lipid Content. J. Environ. Expo. Assess. 2022, 1, 13. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, M.; Wang, C.; Huang, Q.; Li, R.; Dorj, G.; Gombojav, E.; Du, J.; Ren, L. A Meta-Analysis-Based Adverse Outcome Pathway for the Male Reproductive Toxicity Induced by Microplastics and Nanoplastics in Mammals. J. Hazard. Mater. 2024, 465, 133375. [Google Scholar] [CrossRef]
- Akpojevwe Abafe, O.; Harrad, S.; Abou-Elwafa Abdallah, M. Assessment of Human Dermal Absorption of Flame Retardant Additives in Polyethylene and Polypropylene Microplastics Using 3D Human Skin Equivalent Models. Environ. Int. 2024, 186, 108635. [Google Scholar] [CrossRef] [PubMed]
- Abafe, O.A.; Harrad, S.; Abdallah, M.A.-E. Novel Insights into the Dermal Bioaccessibility and Human Exposure to Brominated Flame Retardant Additives in Microplastics. Environ. Sci. Technol. 2023, 57, 10554–10562. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus Terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, K.; Wu, X.; Zheng, H.; Liao, X. Association of Specific Gut Microbiota with Polyethylene Microplastics Caused Gut Dysbiosis and Increased Susceptibility to Opportunistic Pathogens in Honeybees. Sci. Total Environ. 2024, 918, 170642. [Google Scholar] [CrossRef] [PubMed]
- Djouina, M.; Vignal, C.; Dehaut, A.; Caboche, S.; Hirt, N.; Waxin, C.; Himber, C.; Beury, D.; Hot, D.; Dubuquoy, L.; et al. Oral Exposure to Polyethylene Microplastics Alters Gut Morphology, Immune Response, and Microbiota Composition in Mice. Environ. Res. 2022, 212, 113230. [Google Scholar] [CrossRef]
- Han, Y.; Song, Y.; Kim, G.W.; Ha, C.; Lee, J.; Kim, M.; Son, H.; Lee, G.; Gautam, R.; Heo, Y. No Prominent Toxicity of Polyethylene Microplastics Observed in Neonatal Mice Following Intratracheal Instillation to Dams during Gestational and Neonatal Period. Toxicol. Res. 2021, 37, 443–450. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Rafi, Z.; Hamza, A.; Sayed, A.A.; Albadrani, G.M.; Al-Ghadi, M.Q.; Abdel-Daim, M.M. Mitigative Potential of Kaempferide against Polyethylene Microplastics Induced Testicular Damage by Activating Nrf-2/Keap-1 Pathway. Ecotoxicol. Environ. Saf. 2024, 269, 115746. [Google Scholar] [CrossRef]
- Zaheer, J.; Lee, H.S.; Kim, S.; Jang, J.; Kim, H.; Choi, J.; Park, M.H.; Kim, J.S. Microplastic Polyethylene Induced Inner Ear Dysfunction in Murine Model. J. Hazard. Mater. 2024, 476, 135193. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, Y.; Gu, Y.; Ding, P.; Wang, C.; Pan, R.; Shi, C.; Zeng, L.; Chen, X.; Li, H. The Generation of Environmentally Persistent Free Radicals on Photoaged Microbeads from Cosmetics Enhances the Toxicity via Oxidative Stress. Environ. Int. 2023, 174, 107875. [Google Scholar] [CrossRef]
- An, D.; Na, J.; Song, J.; Jung, J. Size-Dependent Chronic Toxicity of Fragmented Polyethylene Microplastics to Daphnia Magna. Chemosphere 2021, 271, 129591. [Google Scholar] [CrossRef] [PubMed]
- Forsell, V.; Saartama, V.; Turja, R.; Haimi, J.; Selonen, S. Reproduction, Growth and Oxidative Stress in Earthworm Eisenia Andrei Exposed to Conventional and Biodegradable Mulching Film Microplastics. Sci. Total Environ. 2024, 948, 174667. [Google Scholar] [CrossRef]
- Tian, H.; Zheng, C.; Huang, X.; Qi, C.; Li, B.; Du, Z.; Zhu, L.; Wang, J.; Wang, J. Effects of Farmland Residual Mulch Film-Derived Microplastics on the Structure and Function of Soil and Earthworm Metaphire Guillelmi Gut Microbiota. Sci. Total Environ. 2024, 915, 170094. [Google Scholar] [CrossRef]
- Park, E.-J.; Han, J.-S.; Park, E.-J.; Seong, E.; Lee, G.-H.; Kim, D.-W.; Son, H.-Y.; Han, H.-Y.; Lee, B.-S. Repeated-Oral Dose Toxicity of Polyethylene Microplastics and the Possible Implications on Reproduction and Development of the next Generation. Toxicol. Lett. 2020, 324, 75–85. [Google Scholar] [CrossRef]
- Kwabena Danso, I.; Woo, J.-H.; Hoon Baek, S.; Kim, K.; Lee, K. Pulmonary Toxicity Assessment of Polypropylene, Polystyrene, and Polyethylene Microplastic Fragments in Mice. Toxicol. Res. 2024, 40, 313–323. [Google Scholar] [CrossRef]
- Kehinde, S.A.; Fatokun, T.P.; Olajide, A.T.; Praveena, S.M.; Sokan-Adeaga, A.A.; Adekunle, A.P.; Fouad, D.; Papadakis, M. Impact of Polyethylene Microplastics Exposure on Kallikrein-3 Levels, Steroidal-Thyroidal Hormones, and Antioxidant Status in Murine Model: Protective Potentials of Naringin. Sci. Rep. 2024, 14, 23664. [Google Scholar] [CrossRef] [PubMed]
- Jemec Kokalj, A.; Dolar, A.; Nagode, A.; Drobne, D.; Kuljanin, A.; Kalčíková, G. Response of Terrestrial Crustacean Porcellio Scaber and Mealworm Tenebrio Molitor to Non-Degradable and Biodegradable Fossil-Based Mulching Film Microplastics. Sci. Total Environ. 2024, 951, 175379. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tian, J.Y.; Xu, R.; Zhang, Z.Y.; Yang, G.P.; Wang, X.D.; Lai, J.G.; Chen, R. Effects of Microplastics Exposure on Ingestion, Fecundity, Development, and Dimethylsulfide Production in Tigriopus japonicus (Harpacticoida, Copepod). Environ. Pollut. 2020, 267, 115429. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Xiao, S.; Peng, B.Y.; Chen, J.; Yang, L.; Zhou, X.; Zhang, Y. Distinct Exposure Impact of Non-Degradable and Biodegradable Microplastics on Freshwater Microalgae (Chlorella pyrenoidosa): Implications for Polylactic Acid as a Sustainable Plastic Alternative. J. Hazard. Mater. 2024, 480, 136265. [Google Scholar] [CrossRef]
- Shi, R.; Liu, W.; Lian, Y.; Zeb, A.; Wang, Q. Type-Dependent Effects of Microplastics on Tomato (Lycopersicon Esculentum L.): Focus on Root Exudates and Metabolic Reprogramming. Sci. Total Environ. 2023, 859, 160025. [Google Scholar] [CrossRef]
- Manabe, S.; Haga, Y.; Tsujino, H.; Ikuno, Y.; Asahara, H.; Higashisaka, K.; Tsutsumi, Y. Treatment of Polyethylene Microplastics Degraded by Ultraviolet Light Irradiation Causes Lysosome-Deregulated Cell Death. Sci. Rep. 2024, 14, 24008. [Google Scholar] [CrossRef] [PubMed]
- Ikuno, Y.; Tsujino, H.; Haga, Y.; Manabe, S.; Idehara, W.; Hokaku, M.; Asahara, H.; Higashisaka, K.; Tsutsumi, Y. Polyethylene, Whose Surface Has Been Modified by UV Irradiation, Induces Cytotoxicity: A Comparison with Microplastics Found in Beaches. Ecotoxicol. Environ. Saf. 2024, 277, 116346. [Google Scholar] [CrossRef]
- Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D. Cytotoxic Effects of Commonly Used Nanomaterials and Microplastics on Cerebral and Epithelial Human Cells. Environ. Res. 2017, 159, 579–587. [Google Scholar] [CrossRef]
- Ye, T.; Yang, R.; He, S.; Li, J.; Liu, Y.; Li, C.; Luo, H. Synergistic Endocrine Disruption and Cellular Toxicity of Polyethylene Microplastics and Bisphenol A in MLTC-1 Cells and Zebrafish. Sci. Rep. 2025, 15, 10752. [Google Scholar] [CrossRef]
- Chen, X.; Xie, Y.; Wang, J.; Shi, Z.; Zhang, J.; Wei, H.; Ma, Y. Presence of Different Microplastics Promotes Greenhouse Gas Emissions and Alters the Microbial Community Composition of Farmland Soil. Sci. Total Environ. 2023, 879, 162967. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Jiang, C.; Muhammad, T.; Feng, Y.; Sun, L.; Jiang, L.; Lu, C. Impacts of Conventional and Biodegradable Microplastics on Greenhouse Gas Emissions and Microbial Communities in Lake Sediment under Diverse Aging Methods. J. Clean. Prod. 2024, 467, 142834. [Google Scholar] [CrossRef]
- Benavides, P.T.; Lee, U.; Zarè-Mehrjerdi, O. Life Cycle Greenhouse Gas Emissions and Energy Use of Polylactic Acid, Bio-Derived Polyethylene, and Fossil-Derived Polyethylene. J. Clean. Prod. 2020, 277, 124010. [Google Scholar] [CrossRef]
- Hao, Y.; Min, J.; Ju, S.; Zeng, X.; Xu, J.; Li, J.; Wang, H.; Shaheen, S.M.; Bolan, N.; Rinklebe, J.; et al. Possible Hazards from Biodegradation of Soil Plastic Mulch: Increases in Microplastics and CO2 Emissions. J. Hazard. Mater. 2024, 467, 133680. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Lei, J.; Li, Z.; Tan, Q.; Xie, L.; Xiao, Y.; Liu, T.; Chen, X.; Wen, Y.; et al. Time-Dependent Effects of Microplastics on Soil Bacteriome. J. Hazard. Mater. 2023, 447, 130762. [Google Scholar] [CrossRef]
- La, Y.; Zhang, L.; Zhao, N.; Ye, H.; Zeng, Q.; Zhao, L.; Wang, Z.; Lin, D.; Wang, R. The Microplastics Distribution Characteristics and Their Impact on Soil Physicochemical Properties and Bacterial Communities in Food Legumes Farmland in Northern China. J. Hazard. Mater. 2024, 471, 134282. [Google Scholar] [CrossRef]
- Li, K.; Zhang, M.; Jia, W.; Xu, L.; Huang, Y. Deciphering the Effects of LDPE Microplastic Films on Diversity, Composition and Co-Occurrence Network of Soil Fungal Community. Appl. Soil. Ecol. 2023, 182, 104716. [Google Scholar] [CrossRef]
Source of MPs | Amount Detected—Average/Range (All MPs) | Percentage of PE–MPs [% of the Total] | Size Range [μm] (All MPs) | Most Abundant Shape (All MPs) | Reference |
---|---|---|---|---|---|
Beef hamburgers, Italy | unspecified 200–30,300 MPs/kg | 17.4 | 30–3154 | Fragments; 95.99% | [53] |
Bottled water, UK | 37 ± 11 MPs/L 12–62 MPs/L | 20.0–40.0 | 11.36–98.90 | Fragments; 72.0% | [55] |
Eggs, Wuxi, Jiangsu Province, China | 11.67 ± 3.98 MPs/egg unspecified | 100.0 | 50–100 | Pellets | [10] |
Ice cubes, Mexico City, Mexico | 79 ± 47 MPs/L 19–178 MPs/L | 24.0 | 20–>500 | Fibers; 87.0% | [56] |
Infant formula, Poland | 42 ± 27 MPs/100 g 7–130 MPs/100 g | 27.7 | 6–4380 | Fibers; 61.1% | [57] |
Omega-3 oil supplements (raw and capsules), South Korea | 1.2 ± 1.7 MPs/g–10.6 ± 8.9 MPs/g unspecified | 0–5.0 | 5–>100 | unspecified | [58] |
Salt, Iran | 1278 ± 553–1825 ± 1808 MPs/kg 700–5470 MPs/kg | 20.0 | >0.45 | Fragments; 51.0–61.0% | [59] |
Seaweed, Mexico City, Mexico | 24.0 ± 9.4 MPs/g 4–64 MPs/g | unspecified | 17–1647 | Fibers; 61.0% | [60] |
Soft drinks and non-alcoholic beverages, Kermanshah, Iran | 21.90 ± 25.72 MPs/L 0–120 MPs/L | unspecified | 1–1500 | Fragments; 71.0% | [61] |
Tap water, UK | 40 ± 16 MPs/L 6–100 MPs/L | 20.0–50.0 | 10.98–320.39 | Fragments; 67.0% | [55] |
Teabags—German brand | 147.28 MPs/teabag 55.6–323.2 MPs/tea bag | 53.9 | 20–5000 | Fibers; 99.99% | [19] |
Teabags—Persian brand | 412.32 MPs/teabag 73.6–1446.8 MPs/tea bag | 53.9 | 20–5000 | Fibers; 99.99% | [19] |
Vegetable edible oils, Italy and Spain | 1140 ± 350 MPs/L 644–1795 MPs/L | 50.3 | 20–>500 | Fragments; 81.2% | [62] |
Compound/Element | Compound/Element Concentration | PE–MPs Size | PE–MPs Concentration | Conditions | Sorption Capacity | Reference |
---|---|---|---|---|---|---|
Adsorption of organic compounds | ||||||
Antibiotics | ||||||
Chlortetracycline | 10 mg/L | 150–425 μm | 10 g/L | 25 °C; pH = 5; 30 h | 0.06336 ± 0.00492 mg/g | [71] |
Ciprofloxacin | 25 mg/L | 100 μm | 2 g/L | 25 °C; pH = 6.5–7.5; 5 h; 150 rpm shaking | 2.1 mg/g | [72] |
Levofloxacin | 10 mg/L | 125 μm | 0.5 g/L | 25 °C; pH = 6–7; 72 h; 150 rpm shaking; NaCl = 0.00 M | 0.35 mg/g | [73] |
Norfloxacin | 15 mg/L | 75 μm | 0.5 g/L | 15 °C; pH = 7; 24 h; 120 rpm shaking | 13.26 mg/g (virgin PE–MPs) | [74] |
Norfloxacin | 15 mg/L | 75 μm | 0.5 g/L | 15 °C; pH = 7; 24 h; 120 rpm shaking | 10.36 mg/g (ultraviolet–aged PE–MPs) | [74] |
Oxytetracycline | 10 mg/L | 150–425 μm | 10 g/L | 25 °C; pH = 5; 30 h | 0.06440 ± 0.00238 μg/g | [71] |
Sulfamethoxazole | 25 mg/L | 75–100 μm | 20 g/L | 20 °C; 24 h; 220 rpm shaking; salinity = 0.05% | 0.106 ± 0.004 mg/g | [75] |
Sulfamethoxazole (anion) | 0.050 mg/L | 45–48 µm | 0.2 g/L | 25 °C; pH = 7; 96 h; 150 rpm shaking | 0.00783 mg/g | [76] |
Sulfamonomethoxine | 10 mg/L | unspecified | 0.00813 g/L | 25 °C; pH = 7; 3 h | 0.0955 mg/g | [77] |
Tetracycline | 10 mg/L | 150–500 μm | 6.666 g/L | 25 °C; pH = 7; 60 h; 110 rpm shaking | 1.0953 mg/g (microbial–aged PE–MPs) | [78] |
Tetracycline | 10 mg/L | 150–500 μm | 6.666 g/L | 25 °C; pH = 7; 60 h; 110 rpm shaking | 0.1627 mg/g (H2O2-treated PE–MPs) | [78] |
Tetracycline | 10 mg/L | 150–500 μm | 6.666 g/L | 25 °C; pH = 7; 60 h; 110 rpm shaking | 0.1336 mg/g (untreated PE–MPs) | [78] |
Tetracycline | 10 mg/L | 150–425 μm | 10 g/L | 25 °C; pH = 5; 30 h | 0.05352 ± 0.00343 mg/g | [71] |
Tetracycline | 9.161 mg/L | 48 μm | 1 g/L | 25 °C; pH = 7; 24 h; 200 rpm shaking; NaNO3 = 0.01 M | 11.099 mg/g (KMnO4-treated PE–MPs) | [79] |
Tetracycline | 9.161 mg/L | 48 μm | 1 g/L | 25 °C; pH = 7; 24 h; 200 rpm shaking; NaNO3 = 0.01 M | 9.117 mg/g (NaOCl-treated PE–MPs) | [79] |
Tetracycline | 9.161 mg/L | 48 μm | 1 g/L | 25 °C; pH = 7; 24 h; 200 rpm shaking; NaNO3 = 0.01 M | 7.223 mg/g (untreated PE–MPs) | [79] |
Tetracycline | 9.161 mg/L | 48 μm | 1 g/L | 25 °C; pH = 7; 24 h; 200 rpm shaking; NaNO3 = 0.01 M | 4.052 mg/g (H2O2-treated PE–MPs) | [79] |
Tetracycline | 9.161 mg/L | 48 μm | 1 g/L | 25 °C; pH = 7; 24 h; 200 rpm shaking; NaNO3 = 0.01 M | 1.233 mg/g (Na2S2O8-treated PE–MPs) | [79] |
Tetracycline | 10 mg/L | 40–48 μm | 1 g/L | 25 °C; pH = 7; 24 h; 150 rpm shaking | 11.28 mg/g | [80] |
Triclosan | 0.300 mg/L | 20–60 μm | 0.2 g/L | 25 °C; 168 h; 180 rpm shaking; DMSO = 0.1% | 0.520 mg/g | [81] |
Dyes | ||||||
Malachite green | 10 mg/L | 40 μm | 1 g/L | 25 °C; pH = 6; 60 h; 160 rpm shaking | 4.52 mg/g | [82] |
Rhodamine | 5 mg/L | 40 μm | 1 g/L | 25 °C; pH = 6; 60 h; 160 rpm shaking | 1.27 mg/g | [82] |
Flame retardants | ||||||
Tetrabromobisphenol A | 0.100 mg/L | 161 μm | 0.020 g/unspecified | 25 °C; pH = 7.0 ± 0.2; 48 h; 160 rpm shaking | 0.04943 mg/g | [83] |
Fungicides | ||||||
Azoxystrobin | 0.100 mg/L | 100 μm | 1 g/L | 25 °C; pH = 5.5–8.5; 24 h; 150 rpm shaking; NaCl = 0–50 mmol/L | 0.017 mg/g | [84] |
Carbendazim | 1 mg/L | 150 μm | 0.2 g/L | 25 °C; 24 h; 180 rpm shaking | 1.5 mg/g | [85] |
Hexachlorobenzene | 0.100 mg/L | 49.7–358 µm | 0.333 g/L | 25 °C; pH = 7.23 ± 0.06; 96 h; 150 rpm shaking | 0.260–0.278 mg/g | [86] |
Picoxystrobin | 0.100 mg/L | 100 μm | 1 g/L | 25 °C; pH = 5.5–8.5; 24 h; 150 rpm shaking; NaCl = 0–50 mmol/L | 0.023 mg/g | [84] |
Pyraclostrobin | 0.100 mg/L | 100 μm | 1 g/L | 25 °C; pH = 5.5–8.5; 24 h; 150 rpm shaking; NaCl = 0–50 mmol/L | 0.081 mg/g | [84] |
Herbicides | ||||||
1,2,3-Trichlorobenzene | 0.100 mg/L | 49.7–358 µm | 0.333 g/L | 25 °C; pH = 7.23 ± 0.06; 96 h; 150 rpm shaking | 0.228–0.260 mg/g | [86] |
Atrazine | 0.200 mg/L | 5 μm | 0.1 g/L | 25 °C; pH = 7; 48 h | 0.35040 mg/g | [87] |
Butachlor | 0.012 mg/L | 150 μm | 0.2 g/L | 25 °C; pH = 7; 2 h | 0.01365 mg/g | [88] |
Florpyrauxifen-benzyl | 7 mg/L | 150 μm | 25 g/L | 25 °C, pH = 4; 48 h; 150 rpm shaking | 0.242465 mg/g | [89] |
Terbuthylazine | 0.600 mg/L | <250 μm | 2 g/L | 20 °C; pH = 6.5 ± 0.2; 48 h; 200 rpm shaking | 0.068 ± 0.0033 mg/g (virgin PE–MPs) | [67] |
Terbuthylazine | 0.600 mg/L | <250 μm | 2 g/L | 20 °C; pH = 6.5 ± 0.2; 48 h; 200 rpm shaking | 0.029 ± 0.0037 mg/g (aged PE–MPs) | [67] |
Trifluralin | 0.100 mg/L | 49.7–358 µm | 0.333 g/L | 25 °C; pH = 7.23 ± 0.06; 96 h; 150 rpm shaking | 0.307–0.333 mg/g | [86] |
Insecticides | ||||||
Carbofuran | 10 mg/L | 150 μm | 0.2 g/L | 25 °C; 24 h; 180 rpm shaking | 4.01 mg/g | [85] |
Chlorpyrifos | 1 mg/L | 100–200 μm | 0.2 g/L | 30 °C; pH = 7; 24 h; 250 rpm shaking | 1.12 ± 0.04 mg/g (ultraviolet–B—aged PE–MPs) | [90] |
Imidacloprid | 0.200 mg/L | 5 μm | 0.1 g/L | 25 °C; pH = 7; 12 h | 0.32775 mg/g | [87] |
Lambda-cyhalothrin | 10 mg/L | 5 μm | 0.1 g/L | 25 °C; 72 h; 180 rpm shaking | 34.4 mg/g (virgin PE–MPs) | [91] |
Lambda-cyhalothrin | 10 mg/L | 5 μm | 0.1 g/L | 25 °C; 72 h; 180 rpm shaking | 39.0 mg/g (aged PE–MPs) | [91] |
Medicines | ||||||
Propranolol (cation) | 0.050 mg/L | 45–48 µm | 0.2 g/L | 25 °C; pH = 7; 96 h; 150 rpm shaking | 0.0038 mg/g | [76] |
Sertraline (cation) | 0.050 mg/L | 45–48 µm | 0.2 g/L | 25 °C; pH = 7; 96 h; 150 rpm shaking | 0.0187 mg/g | [76] |
Other organic contaminants | ||||||
1,2,4–Trichlorobenzene | 0.100 mg/L | 49.7–358 µm | 0.333 g/L | 25 °C; pH = 7.23 ± 0.06; 96 h; 150 rpm shaking | 0.238–0.282 mg/g | [86] |
1,3,5–Trichlorobenzene | 0.100 mg/L | 49.7–358 µm | 0.333 g/L | 25 °C; pH = 7.23 ± 0.06; 96 h; 150 rpm shaking | 0.249–0.260 mg/g | [86] |
9–Nitroanthracene | 0.500 mg/L | 100–150 μm | 0.666 g/L | 25 °C; pH = 3–11; 48 h; 60 rpm shaking | 0.73435 mg/g | [92] |
Pentachlorobenzene | 0.100 mg/L | 49.7–358 µm | 0.333 g/L | 25 °C; pH = 7.23 ± 0.06; 96 h; 150 rpm shaking | 0.292–0.308 mg/g | [86] |
Adsorption of inorganic elements | ||||||
Cadmium (Cd2+) | 1 mg/L | 30–63 μm | 1 g/L | 25 ± 1 °C; pH = 7; 5 h; 200 rpm shaking; salinity = 0 | 1.8 mg/g | [93] |
Cadmium (Cd2+) | 10 mg/L | 125 μm | 1 g/L | 25 °C; pH = 5.5; 48 h; 160 rpm shaking | 0.495 mg/g | [94] |
Chromium (Cr3+) | 5 mg/L | 48 μm | 2 g/L | 25 °C; pH = 6; 150 rpm shaking | 0.86 mg/g | [95] |
Chromium (Cr3+) | 10 mg/L | 125 μm | 1 g/L | 25 °C; pH = 5.5; 48 h; 160 rpm shaking | 1.023 mg/g | [94] |
Chromium (Cr6+) | 100 mg/L | 177–250 μm | 14 g/L | 25 °C; pH = 5; 12 h | 0.32 mg/g | [96] |
Chromium (Cr6+) | 5 mg/L | ~100 μm | 1 g/L | 25 °C; pH = 2; 48 h; 150 rpm shaking; detergent = 4% (v/v) | 1.00 mg/g (virgin PE–MPs) | [97] |
Chromium (Cr6+) | 5 mg/L | <250 μm | 1 g/L | 25 °C; pH = 2; 48 h; 150 rpm shaking; detergent = 4% (v/v) | 0.62 mg/g (aged PE–MPs) | [97] |
Copper (Cu2+) | 5 mg/L | 149–250 μm | 2.5 g/L | 26 °C; 150 rpm shaking | 0.315 ± 0.087 mg/g | [98] |
Copper (Cu2+) | 10 mg/L | 2380–4760 μm (films) | 10 g/L | 25 °C; pH = 8; 10 h; 200 rpm shaking | 0.53064 ± 0.00835 mg/g | [99] |
Copper (Cu2+) | 10 mg/L | 125 μm | 1 g/L | 25 °C; pH = 5.5; 48 h; 160 rpm shaking | 0.286 mg/g | [94] |
Lead (Pb2+) | 5 mg/L | <250 μm | 2 g/L | 20 °C; pH = 6.5 ± 0.2; 48 h; 200 rpm shaking | 0.400 mg/g (virgin PE–MPs) | [67] |
Lead (Pb2+) | 5 mg/L | <250 μm | 2 g/L | 20 °C; pH = 6.5 ± 0.2; 48 h; 200 rpm shaking | 1.200 mg/g (aged PE–MPs) | [67] |
Lead (Pb2+) | 2 mg/L | 48 μm | 1 g/L | 25 °C; pH = 5; 24 h; NaNO3 = 10 mM | 0.0912 mg/g | [100] |
Lead (Pb2+) | 10 mg/L | 2380–4760 μm (films) | 10 g/L | 25 °C; pH = 8; 10 h; 200 rpm shaking | 0.66027 ± 0.00319 mg/g | [99] |
Lead (Pb2+) | 10 mg/L | 125 μm | 1 g/L | 25 °C; pH = 5.5; 48 h; 160 rpm shaking | 1.013 mg/g | [94] |
Nickel (Ni2+) | 10 mg/L | 2380–4760 μm (films) | 10 g/L | 25 °C; pH = 8; 10 h; 200 rpm shaking | 0.0089 ± 0.00891 mg/g | [99] |
Nickel (Ni2+) | 10 mg/L | 125 μm | 1 g/L | 25 °C; pH = 5.5; 48 h; 160 rpm shaking | 0.848 mg/g | [94] |
Zinc (Zn2+) | 10 mg/L | 2380–4760 μm (films) | 10 g/L | 25 °C; pH = 8; 10 h; 200 rpm shaking | 0.23835 ± 0.00365 mg/g | [99] |
Zinc (Zn2+) | 10 mg/L | 125 μm | 1 g/L | 25 °C; pH = 5.5; 48 h; 160 rpm shaking | 0.554 mg/g | [94] |
Model/Organism | Size [µm] | Shape | Amount/Concentration of PE–MPs | Time of Exposure | Toxic Effect | Source |
---|---|---|---|---|---|---|
Adult albino rats | Unspecified | Unspecified | 1.5 mg/kg body weight (orally) | Single dose | Reduction in expressions of antioxidant enzymes, increased levels of reactive oxygen species, reduced level of follicle-stimulating hormone, reduced level of luteinizing hormone, reduced level of testosterone, decreased sperm viability, motility, and sperm count, increase in dead sperms number, and sperm structural anomalies | [175] |
C57BL/6 J mice | 10–20 | Fragments | 10 μg/day (orally) | 4 months | Accumulation in inner ear, hearing loss | [176] |
Caenorhabditis elegans | 322 | Microbeads | 1 mg/L | 45–60 days + ultraviolet irradiation | Increased oxidative stress and related genes expression | [177] |
Daphnia magna | 17.23 ± 3.43–34.43 ± 13.09 | Fragments | 5 mg/L | 21 days | Lower survival rate, reduced algal feeding, reduced body length, and reduced number of offspring compared to PE–MPs beads (39.54 ± 9.74 μm) | [178] |
Earthworm Eisenia andrei | <3600 (50% <57) | Fragments/Films | 0.005–1.0% (w/w) | 28 days | Increase in oxidative stress biomarkers | [179] |
Earthworm Lumbricus terrestris | <150 | Fragments | 7–60% dry weight of soil | 60 days | Increased mortality, reduced growth rate | [171] |
Earthworm Metaphire guillelmi | 550–1000 | Fragments/Films | 0.25% (w/w) | 28 days | Alteration of gut microbiota | [180] |
Honeybees | 100 | Unspecified | 105 PE–MPs/mL of honey | 15 days | Altered microbiota, increased mortality | [172] |
ICR mice | 40–48 | Unspecified | 0.125–2 mg/day (orally) | 90 days | Altered number of live births, sex ratio, and body weight of the offsprings, tissue damage, and disturbed immune response in the dams | [181] |
Male C57BL/6 mice | <20 | Unspecified | 5 mg/kg/day (intratracheally) | 14 days | Pulmonary inflammation | [182] |
Male Wistar rats | 34–50 | Unspecified | 1.5 mg/kg body weight | 28 days | Increase in kallikrein-3 level, reduction of testosterone, luteinizing hormone, thyroid-stimulating hormone, free-triiodothyronine, and total cholesterol | [183] |
Mice | 36 and 116 | Microbeads | 100 μg/g of food | 6 weeks | Altered gut morphology and inflammation | [173] |
Perca fluviatilis | 100–180 | Unspecified | 1 mg/g of dry food | 15 days | Oxidative stress (stronger in liver compared to muscle tissue) | [27] |
Terrestrial crustacean woodlice Porcellio scaber | 56.8 ± 37.9 | Fragments/Films | 1–5% (w/w) | 28 days | Increase in electron transfer system activity | [184] |
Tigriopus japonicus | 10–30 | Unspecified | 12.5 mg/L | 14 days | Detrimental effects on feeding, egestion, reproduction, survival | [185] |
Chlorella pyrenoidosa | 2.42–300 | Unspecified (powder) | 5–100 mg/L | 96 h | Inhibition of photosynthesis, induction of oxidative stress | [186] |
Lycopersicon esculentum L. | 11.15 ± 3.32–59.84 ± 24.88 | Unspecified | 1 mg/L | 14 days | Oxidative damage | [187] |
3-phase in vitro simulated digestion coupled with a tri-culture small intestinal epithelium model (Caco–2, HT–29MTX, Raji B cells) | 0.1 | Pellets | 400 μg/mL | 1–2 h | Increased fat digestion and absorption, but no effect on cell health or permeability | [165] |
RAW264.7 (mouse macrophage cells), THP–1 (human monocytic leukemia cells) | 180 (degraded) | Unspecified | 40–80 mg/L | 24 h | Cell death attributed to lysosomal dysfunction | [188] |
RAW264.7 (mouse macrophage cells), THP–1 (human monocytic leukemia cells), epithelial cells A549 (human alveolar adenocarcinoma cells), HaCaT (human keratinocyte cells), Caco–2 (human intestinal epithelial cells) | 231.9 (degraded) | Unspecified | 2–200 g/L | 24 h | Reduced cell viability, cell death induction | [189] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, P.; Kadac-Czapska, K.; Grembecka, M. Polyethylene Packaging as a Source of Microplastics: Current Knowledge and Future Directions on Food Contamination. Foods 2025, 14, 2408. https://doi.org/10.3390/foods14142408
Kowalczyk P, Kadac-Czapska K, Grembecka M. Polyethylene Packaging as a Source of Microplastics: Current Knowledge and Future Directions on Food Contamination. Foods. 2025; 14(14):2408. https://doi.org/10.3390/foods14142408
Chicago/Turabian StyleKowalczyk, Piotr, Kornelia Kadac-Czapska, and Małgorzata Grembecka. 2025. "Polyethylene Packaging as a Source of Microplastics: Current Knowledge and Future Directions on Food Contamination" Foods 14, no. 14: 2408. https://doi.org/10.3390/foods14142408
APA StyleKowalczyk, P., Kadac-Czapska, K., & Grembecka, M. (2025). Polyethylene Packaging as a Source of Microplastics: Current Knowledge and Future Directions on Food Contamination. Foods, 14(14), 2408. https://doi.org/10.3390/foods14142408