Food Safety in Hydroponic Food Crop Production: A Review of Intervention Studies to Control Human Pathogens
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion/Exclusion Criteria
2.3. Study Selection
2.4. Data Coding and Extraction Strategy
2.5. Quality Assessment
3. Results and Discussion
3.1. Map of the Published Evidence on Food Safety in Hydroponic Fresh Produce
3.2. Food Safety Interventions in Hydroponic Crop Production
3.3. Quality Assessment of Intervention Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BDL | Below the detection limit |
CEA | Controlled environment agriculture |
DBD | Dielectric barrier discharge |
DWC | Deep water culture |
E. coli | Escherichia coli |
HAV | Hepatitis A virus |
MNV | Murine norovirus |
NR | Not reported |
PDI | Photodynamic inactivation |
PGPR | Plant growth-promoting rhizobacteria |
RT | Rotavirus |
SD | Standard deviation |
STEC | Shiga toxin-producing Escherichia coli |
TAC | Total aerobic count |
TV | Tulane virus |
References
- IBISWorld. At a Glance—OD4012 Hydroponic Crop Farming in the US—MyIBISWorld. Available online: https://my.ibisworld.com/us/en/industry-specialized/od4012/at-a-glance (accessed on 1 November 2024).
- Buchholz, U.; Bernard, H.; Werber, D.; Böhmer, M.M.; Remschmidt, C.; Wilking, H.; Kühne, M. German Outbreak of Escherichia coli O104:H4 Associated with Sprouts. N. Engl. J. Med. 2011, 365, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- CDC. CDC—MMWR—MMWR Publications—MMWR Weekly: Past Volume (2013). Available online: https://www.cdc.gov/mmwr/index2013.html (accessed on 14 January 2025).
- CDC. Escherichia coli O157 Infections Linked to Alfalfa Sprouts Produced by Jack & The Green Sprouts. Available online: https://archive.cdc.gov/www_cdc_gov/ecoli/2016/o157-02-16/index.html (accessed on 14 January 2025).
- FDA. Outbreak Investigation of Salmonella Typhimurium: BrightFarms Packaged Salad Greens (July 2021). 2021. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-salmonella-typhimurium-brightfarms-packaged-salad-greens-july-2021 (accessed on 4 September 2024).
- McClure, M.; Whitney, B.; Gardenhire, I.; Crosby, A.; Wellman, A.; Patel, K.; Viazis, S. An Outbreak Investigation of Salmonella Typhimurium Illnesses in the United States Linked to Packaged Leafy Greens Produced at a Controlled Environment Agriculture Indoor Hydroponic Operation—2021. J. Food Prot. 2023, 86, 100079. [Google Scholar] [CrossRef]
- FDA. Brightfarms Recalls Spinach and Salad Kits Because of Possible Health Risk as a Result of Supplier Element Farms Recall. Available online: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/brightfarms-recalls-spinach-and-salad-kits-because-possible-health-risk-result-supplier-element (accessed on 15 August 2024).
- FDA. Green Life Farms Issues Voluntary Recall of Baby Arugula Because of Possible Health Risk. Available online: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/green-life-farms-issues-voluntary-recall-baby-arugula-because-possible-health-risk (accessed on 26 August 2024).
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate Outbreaks of Foodborne Illness in the United States Associated with Fresh Produce From 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, A.N.; Gibson, K.E.; Amalaradjou, M.A.; Callahan, C.W.; Millner, P.D.; Ilic, S.; Shaw, A.M. Cultivating Food Safety Together: Insights About the Future of Produce Safety in the U.S. Controlled Environment Agriculture Sector. J. Food Prot. 2023, 86, 100190. [Google Scholar] [CrossRef]
- Ilic, S.; LeJeune, J.; Ivey, M.L.L.; Miller, S. Delphi expert elicitation to prioritize food safety management practices in greenhouse production of tomatoes in the United States. Food Control 2017, 78, 108–115. [Google Scholar] [CrossRef]
- Thomas, P.; Knox, O.G.G.; Powell, J.R.; Sindel, B.; Winter, G. The Hydroponic Rockwool Root Microbiome: Under Control or Underutilised? Microorganisms 2023, 11, 835. [Google Scholar] [CrossRef]
- Garay, G. Aeration, Water Source and Surface Material Influence Hydroponic Lettuce Production. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2024. [Google Scholar]
- FDA. FSMA Final Rule on Produce Safety. FDA; 2011. Available online: https://www.fda.gov/food/food-safety-modernization-act-fsma/fsma-final-rule-produce-safety (accessed on 18 March 2022).
- Dankwa, A.S.; Machado, R.M.; Perry, J.J. Sanitizer efficacy in reducing microbial load on commercially grown hydroponic lettuce. J. Sci. Food Agric. 2021, 101, 1403–1410. [Google Scholar] [CrossRef]
- Neetoo, H.; Lu, Y.; Wu, C.; Chen, H. Use of High Hydrostatic Pressure to Inactivate Escherichia coli O157:H7 and Salmonella enterica Internalized within and Adhered to Preharvest Contaminated Green Onions. Appl. Environ. Microbiol. 2012, 78, 2063–2065. [Google Scholar] [CrossRef] [PubMed]
- Sirsat, S.A.; Neal, J.A. Microbial profile of soil-free versus in-soil grown lettuce and intervention methodologies to combat pathogen surrogates and spoilage microorganisms on lettuce. Foods 2013, 2, 488–498. [Google Scholar] [CrossRef]
- Sargeant, J.M.; Amezcua, M.D.R.; Rajic, A.; Waddell, L. A Guide to Conducting Systematic Reviews in Agri-Food Public Health; Public Health Agency of Canada: Guelph, ON, Canada, 2005; Available online: https://publications.gc.ca/Collection/HP5-9-2005E.pdf (accessed on 4 September 2024).
- Sargeant, J.M.; Rajic, A.; Read, S.; Ohlsson, A. The process of systematic review and its application in agri-food public-health. Prev. Vet. Med. 2006, 75, 141–151. [Google Scholar] [CrossRef]
- EFSA. European Food Safety Authority; Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA J. 2010, 8, 1637. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Straus, S.E. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Sato, K.; Koga, M.; Ryuda, N.; Ueno, D.; Someya, T. Factors Affecting the Threshold Cell Density for the Internalization of Escherichia coli Into Hydroponic Vegetables. 2019. Available online: https://www.saaaj.jp/magazine/abstract/magazine_4708abstract01.html (accessed on 4 October 2024).
- Sato, K.; Taniyama, Y.; Yoshida, A.; Toyomasu, K.; Ryuda, N.; Ueno, D.; Someya, T. Protozoan predation of Escherichia coli in hydroponic media of leafy vegetables. Soil Sci. Plant Nutr. 2019, 65, 234–242. [Google Scholar] [CrossRef]
- Garland, J. Graywater processing in recirculating hydroponic systems: Phytotoxicity, surfactant degradation, and bacterial dynamics. Water Res. 2000, 34, 3075–3086. [Google Scholar] [CrossRef]
- Warriner, K.; Ibrahim, F.; Dickinson, M.; Wright, C.; Waites, W.M. Interaction of Escherichia coli with Growing Salad Spinach Plants. J. Food Prot. 2003, 66, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Faicán-Benenaula, M.A.; Hernández-Adasme, C.; Machuca, A.; Contreras, V.E. Survival and internalization of Escherichia coli in baby chard subjected to ozone applications during hydroponic system cultivation. Eur. J. Hortic. Sci. 2024, 89, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Eylands, N.J.; Evans, M.R.; Shaw, A.M. Antimicrobial Mitigation via Saponin Intervention on Escherichia coli and Growth and Development of Hydroponic Lettuce. HortTechnology 2021, 31, 174–180. [Google Scholar] [CrossRef]
- DiCaprio, E.; Ma, Y.; Purgianto, A.; Hughes, J.; Li, J. Internalization and Dissemination of Human Norovirus and Animal Caliciviruses in Hydroponically Grown Romaine Lettuce. Appl. Environ. Microbiol. 2012, 78, 6143–6152. [Google Scholar] [CrossRef]
- Wang, Q.; Kniel, K.E. Survival and Transfer of Murine Norovirus within a Hydroponic System during Kale and Mustard Microgreen Harvesting. Appl. Environ. Microbiol. 2016, 82, 705–713. [Google Scholar] [CrossRef]
- Wei, J.; Jin, Y.; Sims, T.; Kniel, K.E. Internalization of Murine Norovirus 1 by Lactuca sativa during Irrigation. Appl. Environ. Microbiol. 2011, 77, 2508–2512. Available online: https://journals.asm.org/doi/abs/10.1128/AEM.02701-10 (accessed on 5 January 2022). [CrossRef]
- Hirneisen, K.A.; Kniel, K.E. Inactivation of internalized and surface contaminated enteric viruses in green onions. Int. J. Food Microbiol. 2013, 166, 201–206. [Google Scholar] [CrossRef]
- Hirneisen, K.A.; Kniel, K.E. Comparative Uptake of Enteric Viruses into Spinach and Green Onions. Food Environ. Virol. 2013, 5, 24–34. [Google Scholar] [CrossRef]
- Stine, S.W.; Song, I.; Choi, C.Y.; Gerba, C.P. Effect of Relative Humidity on Preharvest Survival of Bacterial and Viral Pathogens on the Surface of Cantaloupe, Lettuce, and Bell Peppers. J. Food Prot. 2005, 68, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Fuzawa, M.; Duan, J.; Shisler, J.L.; Nguyen, T.H. Peracetic Acid Sanitation on Arugula Microgreens Contaminated with Surface-Attached and Internalized Tulane Virus and Rotavirus. Food Environ. Virol. 2021, 13, 401–411. [Google Scholar] [CrossRef]
- Yang, Z.; Chambers, H.; DiCaprio, E.; Gao, G.; Li, J. Internalization and dissemination of human norovirus and Tulane virus in fresh produce is plant dependent. Food Microbiol. 2018, 69, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Gibson, K.E. Persistence and transfer of Tulane virus in a microgreen cultivation system. Int. J. Food Microbiol. 2023, 387, 110063. [Google Scholar] [CrossRef]
- Urbanucci, A.; Myrmel, M.; Berg, I.; von Bonsdorff, C.-H.; Maunula, L. Potential internalisation of caliciviruses in lettuce. Int. J. Food Microbiol. 2009, 135, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, G. Overview of Microbial Pathogenesis. Biology LibreTexts. Available online: https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(Kaiser)/Unit_3%3A_Bacterial_Pathogenesis/1%3A_Overview_of_Microbial_Pathogenesis (accessed on 2 September 2024).
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- FAO; WHO. Prevention and Control of Microbiological Hazards in Fresh Fruits and Vegetables—Part 4: Specific Commodities; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Morillo, G.; Monsalve, R.; Mendoza, J.; Isea, D.; Araujo, I.; Vargas, L.; Angulo, N. Evaluación química y microbiológica del pepino (Cucumis sativus L.) cultivado con aguas residuals. Rev. Técnica Fac. Ing. Univ. Zulia 2009, 32, 68–76. [Google Scholar]
- Ispolnov, K.; Luz, T.M.R.; Aires, L.M.I.; Vieira, J.S. Progress on the Use of Hydroponics to Remediate Hog Farm Wastewater after Vermifiltration Treatment. Water 2024, 16, 1524. [Google Scholar] [CrossRef]
- Santos, O.; Vaz, D.; Sebastião, F.; Sousa, H.; Vieira, J. Wastewater as a nutrient source for hydroponic production of lettuce: Summer and winter growth. Agric. Water Manag. 2024, 301, 108966. [Google Scholar] [CrossRef]
- Riser, E.C.; Grabowski, J.; Glen, E.P. Effect of the Normal Microflora on Survival of Salmonella typhimurium Inoculated into a Hydroponic Nutrient Solution. J. Food Prot. 1985, 48, 879–883. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Botsaris, G.; Skandamis, P.; Tzortzakis, N. Salmonella Enteritidis survival in different temperatures and nutrient solution pH levels in hydroponically grown lettuce. Food Microbiol. 2022, 102, 103898. [Google Scholar] [CrossRef]
- Macarisin, D.; Patel, J.; Sharma, V.K. Role of curli and plant cultivation conditions on Escherichia coli O157: H7 internalization into spinach grown on hydroponics and in soil. Int. J. Food Microbiol. 2014, 173, 48–53. [Google Scholar] [CrossRef]
- Franz, E.; Visser, A.A.; Van Diepeningen, A.D.; Klerks, M.M.; Termorshuizen, A.J.; van Bruggen, A.H.C. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Food Microbiol. 2007, 24, 106–112. [Google Scholar] [CrossRef]
- Moriarty, M.J.; Semmens, K.; Bissonnette, G.K.; Jaczynski, J. Inactivation with UV-radiation and internalization assessment of coliforms and Escherichia coli in aquaponically grown lettuce. LWT Food Sci. Technol. 2018, 89, 624–630. [Google Scholar] [CrossRef]
- Koseki, S.; Mizuno, Y.; Yamamoto, K. Comparison of Two Possible Routes of Pathogen Contamination of Spinach Leaves in a Hydroponic Cultivation System. J. Food Prot. 2011, 74, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- FDA. Most Common Foodborne Illnesses. Available online: https://www.fda.gov/files/food/published/Most-Common-Foodborne-Illnesses-%28PDF%29.pdf (accessed on 27 April 2025).
- Mensah, A.A.; Ivey, M.L.L.; Moodispaw, M.R.; Ilic, S. Effectiveness of Chemical Sanitizers against Salmonella Typhimurium in Nutrient Film Technique (NFT) Hydroponic Systems: Implications for Food Safety, Crop Quality, and Nutrient Content in Leafy Greens. Foods 2024, 13, 1929. [Google Scholar] [CrossRef]
- Huagu, P.K. Assessing the Effectiveness of Sanitizers Against Listeria Monocytogenes and Its Biofilms on Deep-Water Culture Hydroponic Surfaces. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2024. Available online: http://rave.ohiolink.edu/etdc/view?acc_num=osu1724078902395936 (accessed on 4 September 2024).
- Sikin, A.M.; Zoellner, C.; Rizvi, S.S.H. Current Intervention Strategies for the Microbial Safety of Sprouts. J. Food Prot. 2013, 76, 2099–2123. [Google Scholar] [CrossRef]
- Bari, M.L.; Kusunoki, H.; Furukawa, H.; Ikeda, H.; Isshiki, K.; Uemura, T. Inhibition of Growth of Escherichia coli O157:H7 in Fresh Radish (Raphanus sativus L.) Sprout Production by Calcinated Calcium. J. Food Prot. 1999, 62, 128–132. [Google Scholar] [CrossRef]
- Ishii, M.; Lam, V.P.; Fujiwara, K.; Park, J.S. Intermittent Root Flushing with Ozonated Water Promotes Growth of Japanese Mustard Spinach (Brassica rapa var. perviridis) grown in a Nutrient Film Technique Hydroponic Culture—Preliminary Results. Ozone Sci. Eng. 2022, 44, 464–472. [Google Scholar] [CrossRef]
- Amoruso, F.; Signore, A.; Gómez, P.A.; Martínez-Ballesta, M.D.C.; Giménez, A.; Franco, J.A.; Egea-Gilabert, C. Effect of Saline-Nutrient Solution on Yield, Quality, and Shelf-Life of Sea Fennel (Crithmum maritimum L.) Plants. Horticulturae 2022, 8, 127. [Google Scholar] [CrossRef]
- Husna Kim, B.E.; Won, M.H.; Jeong, M.I.; Oh, K.K.; Park, D.S. Characterization and genomic insight of surfactin-producing Bacillus velezensis and its biocontrol potential against pathogenic contamination in lettuce hydroponics. Environ. Sci. Pollut. Res. 2023, 30, 121487–121500. [Google Scholar] [CrossRef]
- Shirakawa, T.; Abiko, K. Ecological characteristics of Escherichia coli infection in hydroponics and development of methods of control. Bull. Natl. Res. Inst. Veg. Ornam. Plants Tea 2001. Available online: https://agriknowledge.affrc.go.jp/RN/2010630586.pdf (accessed on 18 February 2024).
- Li, Y.; Zwe, Y.H.; Tham, C.A.T.; Zou, Y.; Li, W.; Li, D. Fate and mitigation of Salmonella contaminated in lettuce (Lactuca sativa) seeds grown in a hydroponic system. J. Appl. Microbiol. 2022, 132, 1449–1456. [Google Scholar] [CrossRef]
- Elumalai, S.D.; Shaw, A.M.; Pattillo, D.A.; Currey, C.J.; Rosentrater, K.A.; Xie, K. Influence of UV treatment on the food safety status of a model aquaponic system. Water 2017, 9, 27. [Google Scholar] [CrossRef]
- Ge, C.; Rymut, S.; Lee, C.; Lee, J. Salmonella internalization in mung bean sprouts and pre-and postharvest intervention methods in a hydroponic system. J. Food Prot. 2014, 77, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Khan, M.S.I.; Shim, J.; Kim, Y.-J. Roles of oxides of nitrogen on quality enhancement of soybean sprout during hydroponic production using plasma discharged water recycling technology. Sci. Rep. 2018, 8, 16872. [Google Scholar] [CrossRef]
- Weiss, A.; Hertel, C.; Grothe, S.; Ha, D.; Hammes, W.P. Characterization of the cultivable microbiota of sprouts and their potential for application as protective cultures. Syst. Appl. Microbiol. 2007, 30, 483–493. [Google Scholar] [CrossRef]
- Riggio, G.M.; Jones, S.L.; Gibson, K.E. Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation. Horticulturae 2019, 5, 25. [Google Scholar] [CrossRef]
- Painter, J.A.; Hoekstra, R.M.; Ayers, T.; Tauxe, R.V.; Braden, C.R.; Angulo, F.J.; Griffin, P.M. Attribution of Foodborne Illnesses, Hospitalizations, and Deaths to Food Commodities by using Outbreak Data, United States, 1998–2008. Emerg. Infect. Dis. J. 2013, 19, 407. [Google Scholar] [CrossRef]
Microorganism | No. Studies * | Percent (%) |
---|---|---|
Bacteria | ||
Campylobacter spp. | 2 | 1.5 |
Clostridium spp. | 2 | 1.5 |
Listeria monocytogenes | 19 | 14.5 |
Listeria spp. | 4 | 3.1 |
Salmonella spp. | 48 | 36.6 |
Shiga toxin-producing E. coli (STEC) | 31 | 23.7 |
E. coli surrogates | 7 | 5.3 |
Indicator microorganisms (E. coli/coliforms, Enterobacteriaceae) | 60 | 45.8 |
Total aerobic bacteria | 25 | 19.1 |
Spoilage bacteria (mesophilic, psychotropic, lactic acid) | 4 | 3.1 |
Other bacteria | 23 | 17.6 |
Viruses | ||
Norovirus | 5 | 3.8 |
Norovirus surrogates | 10 | 7.8 |
Hepatitis A | 4 | 3.1 |
Human adenovirus | 1 | 0.8 |
Rotavirus | 1 | 0.8 |
Parasites | ||
Giardia lamblia | 2 | 1.5 |
Cryptosporidium spp. | 2 | 1.5 |
Toxoplasma gondii | 1 | 0.8 |
Other parasites | 6 | 4.6 |
Yeast and Molds | 17 | 13.0 |
Surrogate | Surrogate Designation | Reference |
---|---|---|
E. coli | E. coli KM1 | [22,23] |
E. coli KSC1 | [24] | |
Bioluminescent E. coli P36 | [25] | |
E. coli ATCC 25922, E. coli ATCC 10798 (E. coli K12) | [17] | |
E. coli ATCC 35218TM | [26] | |
E. coli P4, E. coli P13, and E. coli P68 | [27] | |
Norovirus | Murine norovirus | [28,29,30,31,32] |
Feline Calicivirus | [33] | |
Tulane Virus | [28,34,35,36] | |
Canine Calicivirus 48 | [37] |
Intervention Parameters | Crop | Sample Type | Organism | Quantitative Response | System | Reference | ||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Concentration | Time | Control ± SD a | Treatment ± SD a | Units | |||||
Calcinated calcium | 0.10% | 12 h | Sprouts—radish | Plant | E. coli O157:H7 | 3.60 ± 0.60 × 107 | 1.00 ± 0.50 × 103 | CFU/mL | NR d | [54] |
0.20% | 420 ± 30.00 | CFU/mL | ||||||||
0.30% | 50.00 ± 5.00 | CFU/mL | ||||||||
0.35% | 5.00 ± 0.60 | CFU/mL | ||||||||
0.40% | <3.00 | CFU/mL | ||||||||
0.50% | <3.00 | CFU/mL | ||||||||
1.00% | <3.00 | CFU/mL | ||||||||
Igepon TC-42 | 240 ppm | 59 days | Sprouts—wheat | Roots | Pseudomonas aeruginosa | ~104–106 b | ~103–104 b | CFU/g dry | NFT | [24] |
Nutrient solution | ~102 b | CFU/mL | ||||||||
PVC surface | ~102 b | CFU/cm2 | ||||||||
Roots | E. coli generic | ~104 b | BDL | CFU/g dry | ||||||
Nutrient solution | BDL | CFU/mL | ||||||||
PVC surface | BDL | CFU/cm2 | ||||||||
Roots | Staphylococcus aureus | ~103–104 b | BDL | CFU/g dry | ||||||
Nutrient solution | BDL | CFU/mL | ||||||||
PVC Surface | BDL | CFU/cm2 | ||||||||
240 ppm | 27 days | Lettuce | Roots | Pseudomonas aeruginosa | ~105 b | ~103–107 b | CFU/g dry | |||
Nutrient solution | ~102–103 b | CFU/mL | ||||||||
PVC surface | ~102–103 b | CFU/cm2 | ||||||||
Roots | E. coli generic | ~103–104 b | BDL e | CFU/g dry | ||||||
Nutrient solution | BDL | CFU/mL | ||||||||
PVC surface | BDL | CFU/cm2 | ||||||||
Roots | Staphylococcus aureus | ~103–104 b | BDL | CFU/g dry | ||||||
Nutrient solution | CFU/mL | |||||||||
PVC surface | CFU/cm2 | |||||||||
Ozonated water | 0.5 mg/L | 3 min | Chard | Nutrient solution | E. coli ATCC 35218TM | 5.3 b | 5.8 b | Log CFU/mL | DWC | [26] |
Roots | 4.87 | 4.41 | Log CFU/g | |||||||
Leaves | 4.81 | 4.32 | Log CFU/g | |||||||
2 mg/L | 3 min | Nutrient solution | 5.3 b | 5.0 b | Log CFU/mL | |||||
Roots | 4.87 | 5.21 | Log CFU/g | |||||||
Leaves | 4.81 | 4.34 | Log CFU/g | |||||||
Ozonated water | 5.8 mg/L | 3 doses | Japanese mustard spinach | Nutrient solution | Coliforms | 2.5 b | 2.5 b | Log CFU/mL | NFT | [55] a |
Leaves | 3.5 b | 3.8 b | Log CFU/g | |||||||
Nutrient solution | TAC | 5.2 b | 4.8 b | Log CFU/mL | ||||||
Leaves | 4.0 b | 5.0 b | Log CFU/g | |||||||
Sodium chloride | 150 mM | Sea fennel | Plant | Psychrophilic bacteria | 5.81 ± 0.28 | 5.25 ± 0.45 | Log CFU/g | DWC | [56] | |
Mesophilic bacteria | 5.40 ± 0.31 | 5.24 ± 0.36 | ||||||||
Enterobacteria | 5.15 ± 0.38 | 3.90 ± 0.98 | ||||||||
Yeast and mold | 3.89 ± 0.18 | 3.34 ± 0.12 | ||||||||
Citric acid | 1.5 mM | 14 days | Lettuce | Nutrient solution | E. coli generic | 3.3 ± 0.10 | 0 | Log CFU/mL | NR | [57] |
Roots | 0 ± 0.00 | 0 | Log CFU/g | |||||||
Leaves | 3.2 ± 0.10 | 0 | Log CFU/g | |||||||
2.5 mM | Nutrient solution | 3.3 ± 0.10 | 0 | Log CFU/mL | ||||||
Roots | 0 ± 0.00 | 0 | Log CFU/g | |||||||
Leaves | 3.2 ± 0.10 | 0 | Log CFU/g | |||||||
Saponin | 12.5 µg/mL | 35 days | Lettuce | Nutrient solution | E. coli surrogate cocktail | 0.89 | 2.32 | Log CFU/mL +1 | NFT | [27] |
25 µg/mL | 0.89 | 2.15 | Log CFU/mL +1 | |||||||
50 µg/mL | 0.89 | 3.21 | Log CFU/mL +1 | |||||||
100 µg/mL | 0.89 | 4.61 | Log CFU/mL +1 | |||||||
Sodium hypochlorite | 100 ppm | 1 h | Lettuce | Reservoir ABS plastic | Salmonella Typhimurium | 0.45 ± 0.19 | 0.68 ± 0.04 | Log reduction | NFT | [51] |
Top-cover UV-stabilized PVC | 0.62 ± 0.10 | 1.83 ± 0.43 | Log reduction | |||||||
Channel UV-stabilized PVC | 1.53 ± 0.27 | 0.68 ± 0.08 | Log reduction | |||||||
Drain line PVC | 2.36 ± 0.60 | 0.86 ± 0.43 | Log reduction | |||||||
200 ppm | Reservoir ABS | 0.45 ± 0.19 | 1.78 ± 0.32 | Log reduction | ||||||
Top-cover UV-stabilized PVC | 0.62 ± 0.10 | 3.21 ± 0.4 | Log reduction | |||||||
Channel UV-stabilized PVC | 1.53 ± 0.27 | 3.42 ± 0.19 | Log reduction | |||||||
Drain line PVC | 2.36 ± 0.60 | 0.89 ± 0.07 | Log reduction | |||||||
Sodium hypochlorite | 100 ppm | 3 h | Lettuce | Reservoir ABS plastic | Salmonella Typhimurium | 4.49 ± 0.07 | 3.90 ± 1.18 | Log reduction | NFT | [51] |
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 3.65 ± 0.61 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 4.22 ± 0.54 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 4.98 ± 0.14 | Log reduction | |||||||
200 ppm | Reservoir ABS | 4.49 ± 0.07 | 4.61 ± 0.33 | Log reduction | ||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 4.67 ± 0.30 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 5.07 ± 0.08 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 5.20 ± 0.00 | Log reduction | |||||||
Sodium hypochlorite | 5 ppm | Lettuce | Roots | E. coli O157:H7 | 1.0 × 102 | 1.67 × 102 | CFU/g | Ebb and Flow | [58] c | |
Urethane substrate | 8.0 × 102 | 3.67 × 102 | CFU/mL | |||||||
Roots | TAC | 1.87 × 102 | 9.67 × 102 | CFU/g | ||||||
Urethane substrate | 9.67 × 102 | 4.0 × 102 | CFU/mL | |||||||
Chlorine dioxide | 10 ppm | 1 h | Lettuce | Reservoir ABS | Salmonella | 0.45 ± 0.19 | 0.57 ± 0.07 | Log reduction | NFT | [51] |
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 0.62 ± 0.10 | 1.35 ± 0.23 | Log reduction | |||||||
Channel UV-stabilized PVC | 1.53 ± 0.27 | 1.37 ± 0.51 | Log reduction | |||||||
Drain line PVC | 2.36 ± 0.60 | 1.21 ± 0.21 | Log reduction | |||||||
50 ppm | Reservoir ABS | 0.45 ± 0.19 | 0.67 ± 0.10 | Log reduction | ||||||
Top-cover UV-stabilized PVC | 0.62 ± 0.10 | 4.14 ± 0.40 | Log reduction | |||||||
Channel UV-stabilized PVC | 1.53 ± 0.27 | 2.39 ± 0.29 | Log reduction | |||||||
Drain line PVC | 2.36 ± 0.60 | 2.46 ± 0.06 | Log reduction | |||||||
Chlorine dioxide | 10 ppm | 3 h | Lettuce | Reservoir ABS | Salmonella | 4.49 ± 0.07 | 5.08 | Log reduction | ||
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 3.90 ± 0.32 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 4.17 ± 0.28 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 4.87 ± 0.23 | Log reduction | |||||||
50 ppm | Reservoir ABS | 4.49 ± 0.07 | 5.34 ± 0.26 | Log reduction | ||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 4.13 ± 0.03 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 4.83 ± 0.23 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 5.11 ± 0.09 | Log reduction | |||||||
SaniDate® 12.0 | 100 ppm | 1 h | Lettuce | Reservoir ABS | Salmonella | 0.45 ± 0.19 | 5.60 ± 0.00 | Log reduction | NFT | [51] |
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 0.62 ± 0.10 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 1.53 ± 0.27 | 4.49 ± 0.35 | Log reduction | |||||||
Drain line PVC | 2.36 ± 0.60 | 4.24 ± 0.51 | Log reduction | |||||||
200 ppm | Reservoir ABS | 0.45 ± 0.19 | 5.60 ± 0.00 | Log reduction | ||||||
Top-cover UV-stabilized PVC | 0.62 ± 0.10 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 1.53 ± 0.27 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 2.36 ± 0.60 | 5.21 ± 0.00 | Log reduction | |||||||
SaniDate® 12.0 | 100 ppm | 3 h | Lettuce | Reservoir ABS | Salmonella | 4.49 ± 0.07 | 5.60 ± 0.00 | Log reduction | ||
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 5.03 ± 0.10 | Log reduction | |||||||
200 ppm | Reservoir ABS | 4.49 ± 0.07 | 5.60 ± 0.00 | Log reduction | ||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 5.20 ± 0.00 | Log reduction | |||||||
Green Shield® | 5% | 1 h | Lettuce | Reservoir ABS | Salmonella | 0.45 ± 0.19 | 5.60 ± 0.00 | Log reduction | NFT | [51] |
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 0.62 ± 0.10 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 1.53 ± 0.27 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 2.36 ± 0.60 | 5.21 ± 0.00 | Log reduction | |||||||
Green Shield® | 5% | 3 h | Lettuce | Reservoir ABS | Salmonella | 4.49 ± 0.07 | 5.60 ± 0.00 | Log reduction | ||
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 5.20 ± 0.00 | Log reduction | |||||||
PACE Kleen Grow™ | 2% | 1 h | Lettuce | Reservoir ABS | Salmonella | 0.45 ± 0.19 | 5.60 ± 0.00 | Log reduction | NFT | [51] |
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 0.62 ± 0.10 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 1.53 ± 0.27 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 2.36 ± 0.60 | 5.21 ± 0.00 | Log reduction | |||||||
PACE Kleen Grow™ | 2% | 3 h | Lettuce | Reservoir ABS | Salmonella | 4.49 ± 0.07 | 5.60 ± 0.00 | Log reduction | ||
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 5.20 ± 0.00 | Log reduction | |||||||
Virkon® | 1% | 1 h | Lettuce | Reservoir ABS | Salmonella | 4.49 ± 0.07 | 5.60 ± 0.00 | Log reduction | NFT | [51] |
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 5.21 ± 0.00 | Log reduction | |||||||
Virkon® | 1% | 3 h | Lettuce | Reservoir ABS | Salmonella | 4.49 ± 0.07 | 5.60 ± 0.00 | Log reduction | ||
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 5.20 ± 0.00 | Log reduction | |||||||
Zerotol® | 5% | 1 h | Lettuce | Reservoir ABS | Salmonella | 4.49 ± 0.07 | 5.60 ± 0.00 | Log reduction | NFT | [51] |
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 5.21 ± 0.00 | Log reduction | |||||||
Zerotol® | 5% | 3 h | Lettuce | Reservoir ABS | Salmonella | 4.49 ± 0.07 | 5.60 ± 0.00 | Log reduction | ||
Typhimurium | ||||||||||
Top-cover UV-stabilized PVC | 4.28 ± 0.34 | 5.18 ± 0.00 | Log reduction | |||||||
Channel UV-stabilized PVC | 3.68 ± 0.35 | 5.15 ± 0.00 | Log reduction | |||||||
Drain line PVC | 4.90 ± 0.16 | 5.20 ± 0.00 | Log reduction | |||||||
Rose Bengal | 100 µmol/L | 30 min | Lettuce | Seedlings | Salmonella | 5.88 ± 0.47 | 0.94 ± 0.42 | Log reduction/seedling | NR | [59] |
Typhimurium | ||||||||||
Rose Bengal + PDI f | 100 µmol/L and 180 W | 30 min | Lettuce | Seedlings | Salmonella | 5.88 ± 0.47 | 2.77 ± 0.49 | Log CFU/seedling | NR | [59] |
Typhimurium |
Intervention Parameters | Crop | Sample Type | Organism | Quantitative Response | System | Reference | ||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Concentration | Time | Control ± SD a | Treatment ± SD a | Units | |||||
UV | 30–80 mJ/cm2 @ 170–26 L/min; 80 W | 6 weeks | Lettuce | Nutrient solution | E. coli generic | 4.30 ± 0.40 | 0.80 ± 0.30 | CFU/L | Aquaponic | [48] |
Coliforms | 4.50 ± 0.40 | 1.60 ± 0.50 | CFU/L | |||||||
UV | 900 lm/432.6 W·s·m−2; 15 W | 118 days | Lettuce | Plant | TAC | 2.87 | 3.58 | Log CFU/g | Aquaponic; DWC | [60] |
Nutrient solution | 4.05 | 4.33 | Log CFU/mL | |||||||
Basil | Plant | 4.89 | 4.69 | Log CFU/g | ||||||
Nutrient solution | 4.05 | 4.33 | Log CFU/mL | |||||||
Lettuce | Plant | Coliforms | 0.12 | 0.95 | Log CFU/g | |||||
Nutrient solution | 2.21 | 1.68 | Log CFU/mL | |||||||
Basil | Plant | 1.68 | 1.79 | Log CFU/g | ||||||
Nutrient solution | 2.21 | 1.68 | Log CFU/mL | |||||||
UV-C 254 nm | 950 mJ/cm2 1.583 mW/cm2, 15 W | 10 min/6 doses | Sprouts—mung bean | Nutrient solution | Salmonella Typhimurium | 3.88 ± 0.31 | 2.98 ± 0.62 | Log CFU/mL | NR b | [61] |
DBD plasma water | 0.3 ppm of O3; 3.2 μM OH; 4.6 μM H2O2; 150 μM (NOx) | 5 min | Sprouts—soybean | Nutrient solution | TAC | NA | 4.30 | Log reduction | NR | [62] |
2 min | Salmonella Typhimurium | NA | 7.00 | Log reduction | ||||||
Heat treatment (dry) | 80 °C/85 °C | 3/5 days | Lettuce | Seeds | E. coli O157:H7 | Positive | Negative | NR | [62] | |
Heat treatment (steam) | 80 °C | 10 min | Lettuce | Styrofoam | E. coli O157:H7 | Positive | Positive | NR | [62] | |
80 °C | 20/30/60 min | Positive | Negative | |||||||
121 °C | 10/20 min | Positive | Negative | |||||||
Pseudomonas Jessenii LTH 5930 | 108 cfu/g | after inoculation, 12 h | Sprouts—mung bean | Seeds | Salmonella | ~107 | ~105 | CFU/g | NR | [63] |
Senftenberg | ||||||||||
before inoculation, 12 h | Sprouts—mung bean | Seeds | ~108 | <101 | CFU/g | |||||
Streptomyces sp. KACC 21110 | NR | 14 days | Lettuce | Nutrient solution | E. coli generic | 3.3 ± 0.10 | 2.3 ± 0.10 | Log CFU/mL | NR | [57] |
Roots | 0 ± 0.00 | 1.6 ± 0.10 | Log CFU/g | |||||||
Leaves | 3.2 ± 0.10 | 2.6 ± 0.10 | Log CFU/g | |||||||
Bacillus velezensis KACC 14540 | NR | 14 days | Nutrient solution | E. coli generic | 3.3 ± 0.10 | 0 ± 0.00 | Log CFU/mL | |||
Roots | 0 ± 0.00 | 0 ± 0.00 | Log CFU/g | |||||||
Leaves | 3.2 ± 0.10 | 1.8 ± 0.10 | Log CFU/g | |||||||
Bacillus velezensis KACC 14542 | NR | 14 days | Nutrient solution | E. coli generic | 3.3 ± 0.10 | 0 ± 0.00 | Log CFU/mL | |||
Roots | 0 ± 0.00 | 0 ± 0.00 | Log CFU/g | |||||||
Leaves | 3.2 ± 0.10 | 2.1 ± 0.10 | Log CFU/g | |||||||
PGPR c all isolates mixed | NR | 14 days | Nutrient solution | E. coli generic | 3.3 ± 0.10 | 2.1 ± 0.10 | Log CFU/mL | |||
Roots | 0 ± 0.00 | 1.1 ± 0.10 | Log CFU/g | |||||||
Leaves | 3.2 ± 0.10 | 1.9 ± 0.10 | Log CFU/g |
Quality Criteria a | Number of Intervention Studies (%) |
---|---|
Raw data | |
No | 3 (9.4) |
Some raw data b | 5 (15.6) |
Yes | 28 (87.5) |
Mean ± standard deviation | 15 (46.9) |
Mean ± standard error | 4 (12.5) |
Mean | 15 (46.9) |
D-value ± standard deviation | 1 (3.1) |
Incidence (no. positive sample/total number of samples) | 1 (3.1) |
Control type | |
Non-treated | 27 (84.4) |
Non-inoculated | 4 (12.5) |
Not reported | 1 (3.1) |
Technical replication | |
Triplicate or more | 22 (68.8) |
Duplicate | 6 (21.9) |
Single | 1 (3.1) |
Not reported | 3 (9.4) |
Experiment replication | |
Triplicate or more | 15 (46.9) |
Duplicate | 7 (21.9) |
Not reported | 10 (31.3) |
Methodology | |
Sufficient detail to reproduce the study | 11 (43.4) |
Insufficient details | 21 (65.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivey, M.L.L.; Mensah, A.A.; Diekmann, F.; Ilic, S. Food Safety in Hydroponic Food Crop Production: A Review of Intervention Studies to Control Human Pathogens. Foods 2025, 14, 2308. https://doi.org/10.3390/foods14132308
Ivey MLL, Mensah AA, Diekmann F, Ilic S. Food Safety in Hydroponic Food Crop Production: A Review of Intervention Studies to Control Human Pathogens. Foods. 2025; 14(13):2308. https://doi.org/10.3390/foods14132308
Chicago/Turabian StyleIvey, Melanie L. Lewis, Abigail Aba Mensah, Florian Diekmann, and Sanja Ilic. 2025. "Food Safety in Hydroponic Food Crop Production: A Review of Intervention Studies to Control Human Pathogens" Foods 14, no. 13: 2308. https://doi.org/10.3390/foods14132308
APA StyleIvey, M. L. L., Mensah, A. A., Diekmann, F., & Ilic, S. (2025). Food Safety in Hydroponic Food Crop Production: A Review of Intervention Studies to Control Human Pathogens. Foods, 14(13), 2308. https://doi.org/10.3390/foods14132308