Lipid Profiling of Four Guava Cultivars: A Multi-Dimensional Spatial Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Instruments, Reagents, Materials, and Samples
2.2. Sample Preparation and Analysis of Properties
2.2.1. Sample Preparation
2.2.2. Assessment of Physical Properties
2.2.3. Evaluation of Sensory Properties
2.3. Sample Extraction
2.4. UPLC-MS/MS Analysis
2.4.1. Chromatographic Method
2.4.2. Mass Spectrometry Method
2.5. Statistical Analysis
3. Results
3.1. Morphological and Physical Characteristics of Guava Varieties
3.2. Determination of Lipid in Different Fruit Parts of Guava Varieties
3.3. PCA for Each Group and QC Samples
3.4. Differential Lipid Analysis of the Epicarp, Mesocarp, and Endocarp of Hard-Crispy and Soft-Waxy Guavas with Different Flesh Colors
3.5. Differential Lipid Enrichment Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, A.; Majumder, K. Fractional changes of pectic polysaccharides in different tissue zones of developing guava (Psidium guajava L.) fruits. Sci. Hortic. 2010, 125, 406–410. [Google Scholar] [CrossRef]
- Rojas-Garbanzo, C.; Gleichenhagen, M.; Heller, A.; Esquivel, P.; Schulze-Kaysers, N.; Schieber, A. Carotenoid profile, antioxidant capacity, and chromoplasts of pink guava (Psidium guajava L. cv. ‘Criolla’) during fruit ripening. J. Agric. Food Chem. 2017, 65, 3737–3747. [Google Scholar] [CrossRef] [PubMed]
- Tanveer, A. Nutritional and antioxidant profiling of guava fruit clinical nutrition & dietetics. Int. J. Probiotics Diet. 2022, 2, 18–22. [Google Scholar] [CrossRef]
- Zheng, B.; Zhao, Q.L.; Wu, H.X.; Ma, X.W.; Xu, W.T.; Li, L.; Liang, Q.Z.; Wang, S.B. Metabolomics and transcriptomics analyses reveal the potential molecular mechanisms of flavonoids and carotenoids in guava pulp with different colors. Sci. Hortic. 2022, 305, 111384. [Google Scholar] [CrossRef]
- Mazumder, M.A.R.; Tolaema, A.; Chaikhemarat, P.; Rawdkuen, S. Antioxidant and anti-cytotoxicity effect of phenolic extracts from Psidium guajava Linn. leaves by novel assisted extraction techniques. Foods 2023, 12, 2336. [Google Scholar] [CrossRef]
- Jamieson, S.; Wallace, C.E.; Das, N.; Bhattacharyya, P.; Bishayee, A. Guava (Psidium guajava L.): A glorious plant with cancer preventive and therapeutic potential. Crit. Rev. Food Sci. 2021, 63, 192–223. [Google Scholar] [CrossRef]
- Kumar, M.; Kapoor, S.; Dhumal, S.; Tkaczewska, J.; Changan, S.; Saurabh, V.; Mekhemar, M.; Rais, N.; Satankar, V.; Pandiselvam, R.; et al. Guava (Psidium guajava L.) seed: A low-volume, high-value byproduct for human health and the food industry. Food Chem. 2022, 386, 132694. [Google Scholar] [CrossRef]
- Ugbogu, E.A.; Emmanuel, O.; Uche, M.E.; Dike, E.D.; Okoro, B.C.; Ibe, C.; Ude, V.C.; Ekweogu, C.N.; Ugbogu, O.C. The ethnobotanical, phytochemistry and pharmacological activities of Psidium guajava L. Arab. J. Chem. 2022, 15, 103759. [Google Scholar] [CrossRef]
- Ribeiro, L.R.; Leonel, S.; Souza, J.M.A.; Garcia, E.A.; Leonel, M.; Monteiro, L.N.H.; de Souza Silva, M.; Ferreira, R.B. Improving the nutritional value and extending shelf life of red guava by adding calcium chloride. LWT 2020, 130, 109655. [Google Scholar] [CrossRef]
- Suwanwong, Y.; Boonpangrak, S. Phytochemical contents, antioxidant activity, and anticancer activity of three shared guava cultivars in Thailand. Eur. J. Integr. Med. 2021, 42, 101290. [Google Scholar] [CrossRef]
- Pan, Z.G.; Luo, H.L.; He, F.Q.; Du, Y.X.; Wang, J.Y.; Zeng, H.Z.; Xu, Z.L.; Sun, Y.M.; Li, M.Y. Guava polysaccharides attenuate high fat and STZ-induced hyperglycemia by regulating gut microbiota and arachidonic acid metabolism. Int. J. Biol. Macromol. 2024, 276, 133725. [Google Scholar] [CrossRef] [PubMed]
- Musa, K.H.; Abdullah, A.; Subramaniam, V. Flavonoid profile and antioxidant activity of pink guava. ScienceAsia 2015, 41, 149–154. [Google Scholar] [CrossRef]
- Moon, P.; Fu, Y.Q.; Bai, J.H.; Plotto, A.; Crane, J.H.; Chambers, A.H. Assessment of fruit aroma for twenty-seven guava (Psidium guajava) accessions through three fruit developmental stages. Sci. Hortic. 2018, 238, 375–383. [Google Scholar] [CrossRef]
- Rodríguez-López, C.E.; Hernández-Brenes, C.; Treviño, V.; Díaz de la Garza, R.I. Avocado fruit maturation and ripening: Dynamics of aliphatic acetogenins and lipidomic profiles from mesocarp, idioblasts and seed. BMC Plant Biol. 2017, 17, 159. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.Q.; Yao, Q.S.; Golding, J.M.; Pristijiono, P.; Zhang, X.M.; Hou, X.; Yuan, D.; Li, Y.X.; Chen, L.; Song, K.H.; et al. Low temperature storage alleviates internal browning of ‘Comte de Paris’ winter pineapple fruit by reducing phospholipid degradation, phosphatidic acid accumulation and membrane lipid peroxidation processes. Food Chem. 2023, 404, 134656. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, J.; Li, X.; Wang, B.; Zhao, Y.Y.; Liao, L.; Allan, A.C.; Sun, C.D.; Duan, Y.Q.; Li, X.; et al. A metabolic perspective of selection for fruit quality related to apple domestication and improvement. Genome Biol. 2023, 24, 95. [Google Scholar] [CrossRef]
- Yin, N.W.; Wang, S.X.; Jia, L.D.; Zhu, M.C.; Yang, J.; Zhou, B.J.; Yin, J.M.; Lu, K.; Wang, R.; Li, J.N.; et al. Identification and characterization of major constituents in different-colored rapeseed petals by UPLC-HESI-MS/MS. J. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
- Bi, J.C.; Li, Y.; Zhang, Y.; Bian, L.; Gao, Y.Y.; Ping, C.Y.; Chen, Z. Analysis of the effect of steaming times on lipid composition of pork belly based on lipidomics technology. J. Food Compos. Anal. 2023, 117, 105143. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.S.; Chai, Y.; Huang, X.H.; Wu, H.J.; Zhang, S.H.; Duan, X.J.; Qin, L. Evaluation of lipid and metabolite profiles in tobacco leaves from different plant parts by comprehensive lipidomics and metabolomics analysis. Ind. Crops Prod. 2024, 212, 118318. [Google Scholar] [CrossRef]
- Xu, R.B.; Liu, H.; Yuan, F.; Kim, S.; Kirpich, I.; McClain, C.J.; Zhang, X. Analysis software for comprehensive two-dimensional liquid chromatography-mass spectrometry-based lipid profiling. Anal. Chem. 2024, 96, 5375–5383. [Google Scholar] [CrossRef]
- Li, C.Y.; Huang, R.; Guo, M.J.; Ge, Y.H. Lipidomics reveals the regulatory mechanism of exogenous caffeic acid on glycerophospholipid metabolism in apple fruit. Sci. Hortic. 2024, 329, 112990. [Google Scholar] [CrossRef]
- Su, M.M.; Zhuang, L.Y.; Zhang, Q.H.; Zhang, Q.; Wang, M.Y.; Sun, W.; Wu, X.P.; Lyu, D.Z. Lipid dynamics of “Fenjiao” bananas (Musa ABB Pisang Awak) during post-ripening based on lipidomics analysis. Postharvest Biol. Technol. 2024, 207, 112611. [Google Scholar] [CrossRef]
- Garcia-Aloy, M.; Masuero, D.; Chitarrini, G.; Škrab, D.; Sivilotti, P.; Guella, G.; Vrhovsek, U.; Franceschi, P. Untargeted lipidomic profiling of grapes highlights the importance of modified lipid species beyond the traditional compound classes. Food Chem. 2023, 410, 135360. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.C.; Zheng, W.H.; Zhang, Y.Q.; Gao, B.Y.; Yu, L.L. Lipid compositions and geographical discrimination of 94 geographically authentic wheat samples based on UPLC-MS with non-targeted lipidomic approach. Foods 2020, 10, 10. [Google Scholar] [CrossRef]
- Veitía-de-Armas, L.; Reynel-Avila, H.E.; Bonilla-Petriciolet, A.; Jáuregui-Rincón, J. Green solvent-based lipid extraction from guava seeds and spent coffee grounds to produce biodiesel: Biomass valorization and esterification/transesterification route. Ind. Crops Prod. 2024, 214, 118535. [Google Scholar] [CrossRef]
- Omayio, D.G.; Abong, G.O.; Okoth, M.W.; Gachuiri, C.K.; Mwangombe, A.W. Physicochemical and processing qualities of guava varieties in Kenya. Int. J. Fruit Sci. 2022, 22, 329–345. [Google Scholar] [CrossRef]
- Khan, R.N.A.; Anjum, K.I.; Roshni, N.A.; Islam, M.Z.; Islam, M.F. Evaluation of physical characteristics and nutritional status of market available Guava (Psidium guajava L.) of Noakhali district in Bangladesh. J. Agric. Food Environ. 2023, 4, 17–23. [Google Scholar] [CrossRef]
- Wang, P.; Zhong, L.L.; Yang, H.C.; Zhang, J.; Hou, X.H.; Wu, C.Y.; Zhang, R.; Cheng, Y.J. Comprehensive comparative analysis of lipid profile in dried and fresh walnut kernels by UHPLC-Q-Exactive Orbitrap/MS. Food Chem. 2022, 386, 132706. [Google Scholar] [CrossRef]
- Suh, M.C.; Hahne, G.; Liu, J.R.; Stewart, C.N. Plant lipid biology and biotechnology. Plant Cell Rep. 2015, 34, 517–518. [Google Scholar] [CrossRef]
- Goggin, F.L.; Shah, J.; Gillaspy, G.E. Editorial: Lipid metabolism and membrane structure in plant biotic interactions. Front. Plant Sci. 2022, 13, 1096268. [Google Scholar] [CrossRef]
- Lavell, A.A.; Benning, C. Cellular organization and regulation of plant glycerolipid metabolism. Plant Cell Physiol. 2019, 60, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Prommaban, A.; Utama-Ang, N.; Chaikitwattana, A.; Uthaipibull, C.; Porter, J.B.; Srichairatanakool, S. Phytosterol, lipid and phenolic composition, and biological activities of guava seed oil. Molecules 2020, 25, 2474. [Google Scholar] [CrossRef] [PubMed]
- Lieb, V.M.; Schex, R.; Esquivel, P.; Jiménez, V.M.; Schmarr, H.G.; Carle, R.; Steingass, C.B. Fatty acids and triacylglycerols in the mesocarp and kernel oils of maturing Costa Rican Acrocomia aculeata fruits. NFS J. 2019, 14–15, 6–13. [Google Scholar] [CrossRef]
- Vlahov, G.; Schiavone, C.; Simone, N. Triacylglycerols of the olive fruit (Olea europaea L.): Characterization of mesocarp and seed triacylglycerols in different cultivars by liquid chromatography and 13C NMR spectroscopy. Eur. J. Lipid Sci. Technol. 1999, 101, 146–150. [Google Scholar] [CrossRef]
- Masuero, D.; Škrab, D.; Chitarrini, G.; Garcia-Aloy, M.; Franceschi, P.; Sivilotti, P.; Guella, G.; Vrhovšek, U. Grape lipidomics: An extensive profiling thorough UHPLC-MS/MS method. Metabolites 2021, 11, 827. [Google Scholar] [CrossRef]
- Shishova, M.F.; Yemelyanov, V.V. Proteome and Lipidome of Plant Cell Membranes during Development. Russ. J. Plant Physiol. 2021, 68, 800–817. [Google Scholar] [CrossRef]
- Champeyroux, C.; Stoof, C.; Rodríguez-Villalón, A. Signaling phospholipids in plant development: Small couriers determining cell fate. Curr. Opin. Plant Biol. 2020, 57, 61–71. [Google Scholar] [CrossRef]
- Kobayashi, K.; Jimbo, H.; Nakamura, Y.; Wada, H. Biosynthesis of phosphatidylglycerol in photosynthetic organisms. Prog. Lipid Res. 2024, 93, 101266. [Google Scholar] [CrossRef]
- Yu, L.H.; Zhou, C.; Fan, J.L.; Shanklin, J.; Xu, C.C. Mechanisms and functions of membrane lipid remodeling in plants. Plant J. 2021, 107, 37–53. [Google Scholar] [CrossRef]
- Rest, B.V.D.; Boisson, A.M.; Gout, E.; Bligny, R.; Douce, R. Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiol. 2002, 130, 244–255. [Google Scholar] [CrossRef]
- Azi, F.; Tu, C.H.; Li, M.; Li, Z.Y.; Cherinet, M.T.; Zahir, A.; Dong, M.S. Metabolite dynamics and phytochemistry of a soy whey-based beverage bio-transformed by water kefir consortium. Food Chem. 2021, 342, 128225. [Google Scholar] [CrossRef]
ID in Manuscript | Cultivar | Peel Color | Pulp Color | Fruit Texture | Horizontal Diameter (cm) | Vertical Diameter (cm) | Fruit Shape Index | Weight per Fruit (g) | Hardness (N) |
---|---|---|---|---|---|---|---|---|---|
YBSL | ‘Zhenzhu’ | Yellowish-green | White | Hard-crispy | 6.40 ± 0.10 b | 6.49 ± 0.07 b | 1.01 ± 0.01 b | 152.89 ± 7.98 b | 5.82 ± 0.39 b |
RBSL | ‘Bendi’ | green | White | Soft-waxy | 6.41 ± 0.04 b | 6.22 ± 0.05 c | 0.97 ± 0.01 c | 132.92 ± 8.14 c | 2.21 ± 0.55 c |
YHSL | ‘Xiguahong’ | Yellowish-green | Red | Hard-crispy | 6.26 ± 0.06 c | 6.41 ± 0.05 b | 1.02 ± 0.01 b | 153.14 ± 7.98 b | 6.79 ± 0.22 a |
RHSL | ‘Hongxin’ | green | Red | Soft-waxy | 7.28 ± 0.09 a | 8.10 ± 0.09 a | 1.11 ± 0.02 a | 179.56 ± 6.99 a | 2.51 ± 0.39 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Cao, X.; Ding, Y.; Ma, C.; Fan, Q.; Song, J.; Rong, Y.; Chen, D.; Dong, W.; Wu, X.; et al. Lipid Profiling of Four Guava Cultivars: A Multi-Dimensional Spatial Analysis. Foods 2025, 14, 2330. https://doi.org/10.3390/foods14132330
Zhang Q, Cao X, Ding Y, Ma C, Fan Q, Song J, Rong Y, Chen D, Dong W, Wu X, et al. Lipid Profiling of Four Guava Cultivars: A Multi-Dimensional Spatial Analysis. Foods. 2025; 14(13):2330. https://doi.org/10.3390/foods14132330
Chicago/Turabian StyleZhang, Qun, Xueren Cao, Yujun Ding, Chen Ma, Qiong Fan, Jia Song, Yu Rong, Di Chen, Wenjiang Dong, Xiaopeng Wu, and et al. 2025. "Lipid Profiling of Four Guava Cultivars: A Multi-Dimensional Spatial Analysis" Foods 14, no. 13: 2330. https://doi.org/10.3390/foods14132330
APA StyleZhang, Q., Cao, X., Ding, Y., Ma, C., Fan, Q., Song, J., Rong, Y., Chen, D., Dong, W., Wu, X., Xu, Z., & Lyu, D. (2025). Lipid Profiling of Four Guava Cultivars: A Multi-Dimensional Spatial Analysis. Foods, 14(13), 2330. https://doi.org/10.3390/foods14132330