The Transformation of Pigment in Fruit Wine, Precise Control of Pigment Formation, and Their Effect on Product Quality
Abstract
1. Introduction
2. Chemical Characteristics of Pigment Molecules in Fruit Wine
2.1. Fruit Pigment and Color Presentation
2.2. The Characteristics of Color Pigments from Common Fruit Wine Categories
3. Factors Affecting Pigment Formation and Stabilization in Fruit Wine
3.1. Key Steps in the Fruit Winemaking Process
3.2. Physical Factors
3.3. Chemical Factors
3.4. Microbiological Factors
4. Pigment Identification for Premise Control of Fruit Wine Color
5. Effects of Fruit Wine Pigment on Human Health
5.1. Anti-Oxidation Capacities
5.2. Anti-Inflammation Effects
5.3. The Ability to Relieve Metabolic Diseases
5.4. Other Biological Functions
6. The Bioavailability of Fruit Wine Pigments
7. Overview and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merken, H.M.; Beecher, G.R. Measurement of Food Flavonoids by High-Performance Liquid Chromatography: A Review. J. Agric. Food Chem. 2000, 48, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Gomis, D.; Mangas-Alonso, J.J.; Junco-Corujedo, S.; Gutiérrez-Álvarez, M.D. Cider Proteins and Foam Characteristics: A Contribution to Their Characterization. J. Agric. Food Chem. 2007, 55, 2526–2531. [Google Scholar] [CrossRef]
- Pando Bedriñana, R.; Rodríguez Madrera, R.; Picinelli Lobo, A. Production of New Ciders: Chemical and Sensory Profiles. In Natural Products in Beverages; Mérillon, J.-M., Rivière, C., Lefèvre, G., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2025; pp. 761–803. ISBN 978-3-031-38662-6. [Google Scholar]
- Zhang, X.; Li, X.; Fang, H.; Guo, F.; Li, F.; Chen, A.; Huang, S. Flavonoids as Inducers of White Adipose Tissue Browning and Thermogenesis: Signalling Pathways and Molecular Triggers. Nutr. Metab. 2019, 16, 47. [Google Scholar] [CrossRef]
- Kertész, K.; Piszter, G.; Horváth, Z.E.; Bálint, Z.; Biró, L.P. Changes in Structural and Pigmentary Colours in Response to Cold Stress in Polyommatus icarus Butterflies. Sci. Rep. 2017, 7, 1118. [Google Scholar] [CrossRef]
- Martins, T.; Barros, A.N.; Rosa, E.; Antunes, L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules 2023, 28, 5344. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A Global Perspective on Carotenoids: Metabolism, Biotechnology, and Benefits for Nutrition and Health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.W.; Lewis, D.H.; Zhang, H.; Irving, L.J.; Jameson, P.E.; Davies, K.M. Light-Induced Vegetative Anthocyanin Pigmentation in Petunia. J. Exp. Bot. 2009, 60, 2191–2202. [Google Scholar] [CrossRef]
- Ali, H.M.; Ali, I.H. Energetic and Electronic Computation of the Two-Hydrogen Atom Donation Process in Catecholic and Non-Catecholic Anthocyanidins. Food Chem. 2018, 243, 145–150. [Google Scholar] [CrossRef]
- Tsuda, T. Dietary Anthocyanin-Rich Plants: Biochemical Basis and Recent Progress in Health Benefits Studies. Mol. Nutr. Food Res. 2012, 56, 159–170. [Google Scholar] [CrossRef]
- Tanaka, Y.; Brugliera, F.; Chandler, S. Recent Progress of Flower Colour Modification by Biotechnology. Int. J. Mol. Sci. 2009, 10, 5350–5369. [Google Scholar] [CrossRef]
- Ferrándiz, M.L.; Devesa, I. Inducers of Heme Oxygenase-1. Curr. Pharm. Des. 2008, 14, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, E.; Fucile, M.; Manzi, D.; Masini, C.M.; Doni, S.; Mattii, G.B. Sustainable Soil Management: Effects of Clinoptilolite and Organic Compost Soil Application on Eco-Physiology, Quercitin, and Hydroxylated, Methoxylated Anthocyanins on Vitis vinifera. Plants 2023, 12, 708. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.; Lyu, X.; Fang, X.; Cao, X. Metabolomic Analysis to Unravel the Composition and Dynamic Variations of Anthocyanins in Bayberry-Soaked Wine during the Maceration Process. Food Chem. X 2024, 21, 101175. [Google Scholar] [CrossRef]
- Lu, Y.; Li, D.; Li, L.; Belwal, T.; Xu, Y.; Lin, X.; Duan, Z.; Luo, Z. Effects of Elevated CO2 on Pigment Metabolism of Postharvest Mandarin Fruit for Degreening. Food Chem. 2020, 318, 126462. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Luo, L.; Shang, C. Optimization of Extraction Conditions of Carotenoids from Dunaliella parva by Response Surface Methodology. Molecules 2022, 27, 1444. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.-S.M.; Mats, L.; Rabalski, I. Identification of Carotenoids in Hairless Canary Seed and the Effect of Baking on Their Composition in Bread and Muffin Products. Molecules 2022, 27, 1307. [Google Scholar] [CrossRef] [PubMed]
- Naithani, R.; Huma, L.C.; Moriarty, R.M.; McCormick, D.L.; Mehta, R.G. Comprehensive Review of Cancer Chemopreventive Agents Evaluated in Experimental Carcinogenesis Models and Clinical Trials. Curr. Med. Chem. 2008, 15, 1044–1071. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.E.; Mohn, E.S.; Hason, N.; Erdman, J.W.; Johnson, E.J. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv. Nutr. 2018, 9, 465–492. [Google Scholar] [CrossRef]
- Bas, T.G. Bioactivity and Bioavailability of Carotenoids Applied in Human Health: Technological Advances and Innovation. Int. J. Mol. Sci. 2024, 25, 7603. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Marín-San Román, S.; Jofré, V.; Rubio-Bretón, P.; Pérez-Álvarez, E.P.; Garde-Cerdán, T. Effects on Chlorophyll and Carotenoid Contents in Different Grape Varieties (Vitis vinifera L.) after Nitrogen and Elicitor Foliar Applications to the Vineyard. Food Chem. 2018, 269, 380–386. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J. An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agro-Food, Nutrition, Health, and Disease. Mol. Nutr. Food Res. 2019, 63, e1801045. [Google Scholar] [CrossRef]
- Ishibashi, M.; Zaitsu, K.; Yoshikawa, I.; Otagaki, S.; Matsumoto, S.; Oikawa, A.; Shiratake, K. High-Throughput Analysis of Anthocyanins in Horticultural Crops Using Probe Electrospray Ionization Tandem Mass Spectrometry (PESI/MS/MS). Hortic. Res. 2023, 10, uhad039. [Google Scholar] [CrossRef] [PubMed]
- Sollazzo, M.; Baccelloni, S.; D’Onofrio, C.; Bellincontro, A. Combining Color Chart, Colorimetric Measurement and Chemical Compounds for Postharvest Quality of White Wine Grapes. J. Sci. Food Agric. 2018, 98, 3532–3541. [Google Scholar] [CrossRef] [PubMed]
- Bosch, R.; Philips, N.; Suárez-Pérez, J.A.; Juarranz, A.; Devmurari, A.; Chalensouk-Khaosaat, J.; González, S. Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants 2015, 4, 248. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Bueno Ottoboni, A.M.M.; Fiorini, A.M.R.; Guiguer, É.L.; Nicolau, C.C.T.; Goulart, R.d.A.; Flato, U.A.P. Grape Juice or Wine: Which Is the Best Option? Crit. Rev. Food Sci. 2020, 60, 3876–3889. [Google Scholar] [CrossRef] [PubMed]
- Kalkan Yildirim, H. Evaluation of Colour Parameters and Antioxidant Activities of Fruit Wines. Int. J. Food Sci. Nutr. 2006, 57, 47–63. [Google Scholar] [CrossRef]
- Zhang, X.-K.; Jeffery, D.W.; Li, D.-M.; Lan, Y.; Zhao, X.; Duan, C.-Q. Red Wine Coloration: A Review of Pigmented Molecules, Reactions, and Applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3834–3866. [Google Scholar] [CrossRef]
- Venter, A.; Joubert, E.; de Beer, D. Nutraceutical Value of Yellow- and Red-Fleshed South African Plums (Prunus salicina Lindl.): Evaluation of Total Antioxidant Capacity and Phenolic Composition. Molecules 2014, 19, 3084–3109. [Google Scholar] [CrossRef]
- Sánchez, R.; González, M.R.; Fernández-Fernández, E.; Rodríguez-Nogales, J.M.; Martín, P. Relationships between Chlorophyll Content of Vine Leaves, Predawn Leaf Water Potential at Veraison, and Chemical and Sensory Attributes of Wine. J. Sci. Food Agr. 2020, 100, 5251–5259. [Google Scholar] [CrossRef]
- Teixeira, A.; Noronha, H.; Frusciante, S.; Diretto, G.; Gerós, H. Biosynthesis of Chlorophyll and Other Isoprenoids in the Plastid of Red Grape Berry Skins. J. Agric. Food Chem. 2023, 71, 1873–1885. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M.; Silva Ferreira, A.C.; Caris-Veyrat, C.; Guedes de Pinho, P. Carotenoid, Chlorophyll, and Chlorophyll-Derived Compounds in Grapes and Port Wines. J. Agric. Food Chem. 2005, 53, 10034–10041. [Google Scholar] [CrossRef]
- Crupi, P.; Coletta, A.; Milella, R.A.; Palmisano, G.; Baiano, A.; La Notte, E.; Antonacci, D. Carotenoid and Chlorophyll-Derived Compounds in Some Wine Grapes Grown in Apulian Region. J. Food Sci. 2010, 75, S191–S198. [Google Scholar] [CrossRef]
- Sun, X.; Yan, Z.; Zhu, T.; Zhu, J.; Wang, Y.; Li, B.; Meng, X. Effects on the Color, Taste, and Anthocyanins Stability of Blueberry Wine by Different Contents of Mannoprotein. Food Chem. 2019, 279, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chang, X.-X.; Wang, H.; Brennan, C.S.; Guo, X.-B. Phytochemicals Accumulation in Sanhua Plum (Prunus salicina L.) during Fruit Development and Their Potential Use as Antioxidants. J. Agric. Food Chem. 2019, 67, 2459–2466. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Li, H.; Wang, H. Delayed Bitterness of Citrus Wine Is Removed Through the Selection of Fining Agents and Fining Optimization. Front. Chem. 2019, 7, 185. [Google Scholar] [CrossRef]
- Yao, X.-C.; Zhang, H.-L.; Ma, X.-R.; Xia, N.-Y.; Duan, C.-Q.; Yang, W.-M.; Pan, Q.-H. Leaching and Evolution of Anthocyanins and Aroma Compounds during Cabernet Sauvignon Wine Fermentation with Whole-Process Skin-Seed Contact. Food Chem. 2024, 436, 137727. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Xiao, L.; Apaliya, M.T. Statistical Interpretation of Chromatic Indicators in Correlation to Phytochemical Profile of a Sulfur Dioxide-Free Mulberry (Morus nigra) Wine Submitted to Non-Thermal Maturation Processes. Food Chem. 2018, 239, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Urvieta, R.; Buscema, F.; Bottini, R.; Coste, B.; Fontana, A. Phenolic and Sensory Profiles Discriminate Geographical Indications for Malbec Wines from Different Regions of Mendoza, Argentina. Food Chem. 2018, 265, 120–127. [Google Scholar] [CrossRef]
- Daccak, D.; Lidon, F.C.; Luís, I.C.; Marques, A.C.; Coelho, A.R.F.; Pessoa, C.C.; Caleiro, J.; Ramalho, J.C.; Leitão, A.E.; Silva, M.J.; et al. Zinc Biofortification in Vitis vinifera: Implications for Quality and Wine Production. Plants 2022, 11, 2442. [Google Scholar] [CrossRef]
- Tamayo-Sánchez, J.C.; Meza-González, D.A.; Warren-Vega, W.M.; Zárate-Guzmán, A.I.; Romero-Cano, L.A. Advances in the Development of Tailor-Made Color Alcoholic Beverages Based on an Accelerated Maturation Process. Food Res. Int. 2023, 169, 112859. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, X.; Zeng, Y.; Cai, D.; Teng, Z.; Wu, Q.; Sun, J.; Bai, W. Color Stability Enhancement and Antioxidation Improvement of Sanhua Plum Wine under Circulating Ultrasound. Foods 2022, 11, 2435. [Google Scholar] [CrossRef] [PubMed]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Li, X.; Afoakwah, N.A. Effects of Ultrasound, High Pressure, and Manosonication Processes on Phenolic Profile and Antioxidant Properties of a Sulfur Dioxide-Free Mulberry (Morus nigra) Wine. Food Bioprocess Technol. 2017, 10, 1210–1223. [Google Scholar] [CrossRef]
- Solymosi, K.; Mysliwa-Kurdziel, B. Chlorophylls and Their Derivatives Used in Food Industry and Medicine. Mini. Rev. Med. Chem. 2017, 17, 1194–1222. [Google Scholar] [CrossRef]
- Yang, X.; Sun, H.; Tu, L.; Jin, Y.; Zhang, Z.; Wang, M.; Liu, S.; Wang, Y.; He, S. Kinetics of Enzymatic Synthesis of Cyanidin-3-Glucoside Lauryl Ester and Its Physicochemical Property and Proliferative Effect on Intestinal Probiotics. Biology 2020, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Ogodo, A.C.; Ugbogu, O.C.; Ugbogu, A.E.; Ezeonu, C.S. Production of Mixed Fruit (Pawpaw, Banana and Watermelon) Wine Using Saccharomyces cerevisiae Isolated from Palm Wine. SpringerPlus 2015, 4, 683. [Google Scholar] [CrossRef]
- Montero, R.; Mundy, D.; Albright, A.; Grose, C.; Trought, M.C.T.; Cohen, D.; Chooi, K.M.; MacDiarmid, R.; Flexas, J.; Bota, J. Effects of Grapevine Leafroll Associated Virus 3 (GLRaV-3) and Duration of Infection on Fruit Composition and Wine Chemical Profile of Vitis vinifera L. Cv. Sauvignon Blanc. Food Chem. 2016, 197 Pt B, 1177–1183. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, T.; Gao, J.; Han, X.; Huang, W.; You, Y.; Zhan, J. Color Myth: Anthocyanins Reactions and Enological Approaches Achieving Their Stabilization in the Aging Process of Red Wine. Food Innov. Adv. 2023, 2, 255–271. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; Pérez-Mestre, C.; Ferreras-Charro, R.; Rivero, F.J.; Heredia, F.J.; Escribano-Bailón, M.T. Addition of Mannoproteins and/or Seeds during Winemaking and Their Effects on Pigment Composition and Color Stability. J. Agric. Food Chem. 2019, 67, 4031–4042. [Google Scholar] [CrossRef]
- Ji, J.; Henschen, C.W.; Nguyen, T.H.; Ma, L.; Waterhouse, A.L. Yeasts Induce Acetaldehyde Production in Wine Micro-Oxygenation Treatments. J. Agric. Food Chem. 2020, 68, 15216–15227. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Zhao, H.; Gu, P.; Chen, Y.; Zhang, B.; Zhu, B. Acetaldehyde Released by Lactobacillus plantarum Enhances Accumulation of Pyranoanthocyanins in Wine during Malolactic Fermentation. Food Res. Int. 2018, 108, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Zhang, D.-L.; Sun, B.-Y.; Liu, S.-M. Evaluating the Impacts of Climate Factors and Flavonoids Content on Chinese Prickly Ash Peel Color Based on HPLC-MS and Structural Equation Model. Foods 2022, 11, 2539. [Google Scholar] [CrossRef] [PubMed]
- Tempère, S.; Marchal, A.; Barbe, J.-C.; Bely, M.; Masneuf-Pomarede, I.; Marullo, P.; Albertin, W. The Complexity of Wine: Clarifying the Role of Microorganisms. Appl. Microbiol. Biotechnol. 2018, 102, 3995–4007. [Google Scholar] [CrossRef]
- Imre, A.; Kovács, R.; Tóth, Z.; Majoros, L.; Benkő, Z.; Pfliegler, W.P.; Pócsi, I. Heme Oxygenase-1 (HMX1) Loss of Function Increases the In-Host Fitness of the Saccharomyces ‘boulardii’ Probiotic Yeast in a Mouse Fungemia Model. J. Fungi 2022, 8, 522. [Google Scholar] [CrossRef]
- Jiang, L.; Qiu, Y.; Dumlao, M.C.; Donald, W.A.; Steel, C.C.; Schmidtke, L.M. Detection and Prediction of Botrytis cinerea Infection Levels in Wine Grapes Using Volatile Analysis. Food Chem. 2023, 421, 136120. [Google Scholar] [CrossRef] [PubMed]
- Cortell, J.M.; Halbleib, M.; Gallagher, A.V.; Righetti, T.L.; Kennedy, J.A. Influence of Vine Vigor on Grape (Vitis vinifera L. Cv. Pinot Noir) and Wine Proanthocyanidins. J. Agric. Food Chem. 2005, 53, 5798–5808. [Google Scholar] [CrossRef]
- Martín-Tornero, E.; de Jorge Páscoa, R.N.M.; Espinosa-Mansilla, A.; Martín-Merás, I.D.; Lopes, J.A. Comparative Quantification of Chlorophyll and Polyphenol Levels in Grapevine Leaves Sampled from Different Geographical Locations. Sci. Rep. 2020, 10, 6246. [Google Scholar] [CrossRef]
- Agati, G.; D’Onofrio, C.; Ducci, E.; Cuzzola, A.; Remorini, D.; Tuccio, L.; Lazzini, F.; Mattii, G. Potential of a Multiparametric Optical Sensor for Determining in Situ the Maturity Components of Red and White Vitis vinifera Wine Grapes. J. Agric. Food Chem. 2013, 61, 12211–12218. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Feng, K.; Gong, X.; Liu, J. Application of a Hyperspectral Imaging System to Quantify Leaf-Scale Chlorophyll, Nitrogen and Chlorophyll Fluorescence Parameters in Grapevine. Plant Physiol. Biochem. 2021, 166, 723–737. [Google Scholar] [CrossRef]
- Taylor, K.L.; Brackenridge, A.E.; Vivier, M.A.; Oberholster, A. High-Performance Liquid Chromatography Profiling of the Major Carotenoids in Arabidopsis Thaliana Leaf Tissue. J. Chromatogr. A 2006, 1121, 83–91. [Google Scholar] [CrossRef]
- Lombardo, M.; Feraco, A.; Camajani, E.; Caprio, M.; Armani, A. Health Effects of Red Wine Consumption: A Narrative Review of an Issue That Still Deserves Debate. Nutrients 2023, 15, 1921. [Google Scholar] [CrossRef]
- Eroglu, A.; Al’Abri, I.S.; Kopec, R.E.; Crook, N.; Bohn, T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv. Nutr. 2022, 14, 238–255. [Google Scholar] [CrossRef]
- Čakar, U.; Čolović, M.; Milenković, D.; Pagnacco, M.; Maksimović, J.; Krstić, D.; Đorđević, B. Strawberry and Drupe Fruit Wines Antioxidant Activity and Protective Effect Against Induced Oxidative Stress in Rat Synaptosomes. Antioxidants 2025, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Xiao, Y.; He, Z.; Liu, J.; Wang, Y.; Gao, B.; Chang, J.; Zhu, D. Use of Non-Saccharomyces Yeast Co-Fermentation with Saccharomyces cerevisiae to Improve the Polyphenol and Volatile Aroma Compound Contents in Nanfeng Tangerine Wines. J. Fungi 2022, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Terao, J. Revisiting Carotenoids as Dietary Antioxidants for Human Health and Disease Prevention. Food Funct. 2023, 14, 7799–7824. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.; Cavaco, A.R.; Laureano, G.; Cunha, J.; Eiras-Dias, J.; Matos, A.R.; Duarte, B.; Figueiredo, A. More than Just Wine: The Nutritional Benefits of Grapevine Leaves. Foods 2021, 10, 2251. [Google Scholar] [CrossRef]
- Jayarathne, S.; Stull, A.J.; Park, O.-H.; Kim, J.H.; Thompson, L.; Moustaid-Moussa, N. Protective Effects of Anthocyanins in Obesity-Associated Inflammation and Changes in Gut Microbiome. Mol. Nutr. Food Res. 2019, 63, 1900149. [Google Scholar] [CrossRef]
- Jokioja, J.; Yang, B.; Linderborg, K.M. Acylated Anthocyanins: A Review on Their Bioavailability and Effects on Postprandial Carbohydrate Metabolism and Inflammation. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5570–5615. [Google Scholar] [CrossRef]
- Ruta, L.L.; Farcasanu, I.C. Anthocyanins and Anthocyanin-Derived Products in Yeast-Fermented Beverages. Antioxidants 2019, 8, 182. [Google Scholar] [CrossRef]
- Devi, A.; Konerira Aiyappaa, A.; Waterhouse, A.L. Adsorption and Biotransformation of Anthocyanin Glucosides and Quercetin Glycosides by Oenococcus Oeni and Lactobacillus plantarum in Model Wine Solution. J. Sci. Food Agric. 2020, 100, 2110–2120. [Google Scholar] [CrossRef]
- Krga, I.; Milenkovic, D. Anthocyanins: From Sources and Bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. J. Agric. Food Chem. 2019, 67, 1771–1783. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Johnson, M.H.; Lila, M.A.; Yousef, G.; de Mejia, E.G. Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management. Evid.-Based Complement. Altern. Med. 2013, 2013, 479505. [Google Scholar] [CrossRef] [PubMed]
- Landberg, R.; Naidoo, N.; van Dam, R.M. Diet and Endothelial Function: From Individual Components to Dietary Patterns. Curr. Opin. Lipidol. 2012, 23, 147. [Google Scholar] [CrossRef]
- Blesso, C.N. Dietary Anthocyanins and Human Health. Nutrients 2019, 11, 2107. [Google Scholar] [CrossRef]
- Godos, J.; Castellano, S.; Ray, S.; Grosso, G.; Galvano, F. Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study. Molecules 2018, 23, 999. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.-G.; Liu, F.; Wang, K.; Zhang, M.-J.; Feng, Q.; Liu, J. Association between Dietary Flavonoid Intake and Depressive Symptoms: A Cross-Sectional Research. Gen. Hosp. Psychiatry 2024, 86, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, J. Association between Dietary Anthocyanidins Intake and Depression among US Adults: A Cross-Sectional Study (NHANES, 2007–2010 and 2017–2018). BMC Psychiatry 2023, 23, 525. [Google Scholar] [CrossRef]
- Dreiseitel, A.; Korte, G.; Schreier, P.; Oehme, A.; Locher, S.; Domani, M.; Hajak, G.; Sand, P.G. Berry Anthocyanins and Their Aglycons Inhibit Monoamine Oxidases A and B. Pharmacol. Res. 2009, 59, 306–311. [Google Scholar] [CrossRef]
- Agarry, I.E.; Ding, D.; Li, Y.; Jin, Z.; Deng, H.; Hu, J.; Cai, T.; Kan, J.; Chen, K. In Vitro Bioaccessibility Evaluation of Chlorophyll Pigments in Single and Binary Carriers. Food Chem. 2023, 415, 135757. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, S.; Zhu, L.; Wang, Y. Microorganisms: The Key Regulators of Wine Quality. Comp. Rev. Food Sci. Food Safe. 2025, 24, e70198. [Google Scholar] [CrossRef]
- Sternes, P.R.; Lee, D.; Kutyna, D.R.; Borneman, A.R. A Combined Meta-Barcoding and Shotgun Metagenomic Analysis of Spontaneous Wine Fermentation. Gigascience 2017, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Bird, A.; Kopec, R.E. The Metabolism and Potential Bioactivity of Chlorophyll and Metallo-Chlorophyll Derivatives in the Gastrointestinal Tract. Mol. Nutr. Food Res. 2021, 65, e2000761. [Google Scholar] [CrossRef]
Physical Factors | Pigment or Color | Carrier | Change | Reference |
---|---|---|---|---|
Drought | Anthocyanins | Grape skin | Content ↑ | [41] |
Hot | Carotenoid | Grape | Level ↑ | [33] |
Cultivar | Carotenoid | Chardonnay wines | β-Damascenone > β-Ionone one | [33] |
Time | Ratios of beta-carotene to lutein | Port wines | Aged > New | [32] |
Carotenoid and chlorophyll-like compounds | Port wines | Aged < New | [32] | |
Polymer pigments and pyrananthocyanins | Wine | Importance ↑ | [27] | |
Polymeric pigments | Aged mulberry wines | Formation ↑ | [38] | |
Humidity | Yellow color | Wine | ↑ | [42] |
Ultrasound | Anthocyanins | Blueberry wine | Stability ↑ | [43] |
Anthocyanins | Sanhua plum | Stability ↑ | [43] | |
Color | Aged mulberry wine | Intensity ↑ | [38] | |
Total anthocyanin | Wine | Content ↑ | [44] | |
Dark | Mulberry wine | ↑ | [38] | |
Maceration | Most glycosidic pigments and anthocyanins | Bayberry wine | Content ↓ | [1] |
Pressure | Color | Mulberry wine | Stability ↑ | [38] |
Monomeric anthocyanins and flavonols | Mulberry wine | Content ↓ | [38] | |
Yellow pigments | Mulberry wine | Color tonality ↑ | [38] | |
Bright | Mulberry wine | ↑ | [38] | |
Sunlight | Carotenoid | Ripe grape | Concentrations ↓ | [33] |
Red light | β-Cryptoxanthin | Fruit wine | Content ↑ | [15] |
Manosonication | Blue tone | Mulberry wine | ↓ | [38] |
Chlorophyll | Fruit wine | Chl b > Chl a | [45] |
Chemical Factors | Pigment or Color | Carrier | Change | Reference |
---|---|---|---|---|
Acidity | Anthocyanins | Fruit wine | Stability ↑ Red ↑ | [30,36,46,53] |
Alkalinity | Anthocyanins | Fruit wine | Content ↓ Blue ↑ | [36,39,46] |
O2 | Chlorophylls and carotenoids | Fruit wine | Content ↓ | [21] |
Browning | Fruit wine | ↑ | [28] | |
Anthocyanin | Fruit wine | Bluish–red ↓ Yellow–orange ↑ | [27] | |
CO2 | Chlorophyll, total carotenoids, 9-cis-violaxanthin | Fruit wine | Content ↓ | [15] |
Orange-colored β-cryptoxanthin | Fruit wine | Content ↑ | [15] | |
Co-pigment | Purple hue | Fruit wine | ↑ | [34] |
Anthocyanins | Fruit wine | Red color ↑ | [38] | |
Hydroxylation | Yellow hue | Fruit wine | ↑ | [49] |
Anthocyanidin | Fruit wine | Stability ↓ Blue ↑ Red ↓ | [11,49] | |
Methylation | Red color | Fruit wine | ↓ | [11] |
Cleavage | Carotenoid | Wine | Degradation ↑ Color ↓ | [21,33] |
Soluble sugar | Color | Wine | ↓ | [50] |
Pyranoanthocyanins | Wine | Content ↑ | [51,52] | |
Fining agents (chitosan, gelatin, and agar) | Color | Citrus wine | Lightens ↑ | [36] |
Microbiological Factors | Pigment or Color | Carrier | Change | Reference |
---|---|---|---|---|
Yeast | Pigment molecules | Fruit wine | Transformation ↑ | [48,49] |
Mold | Anthocyanin | Fruit wine | Consumption ↓ | [48,51] |
Pigment molecules | Fruit wine | Stability ↑ | [56] | |
Bacteria | Anthocyanin | Fruit wine | Consumption ↓ | [48,51] |
Mannoprotein | Anthocyanin | Blueberry wine | Stability ↑ | [34] |
Delphinidin | Blueberry wine | Blue ↑ | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Ding, M.; Wang, C.; Huang, L.; Bai, J. The Transformation of Pigment in Fruit Wine, Precise Control of Pigment Formation, and Their Effect on Product Quality. Foods 2025, 14, 2207. https://doi.org/10.3390/foods14132207
Tan X, Ding M, Wang C, Huang L, Bai J. The Transformation of Pigment in Fruit Wine, Precise Control of Pigment Formation, and Their Effect on Product Quality. Foods. 2025; 14(13):2207. https://doi.org/10.3390/foods14132207
Chicago/Turabian StyleTan, Xiang, Mengfan Ding, Chen Wang, Linhua Huang, and Junying Bai. 2025. "The Transformation of Pigment in Fruit Wine, Precise Control of Pigment Formation, and Their Effect on Product Quality" Foods 14, no. 13: 2207. https://doi.org/10.3390/foods14132207
APA StyleTan, X., Ding, M., Wang, C., Huang, L., & Bai, J. (2025). The Transformation of Pigment in Fruit Wine, Precise Control of Pigment Formation, and Their Effect on Product Quality. Foods, 14(13), 2207. https://doi.org/10.3390/foods14132207