Effect of Fruit Powders as Natural Alternatives to Sodium Nitrite on Lipid Oxidation in Clean-Label Salami
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Obtaining the Fruit Powder
2.3. Manufacture of Salami Formulas
- SI-C: Nitrite-free smoked and cooked salami (negative control sample);
- SI-CN: Smoked and cooked salami with added sodium nitrite (positive control);
- SI-SCP90, SI-SCP200, SI-SCP300: Smoked and cooked nitrite-free salami with sour cherry powder added to provide a TPC of 90, 200, and 300 mg GAE/kg of processed meat;
- SI-BCP90, SI-BCP200, SI-BCP300: Smoked and cooked nitrite-free salami with blackcurrant powder added to provide a TPC of 90, 200, and 300 mg GAE/kg of processed meat;
- SI-LP90, SI-LP200, SI-LP300: Smoked and cooked nitrite-free salami with lingonberry powder added to provide a TPC of 90, 200, and 300 mg GAE/kg of processed meat;
- SII-C: Nitrite-free smoked and scalded salami (negative control sample);
- SII-CN: Smoked and scalded salami with added sodium nitrite (positive control);
- SII-SCP90, SII-SCP200, SII-SCP300: Smoked and scalded nitrite-free salami with sour cherry powder added to provide a TPC of 90, 200, and 300 mg GAE/kg of processed meat;
- SII-BCP90, SII-BCP200, SII-BCP300: Smoked and scalded nitrite-free salami with blackcurrant powder added to provide a TPC of 90, 200, and 300 mg GAE/kg of processed meat;
- SII-LP90, SII-LP200, SII-LP300: Smoked and scalded nitrite-free salami with lingonberry powder added to provide a TPC of 90, 200, and 300 mg GAE/kg of processed meat.
2.4. Phytochemical Profile and Antioxidant Activity of Fruit Powder
2.4.1. Obtaining the Extract for Evaluating the Total Phenolic Content, Total Flavonoid Content, and Antioxidant Activity
2.4.2. Evaluation of Total Phenolic Content
2.4.3. Evaluation of Total Flavonoid Content (TFC)
2.4.4. Evaluation of Monomeric Anthocyanin Content
2.4.5. Determination of L-Ascorbic Acid
2.4.6. Evaluation of the Antioxidant Activity of Fruit Powder via 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Method
2.4.7. Assessment of Antioxidant Activity by Ferric Reducing Antioxidant Power (FRAP) Assay
2.5. Proximate Composition and Energy Value Evaluation of Salami Formulations
2.6. Assessing the Progression of Lipid Oxidation
2.6.1. Peroxid Value (PV)
2.6.2. Para-Anisidine Value (pAV)
2.6.3. Inhibition of Oxidation (IO)
2.6.4. TOTOX Value
2.6.5. Thiobarbituric Acid (TBA) Value
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Profile and Antioxidant Activity of Fruit Powder
3.1.1. Total Phenolic Content (TPC)
3.1.2. Total Flavonoid Content (TFC)
3.1.3. Total Monomeric Anthocyanin Content (TMA)
3.1.4. L-Ascorbic Acid Content (AsAc)
3.1.5. Antioxidant Activities (FRAP and DPPH Assays)
3.2. The Proximate Composition of Salami Formulations
3.3. Progression of Lipid Oxidation
3.3.1. Peroxide Value
3.3.2. Inhibition of Oxidation
3.3.3. Para-Anisidine Value (pAV)
3.3.4. TOTOX Value
3.3.5. TBA Value
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Sewalt, V.J.H.; Robbins, K.; Houser, T.A. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Sci. 2005, 69, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef] [PubMed]
- Ferysiuk, K.; Wójciak, K.M. Reduction of Nitrite in Meat Products through the Application of Various Plant-Based Ingredients. Antioxidants 2020, 9, 711. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food—Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef]
- Kaloudi, A.-N.; Karageorgou, A.; Goliomytis, M.; Simitzis, P. Preliminary Exploration of Natural Polyphenols and/or Herbal Mix Replacing Sodium Nitrate to Improve the Storage Quality of Pork Sausage. Appl. Sci. 2025, 15, 789. [Google Scholar] [CrossRef]
- Di Vita, G.; Blanc, S.; Mancuso, T.; Massaglia, S.; La Via, G.; D’Amico, M. Harmful Compounds and Willingness to Buy for Reduced-Additives Salami. An Outlook on Italian Consumers. Int. J. Environ. Res. Public Health 2019, 16, 2605. [Google Scholar] [CrossRef]
- Teixeira, A.; Rodrigues, S. Consumer perceptions towards healthier meat products. Curr. Opin. Food Sci. 2021, 38, 147–154. [Google Scholar] [CrossRef]
- Karre, L.; Lopez, K.; Getty, K.J.K. Natural antioxidants in meat and poultry products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef]
- Kausar, T.; Azad, Z.R.A.A.; Anwar, S.; Shahid, S.M.A.; Kausar, M.A. Application of natural antioxidants for the formulation of functional meat products. Neuro Pharmac J. 2021, 6, 269–276. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, M.; Law, C.L.; Mujumdar, A.S. Novel strategies for controlling nitrite content in prepared dishes: Current status, potential benefits, limitations and future challenges. Food Res. Int. 2023, 170, 112984. [Google Scholar] [CrossRef]
- Zhu, W.; Han, M.; Bu, Y.; Li, X.; Yi, S.; Xu, Y.; Li, J. Plant polyphenols regulating myoglobin oxidation and color stability in red meat and certain fish: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 2276–2288. [Google Scholar] [CrossRef] [PubMed]
- Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural Phenolic Compounds for the Control of Oxidation, Bacterial Spoilage, and Foodborne Pathogens in Meat. Foods 2020, 9, 794. [Google Scholar] [CrossRef]
- Lee, J.A.; Kang, D.Y.; Kim, J.K.; Lim, S.M.; Choi, N.W.; Choi, M.W.; Kim, H.Y. Effects of Addition of Strawberry and Red Beet Powder on the Antioxidant Activity and Quality Characteristics of Beef Patty. Resour. Sci. Res. 2020, 2, 1–8. [Google Scholar] [CrossRef]
- Menchetti, L.; Brecchia, G.; Branciari, R.; Barbato, O.; Fioretti, B.; Codini, M.; Bellezza, E.; Trabalza-Marinucci, M.; Miraglia, D. The effect of Goji berries (Lycium barbarum) dietary supplementation on rabbit meat quality. Meat Sci. 2020, 161, 108018. [Google Scholar] [CrossRef]
- Uearreeloet, P.; Konsue, N. Effect of gac fruit powder on quality and nitrosation activity of meat product. J. Microbiol. Biotechnol. Food Sci. 2016, 6, 786. [Google Scholar] [CrossRef]
- Stoica, M.; Antohi, V.M.; Alexe, P.; Ivan, A.S.; Stanciu, S.; Stoica, D.; Zlati, M.L.; Stuparu-Cretu, M. New Strategies for the Total/Partial Replacement of Conventional Sodium Nitrite in Meat Products: A Review. Food Bioprocess Technol. 2022, 15, 514–538. [Google Scholar] [CrossRef]
- Huang, X.; Sun, L.; Dong, K.; Wang, G.; Luo, P.; Tang, D.; Huang, Q. Mulberry fruit powder enhanced the antioxidant capacity and gel properties of hammered minced beef: Oxidation degree, rheological, and structure. LWT 2022, 154, 112648. [Google Scholar] [CrossRef]
- Najeeb, A.P.; Mandal, P.K.; Pal, U.K. Efficacy of fruits (red grapes, gooseberry and tomato) powder as natural preservatives in restructured chicken slices. Int. Food Res. J. 2014, 21, 2431–2436. Available online: http://www.ifrj.upm.edu.my/21%20(06)%202014/52%20IFRJ%2021%20(06)%202014%20Mandal%20533.pdf (accessed on 5 February 2025).
- Duthie, G.; Campbell, F.; Bestwick, C.; Stephen, S.; Russell, W. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health. Nutrients 2013, 5, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Fathy, A.M.; Abdel-Rahman, A.M.A.; Ramadan, E.S.A.; Darwish, S.M.I. Sustainable Preservation of Beef Burgers Using Blueberry. Assiut J. Agric. Sci. 2023, 54, 1–22. [Google Scholar] [CrossRef]
- Anton, D.; Koskar, J.; Raudsepp, P.; Meremäe, K.; Kaart, T.; Püssa, T.; Roasto, M. Antimicrobial and Antioxidative Effects of Plant Powders in Raw and Cooked Minced Pork. Foods 2019, 8, 661. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Peñalver, R.; Ros, G.; Nieto, G. Substitution of synthetic nitrates and antioxidants by spices, fruits and vegetables in Clean Label Spanish chorizo. Food Res. Int. 2021, 139, 109835. [Google Scholar] [CrossRef]
- Cadariu, A.I.; Cocan, I.; Negrea, M.; Alexa, E.; Obistioiu, D.; Hotea, I.; Radulov, I.; Poiana, M.-A. Exploring the Potential of Tomato Processing Byproduct as a Natural Antioxidant in Reformulated Nitrite-Free Sausages. Sustainability 2022, 14, 11802. [Google Scholar] [CrossRef]
- Cocan, I.; Cadariu, A.-I.; Negrea, M.; Alexa, E.; Obistioiu, D.; Radulov, I.; Poiana, M.-A. Investigating the Antioxidant Potential of Bell Pepper Processing By-Products for the Development of Value-Added Sausage Formulations. Appl. Sci. 2022, 12, 12421. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Rupérez, P.; Saura-Calixto, F. Effect of Drying Temperature on the Stability of Polyphenols and Antioxidant Activity of Red Grape Pomace Peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- FAO Agricultural Services Bulletin No.119. Fruit and Vegetable Processing—Ch05 General Procedures for Fruit and Vegetable Preservation. 1995. Available online: http://www.fao.org/3/V5030E/V5030E0b.htm#5.2%20Preservation%20by%20reduction%20of%20water%20content:%20drying/dehydration%20and%20concentration (accessed on 15 March 2025).
- Litwinek, D.; Gumul, D.; Łukasiewicz, M.; Zięba, T.; Kowalski, S. The Effect of Red Potato Pulp Preparation and Stage of Its Incorporation into Sourdough or Dough on the Quality and Health-Promoting Value of Bread. Appl. Sci. 2023, 13, 7670. [Google Scholar] [CrossRef]
- Daukšienė, J.; Burdulienė, K.; Daukšys, G.; Paulauskaitė, L.; Burdulis, D. The Influence of Raw Material Preparation on the Yield of Bioactive Substances in Lingonberry (Vaccinium vitis-idaea L.) Fruits. Chemija 2024, 35, 1–8. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef]
- Darniadi, S.; Ifie, I.; Ho, P.; Murray, B.S. Evaluation of total monomeric anthocyanin, total phenolic content and individual anthocyanins of foam-mat freeze-dried and spray-dried blueberry powder. J. Food Meas. Charact. 2019, 13, 1599–1606. [Google Scholar] [CrossRef]
- Zhaoa, W.; Caoa, P.; Zhua, Y.; Liua, S.; Gaob, H.W.; Huang, C. Rapid detection of vitamin c content in fruits and vegetables using a digital camera and color reaction. Quim. Nova 2020, 43, 1421–1430. [Google Scholar] [CrossRef]
- Žlabur, J.Š.; Mikulec, N.; Doždor, L.; Duralija, B.; Galić, A.; Voća, S. Preservation of Biologically Active Compounds and Nutritional Potential of Quick-Frozen Berry Fruits of the Genus Rubus. Processes 2021, 9, 1940. [Google Scholar] [CrossRef]
- Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 2011, 44, 391–396. [Google Scholar] [CrossRef]
- Poiana, M.-A.; Alexa, E.; Radulov, I.; Raba, D.-N.; Cocan, I.; Negrea, M.; Misca, C.D.; Dragomir, C.; Dossa, S.; Suster, G. Strategies to Formulate Value-Added Pastry Products from Composite Flours Based on Spelt Flour and Grape Pomace Powder. Foods 2023, 12, 3239. [Google Scholar] [CrossRef]
- Metzner Ungureanu, C.-R.; Poiana, M.-A.; Cocan, I.; Lupitu, A.I.; Alexa, E.; Moigradean, D. Strategies to Improve the Thermo-Oxidative Stability of Sunflower Oil by Exploiting the Antioxidant Potential of Blueberries Processing Byproducts. Molecules 2020, 25, 5688. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Forouzesh, A.; Forouzesh, F.; Foroushani, S.S.; Forouzesh, A. A New Method for Calculating Fat Content and Determining Appropriate Fat Levels in Foods. Iran. J. Public Health 2023, 52, 1038–1047. [Google Scholar] [CrossRef]
- ISO 3960:2009; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric Visual Endpoint Determination. International Organization for Standardization (ISO): Geneva, Switzerland, 2009.
- Seo, J.K.; Parvin, R.; Park, J.; Yang, H.S. Utilization of Astaxanthin as a Synthetic Antioxidant Replacement for Emulsified Sausages. Antioxidants 2021, 10, 407. [Google Scholar] [CrossRef]
- ISO 6885:2008; Animal and Vegetable Fats and Oils—Determination of Anisidine Value. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- Mariod, A.A.; Matthäus, B.; Eichner, K.; Hussein, H.I. Antioxidant activity of extracts from Sclerocarya birrea kernel oil cake. Grasas Aceites 2006, 57, 361–366. [Google Scholar] [CrossRef]
- Jones, T. Methods and Their Applications for Measuring and Managing Lipid Oxidation: Meat, Poultry, and Seafood Products. In Natural Antioxidants. Applications in Foods of Animal Origin; Banerjee, R., Verma, A.K., Siddiqui, M.W., Eds.; Apple Academic Press, Inc.: Boca Raton, FL, USA, 2017; pp. 203–260. [Google Scholar]
- Tran, T.T.T.; Ton, N.M.N.; Nguyen, T.T.; Le, V.V.M.; Sajeev, D.; Schilling, M.W.; Dinh, T.T.N. Application of natural antioxidant extract from guava leaves (Psidium guajava L.) in fresh pork sausage. Meat Sci. 2020, 165, 108106. [Google Scholar] [CrossRef]
- Kim, J.S. Antioxidant Activities of Selected Berries and Their Free, Esterified, and Insoluble-Bound Phenolic Acid Contents. Prev. Nutr. Food Sci. 2018, 23, 35–45. [Google Scholar] [CrossRef]
- Sadowska, A.; Rakowska, R.; Świderski, F.; Kulik, K.; Hallmann, E. Properties and microstructure of blackcurrant powders prepared using a new method of fluidized-bed jet milling and drying versus other drying methods. CyTA-J. Food 2019, 17, 439–446. [Google Scholar] [CrossRef]
- Borowiec, K.; Stachniuk, A.; Szwajgier, D.; Trzpil, A. Polyphenols composition and the biological effects of six selected small dark fruits. Food Chem. 2022, 391, 133281. [Google Scholar] [CrossRef] [PubMed]
- Papp, N.; Blázovics, A.; Fébel, H.; Salido, S.; Altarejos, J.; Fehér, E.; Kocsis, I.; Szentmihályi, K.; Abrankó, L.; Hegedűs, A.; et al. Antihyperlipidemic Effects of Sour Cherries Characterized by Different In Vitro Antioxidant Power and Polyphenolic Composition. Plant Foods Hum. Nutr. 2015, 70, 408–413. [Google Scholar] [CrossRef]
- Sokół-Łętowska, A.; Kucharska, A.Z.; Hodun, G.; Gołba, M. Chemical Composition of 21 Cultivars of Sour Cherry (Prunus cerasus) Fruit Cultivated in Poland. Molecules 2020, 25, 4587. [Google Scholar] [CrossRef]
- Milić, A.; Daničić, T.; Tepić Horecki, A.; Šumić, Z.; Bursać Kovačević, D.; Putnik, P.; Pavlić, B. Maximizing Contents of Phytochemicals Obtained from Dried Sour Cherries by Ultrasound-Assisted Extraction. Separations 2021, 8, 155. [Google Scholar] [CrossRef]
- Yaman, M. Evaluation of genetic diversity by morphological, biochemical and molecular markers in sour cherry genotypes. Mol. Biol. Rep. 2022, 49, 5293–5301. [Google Scholar] [CrossRef]
- Blejan, A.M.; Nour, V.; Păcularu-Burada, B.; Popescu, S.M. Wild bilberry, blackcurrant, and blackberry by-products as a source of nutritional and bioactive compounds. Int. J. Food Prop. 2023, 26, 1579–1595. [Google Scholar] [CrossRef]
- Lee, S.G.; Vance, T.M.; Nam, T.G.; Kim, D.O.; Koo, S.I.; Chun, O.K. Evaluation of pH differential and HPLC methods expressed as cyanidin-3-glucoside equivalent for measuring the total anthocyanin contents of berries. J. Food Meas. Charact. 2016, 10, 562–568. [Google Scholar] [CrossRef]
- Ozola, L.; Kampuse, S. The influence of drying method to the changes of bioactive compounds in lingonberry by-products. Agron. Res. 2018, 16, 1781–1795. [Google Scholar] [CrossRef]
- Dróżdż, P.; Šėžienė, V.; Pyrzynska, K. Phytochemical Properties and Antioxidant Activities of Extracts from Wild Blueberries and Lingonberries. Plant Foods Hum. Nutr. 2017, 72, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Koponen, J.M.; Happonen, A.M.; Mattila, P.H.; Törrönen, A.R. Contents of Anthocyanins and Ellagitannins in Selected Foods Consumed in Finland. J. Agric. Food Chem. 2007, 55, 1612–1619. [Google Scholar] [CrossRef]
- Urbonaviciene, D.; Bobinaite, R.; Viskelis, P.; Viskelis, J.; Petruskevicius, A.; Puzeryte, V.; Cesoniene, L.; Daubaras, R.; Klavins, L.; Bobinas, C. Nutritional and Physicochemical Properties of Wild Lingonberry (Vaccinium vitis-idaea L.)—Effects of Geographic Origin. Molecules 2023, 28, 4589. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Nowicka, P.; Laskowski, P.; Oszmiański, J. Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. J. Agric. Food Chem. 2014, 62, 12332–12345. [Google Scholar] [CrossRef]
- Order No. 210 of 31 August 2006 for the Approval of the Norms Regarding the Marketing of Meat Products. Published in Official Gazette No. 10 of 8 January 2007. Available online: http://www.legex.ro/Ordin-210-2006-75963.aspx (accessed on 20 March 2024).
- Mahapatra, G.; Biswas, S.; Banerjee, R. Improving the quality and shelf-life of chevon meatballs by incorporating fruit and fruit by-products. Indian J. Anim. Sci. 2021, 90, 1655–1662. [Google Scholar] [CrossRef]
- Fu, Q.; Song, S.; Xia, T.; Wang, R. Effects of Cherry (Prunus cerasus L.) Powder Addition on the Physicochemical Properties and Oxidation Stability of Jiangsu-Type Sausage during Refrigerated Storage. Foods 2022, 11, 3590. [Google Scholar] [CrossRef]
- Zaini, H.B.M.; Sintang, M.D.B.; Pindi, W. The roles of banana peel powders to alter technological functionality, sensory and nutritional quality of chicken sausage. Food Sci. Nutr. 2020, 8, 5497–5507. [Google Scholar] [CrossRef] [PubMed]
- López-Vargas, J.H.; Fernández-López, J.; Pérez-Álvarez, J.Á.; Viuda-Martos, M. Quality characteristics of pork burger added with albedo-fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) Co-products. Meat Sci. 2014, 97, 270–276. [Google Scholar] [CrossRef]
- Zanardi, E.; Ghidini, S.; Conter, M.; Ianieri, A. Mineral composition of Italian salami and effect of NaCl partial replacement on compositional, physico-chemical and sensory parameters. Meat Sci. 2010, 86, 742–744. [Google Scholar] [CrossRef]
- Yi, G.; Haug, A.; Nyquist, N.F.; Egelandsdal, B. Hydroperoxide formation in different lean meats. Food Chem. 2013, 141, 2656–2665. [Google Scholar] [CrossRef]
- Gray, J.I.; Gomaa, E.A.; Buckley, D.J. Oxidative quality and shelf life of meats. Meat Sci. 1996, 43, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Senecal, A.; Chinachoti, P.; Faustman, C. Effect of Water Activity on Lipid Oxidation and Protein Solubility in Freeze-Dried Beef During Storage. J. Agric. Food Chem. 2002, 50, 3959–3965. [Google Scholar] [CrossRef]
- Feiner, G. Meat Products Handbook: Practical Science and Technology; Woodhead Publishing Limited: Boca Raton, FL, USA, 2006; pp. 19–32. [Google Scholar]
- CODEX-STAN 211-1999; Codex Alimentarius Commission, Codex Standard for Named Animal Fats, Food and Agricultural Organization of the United Nations and the World Health Organization. Available online: https://www.fao.org/4/y2774e/y2774e05.htm#bm5.1 (accessed on 11 February 2025).
- Ahmad, S.R.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, M.A. Fruit-based Natural Antioxidants in Meat and Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Orellana-Palacios, J.C.; Aghababaei, F.; Gonzalez-Serrano, D.J.; Moreno, A.; Lorenzo, J.M. Plant by-Product Antioxidants: Control of Protein–Lipid Oxidation in Meat and Meat Products. LWT 2022, 169, 114003. [Google Scholar] [CrossRef]
- Reddy, D.M.; Reddy, G.V.B.; Mandal, P.K. Application of Natural Antioxidants in Meat and Meat Products—A Review. Food Nutr. J. 2018, 3, 173. [Google Scholar] [CrossRef]
- Mansour, H.M.M.; El-Sohaimy, S.A.; Zeitoun, A.M.; Abdo, E.M. Effect of Natural Antioxidants from Fruit Leaves on the Oxidative Stability of Soybean Oil during Accelerated Storage. Antioxidants 2022, 11, 1691. [Google Scholar] [CrossRef]
- Grompone, M.A. Anisidine value as a measurement of the latent damage of fats. Grasas Aceites 1991, 42, 8–13. [Google Scholar] [CrossRef]
- Bekdeşer, B.; Esin Çelik, S.; Bener, M.; Dondurmacıoğlu, F.; Yıldırım, E.; Nida Yavuz, E.; Apak, R. Determination of primary and secondary oxidation products in vegetable oils with gold nanoparticle based fluorometric turn-on nanosensor: A new total oxidation value. Food Chem. 2024, 434, 137426. [Google Scholar] [CrossRef]
- Global Organization for EPA and DHA Omega-3. GOED Voluntary Monograph, Version 8.1. 6 January 2022. Available online: https://goedomega3.com/goed-monograph (accessed on 17 March 2025).
- Jin, S.K.; Kim, G.D.; Jeong, J.Y. Evaluation of the Effect of Inhibiting Lipid Oxidation of Natural Plant Sources in a Meat Model System. J. Food Qual. 2021, 2021, 6636335. [Google Scholar] [CrossRef]
- Hęś, M.; Korczak, J.; Gramza, A. Changes of lipid oxidation degrees and their influence on protein nutritive value of frozen meat products. Pol. J. Food Nutr. Sci. 2007, 57, 323–328. Available online: https://journal.pan.olsztyn.pl/pdf-98069-30649?filename=CHANGES%20OF%20LIPID.pdf (accessed on 10 March 2025).
- Reitznerová, A.; Šuleková, M.; Nagy, J.; Marcinčák, S.; Semjon, B.; Čertík, M.; Klempová, T. Lipid Peroxidation Process in Meat and Meat Products: A Comparison Study of Malondialdehyde Determination between Modified 2-Thiobarbituric Acid Spectrophotometric Method and Reverse-Phase High-Performance Liquid Chromatography. Molecules 2017, 22, 1988. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.R.; Mies, P.D.; Baird, B.E.; Pfeiffer, K.D.; Ellebracht, J.W.; Savell, J.W. Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles. Meat Sci. 2005, 70, 665–682. [Google Scholar] [CrossRef] [PubMed]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M.; McPhail, N.G.; Kearney, G.; Clarke, F.; Warner, R.D. Beef longissimus eating quality increases up to 20 weeks of storage and is unrelated to meat colour at carcass grading. Anim. Prod. Sci. 2015, 55, 174–179. [Google Scholar] [CrossRef]
Sample | Pork Meat (g) | Pork Fat (g) | Salt (g) | Salt + 0.5% (w/w) Sodium Nitrite (g) | Spice Mixture (g) | SCP (g) | BCP (g) | LP (g) |
---|---|---|---|---|---|---|---|---|
SI-C | 780 | 220 | 18 | - | 15 | - | - | - |
SI-CN | 780 | 220 | - | 18 | 15 | - | - | - |
SI-SCP90 | 780 | 220 | 18 | - | 15 | 9.42 | - | - |
SI-SCP200 | 780 | 220 | 18 | - | 15 | 20.94 | - | - |
SI-SCP300 | 780 | 220 | 18 | - | 15 | 31.41 | - | - |
SI-BCP90 | 780 | 220 | 18 | - | 15 | - | 6.13 | - |
SI-BCP200 | 780 | 220 | 18 | - | 15 | - | 13.62 | - |
SI-BCP300 | 780 | 220 | 18 | - | 15 | - | 20.43 | - |
SI-LP90 | 780 | 220 | 18 | - | 15 | - | - | 7.83 |
SI-LP200 | 780 | 220 | 18 | - | 15 | - | - | 17.40 |
SI-LP300 | 780 | 220 | 18 | - | 15 | - | - | 26.10 |
Sample | Pork meat (g) | Pork Fat (g) | Salt (g) | Salt + 0.5% (w/w) Sodium Nitrite (g) | Spice Mixture (g) | SCP (g) | BCP (g) | LP (g) |
---|---|---|---|---|---|---|---|---|
SII-C | 800 | 200 | 18 | - | 28 | - | - | - |
SII-CN | 800 | 200 | - | 18 | 28 | - | - | - |
SII-SCP90 | 800 | 200 | 18 | - | 28 | 9.42 | - | - |
SII-SCP200 | 800 | 200 | 18 | - | 28 | 20.94 | - | - |
SII-SCP300 | 800 | 200 | 18 | - | 28 | 31.41 | - | - |
SII-BCP90 | 800 | 200 | 18 | - | 28 | - | 6.13 | - |
SII-BCP200 | 800 | 200 | 18 | - | 28 | - | 13.62 | - |
SII-BCP300 | 800 | 200 | 18 | - | 28 | - | 20.43 | - |
SII-LP90 | 800 | 200 | 18 | - | 28 | - | 7.83 | |
SII-LP200 | 800 | 200 | 18 | - | 28 | - | - | 17.40 |
SII-LP300 | 800 | 200 | 18 | - | 28 | - | - | 26.10 |
Fruit Powder | TPC (mg GAE/g d.w.) | TFC (mg QE/g d.w.) | TMA (mg C3G/100 g d.w.) | AsAc (mg/100 g d.w.) | FRAP (μM Fe2+/g d.w.) | DPPH (μM TE/g d.w.) |
---|---|---|---|---|---|---|
BCP | 15.45 ± 0.51 a | 6.98 ± 0.19 a | 859.04 ± 1.89 a | 621.09 ± 1.73 a | 419.41 ± 1.39 a | 307.44 ± 1.57 a |
LP | 12.07 ± 0.38 b | 6.11 ± 0.14 b | 312.58 ± 1.75 b | 64.52 ± 0.58 b | 370.47 ± 1.27 b | 278.65 ± 1.32 b |
SCP | 10.01 ± 0.24 c | 4.85 ± 0.11 c | 509.73 ± 1.43 c | 45.91 ± 0.47 c | 294.59 ± 1.18 c | 220.71 ± 1.24 c |
Sample | Proximate Composition | Energy Value (kcal/100 g) | |||||
---|---|---|---|---|---|---|---|
Moisture (g/100 g) | Protein (g/100 g) | Lipids (g/100 g) | Ash (g/100 g) | NaCl (g/100 g) | CRB (g/100 g) | ||
SI-C | 61.24 ± 0.06 a | 11.52 ± 0.06 a | 22.02 ± 0.06 a | 1.85 ± 0.02 e | 2.19 ± 0.03 a | 1.18 | 248.98 |
SI-CN | 61.21 ± 0.04 a | 11.50 ± 0.05 a | 22.01 ± 0.07 a | 1.86 ± 0.01 e | 2.21 ± 0.02 a | 1.21 | 248.92 |
SI-SCP90 | 60.87 ± 0.03 d | 11.44 ± 0.05 a | 21.84 ± 0.04 b | 1.98 ± 0.01 d | 2.21 ± 0.01 a | 1.66 | 248.95 |
SI-SCP200 | 60.55 ± 0.04 e | 11.37 ± 0.03 a | 21.62 ± 0.06 c | 2.11 ± 0.02 b | 2.23 ± 0.02 a | 2.12 | 248.54 |
SI-SCP300 | 60.27 ± 0.05 g | 11.31 ± 0.05 a | 21.43 ± 0.07 c | 2.19 ± 0.03 a | 2.22 ± 0.01 a | 2.58 | 248.42 |
SI-BCP90 | 61.06 ± 0.05 b | 11.45 ± 0.04 a | 21.90 ± 0.05 b | 1.93 ± 0.02 d | 2.21 ± 0.03 a | 1.45 | 248.70 |
SI-BCP200 | 60.82 ± 0.04 d | 11.43 ± 0.05 a | 21.76 ± 0.06 b | 2.01 ± 0.01 c | 2.21 ± 0.01 a | 1.78 | 248.63 |
SI-BCP300 | 60.61 ± 0.05 e | 11.38 ± 0.03 a | 21.63 ± 0.05 c | 2.08 ± 0.02 b | 2.22 ± 0.03 a | 2.08 | 248.50 |
SI-LP90 | 60.95 ± 0.03 c | 11.44 ± 0.04 a | 21.87 ± 0.06 b | 1.90 ± 0.02 d | 2.22 ± 0.01 a | 1.61 | 249.08 |
SI-LP200 | 60.69 ± 0.04 e | 11.40 ± 0.05 a | 21.69 ± 0.06 c | 1.97 ± 0.03 d | 2.23 ± 0.02 a | 2.01 | 248.91 |
SI-LP300 | 60.46 ± 0.03 f | 11.37 ± 0.04 a | 21.53 ± 0.05 c | 2.03 ± 0.02 c | 2.24 ± 0.03 a | 2.36 | 248.75 |
SII-C | 63.27 ± 0.05 a | 12.63 ± 0.04 a | 19.51 ± 0.03 a | 1.92 ± 0.03 d | 2.10 ± 0.02 a | 0.57 | 228.39 |
SII-CN | 63.28 ± 0.07 a | 12.65 ± 0.06 a | 19.53 ± 0.04 a | 1.93 ± 0.02 d | 2.13 ± 0.03 a | 0.48 | 228.27 |
SII-SCP90 | 62.88 ± 0.03 d | 12.57 ± 0.05 a | 19.37 ± 0.05 b | 2.07 ± 0.02 b | 2.12 ± 0.01 a | 0.99 | 228.59 |
SII-SCP200 | 62.56 ± 0.04 f | 12.50 ± 0.04 a | 19.21 ± 0.06 b | 2.18 ± 0.03 b | 2.13 ± 0.02 a | 1.42 | 228.59 |
SII-SCP300 | 62.31 ± 0.05 g | 12.43 ± 0.05 a | 19.02 ± 0.05 b | 2.28 ± 0.04 a | 2.15 ± 0.03 a | 1.81 | 228.13 |
SII-BCP90 | 63.05 ± 0.04 b | 12.59 ± 0.03 a | 19.43 ± 0.03 b | 2.02 ± 0.02 c | 2.10 ± 0.03 a | 0.81 | 228.45 |
SII-BCP200 | 62.82 ± 0.05 d | 12.55 ± 0.06 a | 19.30 ± 0.04 b | 2.11 ± 0.02 b | 2.11 ± 0.02 a | 1.11 | 228.35 |
SII-BCP300 | 62.61 ± 0.04 f | 12.51 ± 0.05 a | 19.19 ± 0.03 b | 2.19 ± 0.01 b | 2.12 ± 0.01 a | 1.38 | 228.28 |
SII-LP90 | 62.95 ± 0.03 c | 12.59 ± 0.03 a | 19.40 ± 0.05 b | 1.99 ± 0.02 c | 2.10 ± 0.03 a | 0.97 | 228.85 |
SII-LP200 | 62.71 ± 0.04 e | 12.54 ± 0.05 a | 19.25 ± 0.07 b | 2.08 ± 0.02 b | 2.12 ± 0.01 a | 1.31 | 228.60 |
SII-LP300 | 62.48 ± 0.05 f | 12.48 ± 0.04 a | 19.11 ± 0.06 b | 2.15 ± 0.03 b | 2.13 ± 0.02 a | 1.65 | 228.52 |
Sample | IO (%) | |
---|---|---|
Day 15 | Day 30 | |
SI-CN | 72.72 ± 0.24 a | 53.59 ± 0.23 a |
SI-SCP90 | 47.75 ± 0.21 i | 24.68 ± 0.11 i |
SI-SCP200 | 58.83 ± 0.16 g | 34.85 ± 0.15 h |
SI-SCP300 | 66.85 ± 0.19 d | 42.93± 0.18 e |
SI-BCP90 | 55.73 ± 0.12 h | 41.90 ± 0.20 f |
SI-BCP200 | 63.16 ± 0.20 f | 47.72 ± 0.24 c |
SI-BCP300 | 71.10 ± 0.22 b | 53.82 ± 0.26 a |
SI-LP90 | 55.77 ± 0.17 h | 36.33 ± 0.16 g |
SI-LP200 | 65.28 ± 0.19 e | 44.16 ± 0.19 d |
SI-LP300 | 70.45 ± 0.26 c | 52.22 ± 0.21 b |
SII-CN | 54.83 ± 0.16 c | 42.43 ± 0.15 b |
SII-SCP90 | 36.35 ± 0.23 i | 18.22 ± 0.10 i |
SII-SCP200 | 48.20 ± 0.27 f | 25.46 ± 0.12 h |
SII-SCP300 | 53.42 ± 0.19 d | 33.09 ± 0.16 f |
SII-BCP90 | 42.71 ± 0.15 g | 37.08 ± 0.20 d |
SII-BCP200 | 47.82 ± 0.25 f | 39.58 ± 0.22 c |
SII-BCP300 | 57.08 ± 0.26 a | 43.66 ± 0.26 a |
SII-LP90 | 39.99 ± 0.17 h | 29.21 ± 0.19 g |
SII-LP200 | 49.04 ± 0.20 e | 35.66 ± 0.21 e |
SII-LP300 | 55.70 ± 0.22 b | 42.38 ± 0.14 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraru Manea, A.-I.; Cocan, I.; Dumbrava, D.-G.; Poiana, M.-A. Effect of Fruit Powders as Natural Alternatives to Sodium Nitrite on Lipid Oxidation in Clean-Label Salami. Foods 2025, 14, 2262. https://doi.org/10.3390/foods14132262
Moraru Manea A-I, Cocan I, Dumbrava D-G, Poiana M-A. Effect of Fruit Powders as Natural Alternatives to Sodium Nitrite on Lipid Oxidation in Clean-Label Salami. Foods. 2025; 14(13):2262. https://doi.org/10.3390/foods14132262
Chicago/Turabian StyleMoraru Manea, Adriana-Ioana, Ileana Cocan, Delia-Gabriela Dumbrava, and Mariana-Atena Poiana. 2025. "Effect of Fruit Powders as Natural Alternatives to Sodium Nitrite on Lipid Oxidation in Clean-Label Salami" Foods 14, no. 13: 2262. https://doi.org/10.3390/foods14132262
APA StyleMoraru Manea, A.-I., Cocan, I., Dumbrava, D.-G., & Poiana, M.-A. (2025). Effect of Fruit Powders as Natural Alternatives to Sodium Nitrite on Lipid Oxidation in Clean-Label Salami. Foods, 14(13), 2262. https://doi.org/10.3390/foods14132262