Artemisia absinthium L. Extract Targeting the JAK2/STAT3 Pathway to Ameliorate Atherosclerosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction Process of AATP
2.2.1. A One-Way Experiment to Extract AATP
2.2.2. Response Surface Experimental Design for the Extraction of AATP
2.3. Purification Using Macroporous Adsorption Resin
2.3.1. Static Sorption and Desorption Experiments for Macroporous Resin-Type Screening
2.3.2. Dynamic Sorption and Desorption
2.4. LC-MS
2.4.1. Sample Preparation
2.4.2. Sample Detection
2.5. Cyberpharmacology and Molecular Docking
2.5.1. Collection of Active Ingredient Targets of AATP
2.5.2. Determine the Target
2.5.3. Building the AATP PPI Network in Opposition
2.5.4. Associated Signaling Networks Revealed by KEGG Pathway Enrichment Analysis
2.5.5. Molecular Docking
2.6. Study on the Anti-Atherosclerotic Effect of AATP
2.6.1. Establishment and Administration of Animal Models
2.6.2. Serum Biochemical Indicator Tests
2.6.3. Histopathological Observation
2.6.4. Cell Culture
2.6.5. Cell Viability Assay
2.6.6. Oil Red O Staining
2.6.7. Inflammatory Factor Assay
2.6.8. ROS Detection
2.6.9. Flow Cytometry Analysis
2.7. Statistical Analysis
3. Results
3.1. Single-Factor Experimental Results of AATP Extraction
Results of Single-Factor Experiments with Different Ethanol Concentrations
3.2. Analysis of Extraction Parameters Using Response Surface Method
3.2.1. Response Surface Regression Model and Profiling of Variance
3.2.2. Response Surface Interaction Analysis
3.2.3. Determination and Verification of Optimal Conditions for Optimization
3.3. Purification Results of Macroporous Resins
3.3.1. Selection of Macroporous Resins
3.3.2. Results of Dynamic Absorption Experiments
3.4. Outcomes of Cyberpharmacology
3.4.1. AATP and Potential Targets in Atherosclerosis
3.4.2. GO and KEGG Pathway Enrichment Analysis
3.4.3. Molecular Docking Analysis
Compound | JAK2 | STAT3 |
---|---|---|
Artemisinic acid | −5.28 | −5.80 |
Capsidiol | −5.94 | −5.64 |
Isoalantolactone | −5.84 | −6.12 |
Zedoarondiol | −5.59 | −5.80 |
Dehydrovomifoliol | −5.03 | −5.75 |
Fukinone | −5.67 | −6.22 |
Procurcumenol | −6.03 | −6.40 |
3.4.4. Effects of AATP on Body Weight and Organ Indexes in Atherosclerotic Rats
3.4.5. AATP Attenuates Aortic and Hepatic Lesions in AS Rats
3.4.6. AATP Improves Lipid Levels, Liver Function, and Inflammatory Factors
3.4.7. Effect of AATP on the Viability of RAW264.7 Cells
3.4.8. AATP Inhibits Ox-LDL-Induced Foam Cell Formation
3.4.9. AATP Suppresses Pro-Inflammatory Mediator Synthesis in RAW264.7 Macrophages
3.4.10. AATP Inhibits M1 Polarization in RAW264.7 Macrophages
3.4.11. AATP Modulated JAK2/STAT3 Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AATP | Total terpenoids of Arlemisia absinthtum L.; |
AS | Atherosclerosis; |
CVD | Cardiovascular disease; |
RSM | Response surface methodology; |
HFD | High-fat diet; |
OX-LDL | Oxidized low-density lipoprotein; |
LPS | Lipopolysaccharide; |
BBD | Box–Behnken design; |
ROS | Reactive oxygen species; |
TC | Total cholesterol; |
TG | Triglyceride; |
TNF | Tumor necrosis factor; |
IL | Interleukin; |
JAK | Janus Kinase; |
STAT | Signal transducer and activator of transcription; |
LDL-C | Low-density-lipoprotein cholesterol; |
HDL-C | High-density-lipoprotein cholesterol; |
References
- Liu, X.; Wu, J.; Tian, R.; Su, S.; Deng, S.; Meng, X. Targeting foam cell formation and macrophage polarization in atherosclerosis: The Therapeutic potential of rhubarb. Biomed. Pharmacother. 2020, 129, 110433. [Google Scholar] [CrossRef] [PubMed]
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef]
- Bugger, H.; Zirlik, A. Anti-inflammatory Strategies in Atherosclerosis. Hamostaseologie 2021, 41, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2019, 2019, 8563845. [Google Scholar] [CrossRef]
- Li, T.-T.; Wang, Z.-B.; Li, Y.; Cao, F.; Yang, B.-Y.; Kuang, H.-X. The mechanisms of traditional Chinese medicine underlying the prevention treatment of atherosclerosis. Chin. J. Nat. Med. 2019, 17, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef]
- Sanjadi, M.; Rezvanie Sichanie, Z.; Totonchi, H.; Karami, J.; Rezaei, R.; Aslani, S. Atherosclerosis autoimmunity: Agrowing relationship. Int. J. Rheum. Dis. 2018, 21, 908–921. [Google Scholar] [CrossRef]
- Tabari, F.S.; Karimian, A.; Parsian, H.; Rameshknia, V.; Mahmoodpour, A.; Majidinia, M.; Maniati, M.; Yousefi, B. The roles of FGF21 in atherosclerosis pathogenesis. Rev. Endocr. Metab. Dis. 2019, 20, 103–114. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, L.; Liu, H.; Sun, B.; Zhao, X. Diagnostic value of miR-637 in patients with atherosclerosis and its predictive significance for the future cardiovascular events. Vascular 2021, 29, 704–710. [Google Scholar] [CrossRef]
- Wang, T.; Butany, J. Pathogenesis of atherosclerosis. Diagn. Histopathol. 2017, 23, 473–478. [Google Scholar] [CrossRef]
- Fu, X.; Sun, Z.; Long, Q.; Tan, W.; Ding, H.; Liu, X.; Wu, L.; Wang, Y.; Zhang, W. Glycosides from Buyang Huanwu Decoction inhibit atherosclerotic inflammation via JAK/STAT signaling pathway. Phytomedicine 2022, 105, 154385. [Google Scholar] [CrossRef]
- Roohnavaz, M.; Karimi, F.; Saboora, A.; Razavi, K. Artemisinin absinthin production in response to exogenous methyl jasmonate chilling in Artemisia absinthium L. in vitro propagated plantlets. Ind. Crops Prod. 2025, 225, 120425. [Google Scholar] [CrossRef]
- Batiha, G.E.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Alghamdi, S.; Zahoor, M.; Magdy Beshbishy, A.; Murata, T.; Zaragoza-Bastida, A.; et al. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Wormwood (Artemisia absinthium). Antibiotics 2020, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Raja, N.I.; Akram, A.; Iftikhar, A.; Iqbal, M. Astatus review on the pharmacological implications of Artemisia absinthium Acritically endangered plant. Asian Pac. J. Trop. Med. 2017, 7, 185–192. [Google Scholar] [CrossRef]
- Bhat, R.R.; Rehman, M.U.; Shabir, A.; Mir, M.U.R.; Ganaie, M.A. Chemical Composition and Biological Uses of Artemisia absinthium (Wormwood): Pharmacology and Therapeutic Uses; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Moacă, E.A.; Pavel, I.Z.; Danciu, C.; Crăiniceanu, Z.; Minda, D.; Ardelean, F.; Antal, D.S.; Ghiulai, R.; Cioca, A.; Derban, M.; et al. Romanian Wormwood (Artemisia absinthium L.): Physicochemical and Nutraceutical Screening. Molecules 2019, 24, 3087. [Google Scholar] [CrossRef]
- Jo, E.H.; Kim, S.H.; Ra, J.C.; Kim, S.R.; Cho, S.D.; Jung, J.W.; Yang, S.R.; Park, J.S.; Hwang, J.W.; Aruoma, O.I.; et al. Chemopreventive properties of the ethanol extract of Chinese licorice (Glycyrrhiza uralensis) root: Induction of apoptosis and G1 cell cycle arrest in MCF-7 human breast cancer cells. Cancer Lett. 2005, 230, 239–247. [Google Scholar] [CrossRef]
- Saigusa, R.; Winkels, H.; Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 2020, 17, 387–401. [Google Scholar] [CrossRef]
- Sun, L.; Li, S.; Wang, F.; Xin, F. Research Progresses in the Synthetic Biology of Terpenoids. Biotechnol. Bull. 2017, 33, 64–75. [Google Scholar]
- El-Baba, C.; Baassiri, A.; Kiriako, G.; Dia, B.; Fadlallah, S.; Moodad, S.; Darwiche, N. Terpenoids’ anti-cancer effects: Focus on autophagy. Apoptosis 2021, 26, 491–511. [Google Scholar] [CrossRef]
- Rodriguez, R.R.; Johnson, J.J. Terpenes: Modulating anti-inflammatory signaling in inflammatory bowel disease. Pharmacol. Therapeut. 2023, 248, 108456. [Google Scholar] [CrossRef]
- Hua, F.; Shi, L.; Zhou, P. Phenols and terpenoids: Natural products as inhibitors of NLRP3 inflammasome in cardiovascular diseases. Inflammopharmacology 2022, 30, 137–147. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Duan, H.; Li, R.; Peng, W.; Wu, C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021, 34, 43–63. [Google Scholar] [CrossRef]
- Aristatile, B.; Al-Numair, K.S.; Veeramani, C.; Pugalendi, K.V. Effect of carvacrol on hepatic marker enzymes and antioxidant status in d-galactosamine-induced hepatotoxicity in rats. Fundam. Clin. Pharmacol. 2009, 23, 757–765. [Google Scholar] [CrossRef]
- Retnosari, R.; Ali, A.H.; Zainalabidin, S.; Ugusman, A.; Oka, N.; Latip, J. The recent discovery of a promising pharmacological scaffold derived from carvacrol: A review. Bioorganic Med. Chem. Lett. 2024, 109, 129826. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Ho, S.E.; Xue, C.; Cui, J.; Johanson, Q.S.; Sachs, N.; Ross, L.S.; Li, F.; Solomon, R.A.; Connolly, E.S.; et al. Atherosclerosis Is a Smooth Muscle Cell–Driven Tumor-Like Disease. Circulation 2024, 149, 1885–1898. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.; Sudjarwo, G.W.; Jung, S.H.; Lee, D.; Lee, D.-Y.; Lee, G.B.; Baek, S.; Kim, D.-Y.; Lee, H.M.; Kim, B.; et al. Carvacrol inhibits atherosclerotic neointima formation by downregulating reactive oxygen species production in vascular smooth muscle cells. Atherosclerosis 2015, 240, 367–373. [Google Scholar] [CrossRef]
- Zou, T.B.; Wang, M.; Gan, R.Y.; Ling, W.H. Optimization of ultrasound-assisted extraction of anthocyanins from mulberry, using response surface methodology. Int. J. Mol. Sci. 2011, 12, 3006–3017. [Google Scholar] [CrossRef]
- He, M.; Yasin, K.; Yu, S.; Li, J.; Xia, L. Total Flavonoids in Artemisia absinthium L. and Evaluation of Its Anticancer Activity. Int. J. Mol. Sci. 2023, 24, 16348. [Google Scholar] [CrossRef]
- Luo, X.; Bai, R.; Zhen, D.; Yang, Z.; Huang, D.; Mao, H.; Li, X.; Zou, H.; Xiang, Y.; Liu, K.; et al. Response surface optimization of the enzyme-based ultrasound-assisted extraction of acorn tannins and their corrosion inhibition properties. Ind. Crop Prod. 2019, 129, 405–413. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, Z.; Xiao, T.; Liu, H.; Su, G.; Zhao, Y. Enrichment of total flavones licochalcone Afrom licorice residues its hypoglycemic activity. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1114–1115, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-based Approaches in Pharmacology. Mol. Inform. 2017, 36. [Google Scholar] [CrossRef] [PubMed]
- Abulizi, A.; Simayi, J.; Nuermaimaiti, M.; Han, M.; Hailati, S.; Talihati, Z.; Maihemuti, N.; Nuer, M.; Khan, N.; Abudurousuli, K.; et al. Quince extract resists atherosclerosis in rats by down-regulating the EGFR/PI3K/Akt/GSK-3β pathway. Biomed. Pharmacother. 2023, 160, 114330. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCMnetwork pharmacology: Anew trend towards combining computational experimental clinical approaches. Chin. J. Nat. Med. 2021, 19, 1–11. [Google Scholar] [PubMed]
- Hu, Y.; Liu, T.; Zheng, G.; Zhou, L.; Ma, K.; Xiong, X.; Zheng, C.; Li, J.; Zhu, Y.; Bian, W.; et al. Mechanism exploration of 6-Gingerol in the treatment of atherosclerosis based on network pharmacology, molecular docking, and experimental validation. Phytomedicine 2023, 115, 154835. [Google Scholar] [CrossRef]
- Wu, N.; Yuan, T.; Yin, Z.; Yuan, X.; Sun, J.; Wu, Z.; Zhang, Q.; Redshaw, C.; Yang, S.; Dai, X. Network Pharmacology and Molecular Docking Study of the Chinese Miao Medicine Sidaxue in the Treatment of Rheumatoid Arthritis. Drug Des. Dev. Ther. 2022, 16, 435–466. [Google Scholar] [CrossRef]
- An, W.; Huang, Y.; Chen, S.; Teng, T.; Shi, Y.; Sun, Z.; Xu, Y. Mechanisms of Rhizoma Coptidis against type 2 diabetes mellitus explored by network pharmacology combined with molecular docking and experimental validation. Sci. Rep. 2021, 11, 20849. [Google Scholar] [CrossRef]
- Tang, S.; Chen, S.; Tan, X.; Xu, M.; Xu, X. Network pharmacology prediction and molecular docking-based strategy to explore the pharmacodynamic substances and mechanism of “Mung Bean” against bacterial infection. Drug Dev. Ind. Pharm. 2022, 48, 58–68. [Google Scholar] [CrossRef]
- Guo, L.; Li, X.; Zhang, J.; Sun, X.; Li, Y.; Kan, H. Optimization of extraction macroporous resin purification processes of total triterpenoid from Boletus edulis Bull: Fr. J. Food Process. Pres. 2021, 45, e15292. [Google Scholar] [CrossRef]
- Wang, M.; Cui, B.; Gong, M.; Liu, Q.; Zhuo, X.; Lv, J.; Yang, L.; Liu, X.; Wang, Z.; Dai, L. Arctium lappa leaves based on network pharmacology and experimental validation attenuate atherosclerosis by targeting the AMPK-mediated PPARG/LXRα pathway. Biomed. Pharmacother. 2022, 153, 113503. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Luo, Z.; Wu, S.; Yang, C.; Xiao, T.; Zhao, Y. Optimization of Extraction and Separation Process of Notoginsenoside Fc from Panax notoginseng Leaves. Molecules 2023, 28, 3915. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Wei, M.-C. A combined procedure of ultrasound-assisted and supercritical carbon dioxide for extraction and quantitation oleanolic and ursolic acids from Hedyotis corymbosa. Ind. Crop Prod. 2016, 79, 7–17. [Google Scholar] [CrossRef]
- Yu, Q.; Fan, L.; Li, J. A novel process for asparagus polyphenols utilization by ultrasound assisted adsorption and desorption using resins. Ultrason. Sonochem. 2020, 63, 104920. [Google Scholar] [CrossRef]
- Sun, L.; Guo, Y.; Fu, C.; Li, J.; Li, Z. Simultaneous separation and purification of total polyphenols, chlorogenic acid and phlorizin from thinned young apples. Food Chem. 2013, 136, 1022–1029. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Ma, Z.; Niu, J.; Ma, S.; Wang, W.; Chen, J. Combination of tanshinone IIA and astragaloside IV attenuate atherosclerotic plaque vulnerability in ApoE (-/-) mice by activating PI3K/AKT signaling and suppressing TRL4/NF-κB signaling. Biomed. Pharmacother. 2020, 123, 109729. [Google Scholar] [CrossRef]
- Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Abdulmalek, S.A.; Balbaa, M. Synergistic effect of nano-selenium and metformin on type 2 diabetic rat model: Diabetic complications alleviation through insulin sensitivity, oxidative mediators and inflammatory markers. PLoS ONE 2019, 14, e0220779. [Google Scholar] [CrossRef]
- Malyshev, I.; Malyshev, Y. Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage “Switch” Phenotype. Biomed. Res. Int. 2015, 2015, 341308. [Google Scholar] [CrossRef]
- Clark, J.D.; Flanagan, M.E.; Telliez, J.B. Discovery development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 2014, 57, 5023–5038. [Google Scholar] [CrossRef] [PubMed]
- Wubuli, A.; Abdulla, R.; Zhao, J.; Wu, T.; Aisa, H.A. Exploring anti-inflammatory antioxidant-related quality markers of Artemisia absinthium L. based on spectrum-effect relationship. Phytochem. Anal. 2024, 35, 1152–1173. [Google Scholar] [CrossRef]
- Szopa, A.; Pajor, J.; Klin, P.; Rzepiela, A.; Elansary, H.O.; Al-Mana, F.A.; Mattar, M.A.; Ekiert, H. Artemisia absinthium L.-Importance in the History of Medicine, the Latest Advances in Phytochemistry and Therapeutical, Cosmetological and Culinary Uses. Plants 2020, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Chuo, S.C.; Nasir, H.M.; Mohd-Setapar, S.H.; Mohamed, S.F.; Ahmad, A.; Wani, W.A.; Muddassir, M.; Alarifi, A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit. Rev. Anal. Chem. 2022, 52, 667–696. [Google Scholar] [CrossRef] [PubMed]
- Attar, U.A.; Ghane, S.G. Optimized extraction of anti-cancer compound—Cucurbitacin I, LC–MSidentification of major metabolites from wild Bottle gourd (Lagenaria siceraria (Molina) Standl). S. Afr. J. Bot. 2018, 119, 181–187. [Google Scholar] [CrossRef]
- Majdi, H.; Esfahani, J.A.; Mohebbi, M. Optimization of convective drying by response surface methodology. Comput. Electron. Agr. 2019, 156, 574–584. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of Response Surface Methodology in the Food Industry Processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Czyrski, A.; Sznura, J. The application of Box-Behnken-Design in the optimization of HPLC separation of fluoroquinolones. Sci. Rep. 2019, 9, 19458. [Google Scholar] [CrossRef]
- Deng, R.X.; Wang, Y.H.; Hou, X.G.; Lu, Z.Y.; Zhang, W.H.; Feng, Y.H.; Guo, X.H.; Wang, Y.P.; Yi, J.P.; Liu, P. Ultrasonic-assisted extraction and adsorption separation: Large-scale preparation of trans-ε-Viniferin, suffruficosol B and trans-Gnetin H for the first time. Ultrason. Sonochem. 2022, 89, 106123. [Google Scholar] [CrossRef]
- de Jesus Souza, F.i.v.F.; Devilla, I.; Raniele, T.; Teixeira, I.; Spehar, C. Physiological quality of quinoa seeds submitted to different storage conditions. Afr. J. Agric. Res. 2016, 11, 1299–1308. [Google Scholar]
- Leyton, A.; Vergara-Salinas, J.R.; Pérez-Correa, J.R.; Lienqueo, M.E. Purification of phlorotannins from Macrocystis pyrifera using macroporous resins. Food Chem. 2017, 237, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Labreche, F.; Wu, C.; Fan, G.; Li, T.; Dou, J.; Zhu, J. Ultrasound-assisted adsorption/desorption of jujube peel flavonoids using macroporous resins. Food Chem. 2022, 368, 130800. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Qin, L.; Wang, G.; Li, P.; Yu, A.; Liu, A.; Sun, R. Separation and Purification of Two Saponins from Paris polyphylla var. yunnanensis by a Macroporous Resin. Molecules 2022, 27, 6626. [Google Scholar] [CrossRef]
- Liang, L.; Liu, G.; Yu, G.; Song, Y.; Li, Q. Simultaneous decoloration and purification of crude oligosaccharides from pumpkin (Cucurbita moschata Duch) by macroporous adsorbent resin. Food Chem. 2019, 277, 744–752. [Google Scholar] [CrossRef]
- Xu, S.; Ilyas, I.; Little, P.J.; Li, H.; Kamato, D.; Zheng, X.; Luo, S.; Li, Z.; Liu, P.; Han, J.; et al. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol. Rev. 2021, 73, 924–967. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.P. Hitoshi, Interaction between LDL-mimetic liposomes and acid-treated carbon nanotube electrode during Cu2+-mediated oxidation. Biochem. Biophys. Res. Commun. 2019, 513, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid Glucose Metabolism Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef]
- Aberra, T.; Peterson, E.D.; Pagidipati, N.J.; Mulder, H.; Wojdyla, D.M.; Philip, S.; Granowitz, C.; Navar, A.M. The association between triglycerides incident cardiovascular disease: What is “optimal”? J. Clin. Lipidol. 2020, 14, 438–447.e3. [Google Scholar] [CrossRef]
- Jinnouchi, H.; Kolodgie, F.D.; Romero, M.; Virmani, R.; Finn, A.V. Pathophysiology of Coronary Artery Disease. In Vessel Based Imaging Techniques; Yuan, C., Hatsukami, T., Mossa-Basha, M., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Gordon, S.M.; Chung, J.H.; Playford, M.P.; Dey, A.K.; Sviridov, D.; Seifuddin, F.; Chen, Y.C.; Pirooznia, M.; Chen, M.Y.; Mehta, N.N.; et al. High-density lipoprotein proteome is associated with cardiovascular risk factors and atherosclerosis burden as evaluated by coronary CT angiography. Atherosclerosis 2018, 278, 278–285. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Melnichenko, A.A.; Myasoedova, V.A.; Grechko, A.V.; Orekhov, A.N. Mechanisms of foam cell formation in atherosclerosis. J. Mol. Med. 2017, 95, 1153–1165. [Google Scholar] [CrossRef]
- Galindo, C.L.; Khan, S.; Zhang, X.; Yeh, Y.-S.; Liu, Z.; Razani, B. Lipid-laden foam cells in the pathology of atherosclerosis: Shedding light on new therapeutic targets. Expert. Opin. Ther. Targets. 2023, 27, 1231–1245. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in Atherosclerosis-No Longer a Theory. Clin. Chem. 2021, 67, 131–142. [Google Scholar] [CrossRef]
- Sica, A.; Mantovani, A. Macrophage plasticity polarization: In vivo veritas. J. Clin. Investig. 2012, 122, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Jinnouchi, H.; Guo, L.; Sakamoto, A.; Torii, S.; Sato, Y.; Cornelissen, A.; Kuntz, S.; Paek, K.H.; Fernandez, R.; Fuller, D.; et al. Diversity of macrophage phenotypes and responses in atherosclerosis. Cell. Mol. Life Sci. 2020, 77, 1919–1932. [Google Scholar] [CrossRef]
- Zhao, J.; Ling, L.; Zhu, W.; Ying, T.; Yu, T.; Sun, M.; Zhu, X.; Du, Y.; Zhang, L. M1/M2 re-polarization of kaempferol biomimetic NPs in anti-inflammatory therapy of atherosclerosis. J. Control. Release 2023, 353, 1068–1083. [Google Scholar] [CrossRef] [PubMed]
- Orecchioni, M.; Ghosheh, Y.; Pramod, A.B.; Ley, K. Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front. Immunol. 2019, 10, 1084. [Google Scholar] [CrossRef]
- Müller, E.; Christopoulos, P.F.; Halder, S.; Lunde, A.; Beraki, K.; Speth, M.; Øynebråten, I.; Corthay, A. Toll-Like Receptor Ligands and Interferon-γ Synergize for Induction of Antitumor M1 Macrophages. Front. Immunol. 2017, 8, 1383. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef]
- Chen, G.; Seukep, A.J.; Guo, M. Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs. Mar. Drugs 2020, 18, 545. [Google Scholar] [CrossRef]
- Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva, F.P., Jr. Key Topics in Molecular Docking for Drug Design. Int. J. Mol. Sci. 2019, 20, 4574. [Google Scholar] [CrossRef]
- Fidler, T.P.; Xue, C.; Yalcinkaya, M.; Hardaway, B.; Abramowicz, S.; Xiao, T.; Liu, W.; Thomas, D.G.; Hajebrahimi, M.A.; Pircher, J.; et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 2021, 592, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kaundal, R.K.; Zhao, B.; Bouchareb, R.; Lebeche, D. Resistin induces cardiac fibroblast-myofibroblast differentiation through JAK/STAT3 and JNK/c-Jun signaling. Pharmacol. Res. 2021, 167, 105414. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, X.; Song, L. Baicalin regulates macrophage polarization and alleviates myocardial ischaemia/reperfusion injury via inhibiting JAK/STAT pathway. Pharm. Biol. 2020, 58, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yu, Y.; Wang, M.; Li, R.; He, X.; Tang, S.; Liu, Q.; Mao, Y. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases. Biomed. Pharmacother. 2024, 172, 116313. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer. 2009, 9, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhang, Y.G.; Sun, J. STAT3 activation in infection and infection-associated cancer. Mol. Cell. Endocrinol. 2017, 451, 80–87. [Google Scholar] [CrossRef]
- Wan, Y.; Mo, L.; Huang, H.; Mo, L.; Zhu, W.; Li, W.; Yang, G.; Chen, L.; Wu, Y.; Song, J.; et al. Cadmium contributes to atherosclerosis by affecting macrophage polarization. Food Chem. Toxicol. 2023, 173, 113603. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.; Tsai, M.C.; Chern, C.Y.; Tsao, T.P.; Lin, F.Y.; Chen, S.J.; Tsui, P.F.; Liu, Y.W.; Lu, H.J.; Wu, W.L.; et al. A chalcone derivative, 1m-6, exhibits atheroprotective effects by increasing cholesterol efflux and reducing inflammation-induced endothelial dysfunction. Brit. J. Pharmacol. 2020, 177, 5375–5392. [Google Scholar] [CrossRef]
- Han, S.; Nie, C.; Wang, C.; Song, M.; Li, J.; Cui, X.; Yang, Q.; Li, Y.; Chen, Y.; Li, Q.; et al. Shenlian extract improves atherosclerosis by relieving adventitial inflammation. J. Ethnopharmacol. 2024, 320, 117339. [Google Scholar] [CrossRef]
- Wang, N.; Sun, G.; Zhang, Q.; Gao, Q.; Wang, B.; Guo, L.; Cheng, G.; Hu, Y.; Huang, J.; Ren, R.; et al. Broussonin E against acute respiratory distress syndrome: The potential roles of anti-inflammatory. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 3195–3209. [Google Scholar] [CrossRef]
- Cesaro, A.; Acerbo, V.; Indolfi, C.; Filardi, P.P.; Calabrò, P. The clinical relevance of the reversal of coronary atherosclerotic plaque. Eur. J. Intern. Med. 2024, 129, 16–24. [Google Scholar] [CrossRef] [PubMed]
Levels | Material–Liquid Ratio (A) (g/mL) | Extraction Temperature (B) (°C) | Extraction Time (C) (min) |
---|---|---|---|
−1 | 20 | 70 | 30 |
0 | 25 | 80 | 40 |
1 | 30 | 90 | 50 |
Test Number | Material–Liquid Ratio (A) | Extraction Temperature (B) | Extraction Time (C) | Total Terpenoid Content (mg/g) |
---|---|---|---|---|
1 | 30 | 80 | 30 | 13.63 |
2 | 25 | 80 | 40 | 18.39 |
3 | 25 | 70 | 30 | 14.26 |
4 | 25 | 80 | 40 | 18.26 |
5 | 25 | 90 | 30 | 14.53 |
6 | 30 | 80 | 50 | 15.11 |
7 | 25 | 90 | 50 | 14.77 |
8 | 20 | 80 | 50 | 13.05 |
9 | 30 | 70 | 40 | 13.61 |
10 | 30 | 90 | 40 | 14.58 |
11 | 20 | 80 | 30 | 14.02 |
12 | 20 | 90 | 40 | 14.17 |
13 | 25 | 80 | 40 | 17.61 |
14 | 25 | 80 | 40 | 18.26 |
15 | 25 | 70 | 50 | 14.28 |
16 | 25 | 80 | 40 | 18.13 |
17 | 20 | 70 | 40 | 13.77 |
Source | Sum of Squares | Df | Mean Square | F Value | p-Value | Significance | 95%Confidence Interval | |
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||
Model | 54.95 | 9 | 6.11 | 56.28 | <0.0001 ** | significant | ||
A | 0.46 | 1 | 0.46 | 4.25 | 0.0782 | −0.0353 | 0.5153 | |
B | 0.56 | 1 | 0.56 | 5.23 | 0.0561 | −0.0091 | 0.5416 | |
C | 0.074 | 1 | 0.074 | 0.68 | 0.4357 | −0.1791 | 0.3716 | |
AB | 0.081 | 1 | 0.0812 | 0.74 | 0.4155 | −0.2469 | 0.5319 | |
AC | 1.50 | 1 | 1.50 | 13.83 | 0.0075 ** | 0.2231 | 1.00 | |
BC | 0.012 | 1 | 0.012 | 0.11 | 0.7482 | −0.3344 | 0.4444 | |
A2 | 20.84 | 1 | 20.84 | 192.08 | <0.0001 ** | −2.60 | 1.84 | |
B2 | 12.41 | 1 | 12.41 | 114.44 | <0.0001 ** | −2.01 | −1.34 | |
C2 | 13.06 | 1 | 13.60 | 125.35 | <0.0001 ** | −2.18 | −1.42 | |
Lack of Fit | 0.3064 | 3 | 0.10 | 0.90 | 0.5144 | not significant | ||
Pure Error | 0.452 | 4 | 0.01132 | |||||
Cor Total | 55.71 | 16 | ||||||
R2 | 0.9864 | |||||||
R2adj | 0.9688 |
Resin Type | HPD600 | D101 | AB-8 | NKA-9 | DM130 | X-5 |
---|---|---|---|---|---|---|
Polarity category | Polarity | Non-polar | Weak polarity | Polarity | Weak polarity | Non-polar |
Specific surface area/(m2/g) | 550 | 500–550 | 480–520 | 250–290 | 500–550 | 500–600 |
Average aperture/nm | 10~12 | 9~11 | 13~14 | 10~12 | 9~10 | 29~30 |
Moisture content% | 73.5 | 67.50 | 71.64 | 72.50 | 74.20 | 71.00 |
Adsorption capacity mg/g | 5.72 ± 0.15 | 7.25 ± 0.22 | 7.04 ± 0.23 | 6.55 ± 0.14 | 6.29 ± 0.20 | 7.09 ± 0.14 |
Desorbent capacity mg/g | 1.71 ± 0.20 | 2.58 ± 0.095 | 2.18 ± 0.010 | 1.75 ± 0.044 | 2.02 ± 0.080 | 2.27 ± 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Huang, T.; Xia, L.; Li, J. Artemisia absinthium L. Extract Targeting the JAK2/STAT3 Pathway to Ameliorate Atherosclerosis. Foods 2025, 14, 2381. https://doi.org/10.3390/foods14132381
Yang J, Huang T, Xia L, Li J. Artemisia absinthium L. Extract Targeting the JAK2/STAT3 Pathway to Ameliorate Atherosclerosis. Foods. 2025; 14(13):2381. https://doi.org/10.3390/foods14132381
Chicago/Turabian StyleYang, Jiayi, Tian Huang, Lijie Xia, and Jinyao Li. 2025. "Artemisia absinthium L. Extract Targeting the JAK2/STAT3 Pathway to Ameliorate Atherosclerosis" Foods 14, no. 13: 2381. https://doi.org/10.3390/foods14132381
APA StyleYang, J., Huang, T., Xia, L., & Li, J. (2025). Artemisia absinthium L. Extract Targeting the JAK2/STAT3 Pathway to Ameliorate Atherosclerosis. Foods, 14(13), 2381. https://doi.org/10.3390/foods14132381