Assessing the Flavor of Various Edible Meats Including Wild Raccoon Meat by the Check-All-That-Apply Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Meat
2.3. pH and Meat Color
2.4. Selection of Panelists
2.5. CATA Questionnaire for Sensory Evaluation
2.6. Statistics
3. Results
3.1. Core Temperature of Meat Samples During Cooking
3.2. pH and Meat Color
3.3. Sensory Characterization of the Meat Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Czarniecka-Skubina, E.; Stasiak, D.; Latoch, A.; Owczarek, T.; Hamułka, J. Consumers’ Perception and Preference for the Consumption of Wild Game Meat among Adults in Poland. Foods 2022, 11, 830. [Google Scholar] [CrossRef] [PubMed]
- Viganò, R.; Demartini, E.; Riccardi, F.; Corradini, A.; Besozzi, M.; Lanfranchi, P.; Chiappini, P.L.; Cottini, A.; Gaviglio, A. Quality Parameters of Hunted Game Meat: Sensory Analysis and pH Monitoring. Ital. J. Food Saf. 2019, 8, 7724. [Google Scholar] [CrossRef]
- Ciobanu, M.M.; Postolache, A.N.; Lipşa, F.D.; Munteanu, M.; Rațu, R.N.; Murariu, O.C.; Boișteanu, P.C. Meat Fatty Acid Composition of Wild Boars Hunted in Romania in Relationship to Gender and Age-Class. Animals 2022, 12, 810. [Google Scholar] [CrossRef]
- Di Bella, S.; Branciari, R.; Haouet, N.M.; Framboas, M.; Mercuri, M.L.; Codini, M.; Roila, R.; Malimpensa, A.; Ranucci, D. Does Hunted Wild Boar Meat Meet Modern Consumer Nutritional Expectations? Ital. J. Food Saf. 2024, 13, 11608. [Google Scholar] [CrossRef]
- Soriano, A.; Sánchez-García, C. Nutritional Composition of Game Meat from Wild Species Harvested in Europe. In Meat and Nutrition; InTech Open: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Ramanzin, M.; Amici, A.; Casoli, C.; Esposito, L.; Lupi, P.; Marsico, G.; Mattiello, S.; Olivieri, O.; Ponzetta, M.P.; Russo, C.; et al. Meat from Wild Ungulates: Ensuring Quality and Hygiene of an Increasing Resource. Ital. J. Anim. Sci. 2010, 9, e61. [Google Scholar] [CrossRef]
- Mann, I. Game Animals as Meat Sources, Vitamin Content and Amino Acid Composition of Some African Game Animals. J. Agric. Food Chem. 1964, 12, 374–376. [Google Scholar] [CrossRef]
- Strazdiņa, V.; Jemeļjanovs, A.; Šterna, V. Nutrition Value of Wild Animal Meat. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2013, 67, 373–377. [Google Scholar] [CrossRef]
- Corradini, A.; Marescotti, M.E.; Demartini, E.; Gaviglio, A. Consumers’ Perceptions and Attitudes toward Hunted Wild Game Meat in the Modern World: A Literature Review. Meat Sci. 2022, 194, 108955. [Google Scholar] [CrossRef]
- Kawata, Y. Possibility of Improvement in Game Animal Utilization. Int. J. Adv. Agric. Environ. Eng. 2016, 3, 40–46. [Google Scholar] [CrossRef]
- Ando, S.; Kajiura, K. The Habitat Situation of Procyon Lotor in Gifu Prefecture. Bull. Gifu Prefect. Mus. 1985, 6, 23–30. (In Japanese) [Google Scholar]
- Ministry of the Environment. Estimated Damages Caused by Wild Animals and Birds to Agricultural Products. 2023. Available online: https://www.maff.go.jp/j/seisan/tyozyu/higai/hogai_zyoukyou/attach/pdf/index-43.pdf (accessed on 19 March 2025). (In Japanese)
- Takatsuki, S.; Kubozono, M.; Minami, M. Dietary Analysis of Raccoons Captured in Yokohama, Eastern Japan. Jpn. J. Conserv. Ecol. 2014, 19, 87–93. (In Japanese) [Google Scholar] [CrossRef]
- Whiteside, D.P. Nutrition and Behavior of Coatis and Raccoons. Vet. Clin. N. Am. Exot. Anim. Pract. 2009, 12, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, M.; Kato, T. A Threat to Amphibians and Reptiles by Invasive Alien Racoons. Bull. Herpetol. Soc. Jpn. 2011, 2011, 148–154. (In Japanese) [Google Scholar]
- Ministry of Internal Affairs and Communications. Policy Assessment Report on the Promotion of Invasive Species Control. 2022. Available online: https://www.soumu.go.jp/main_content/000792344.pdf (accessed on 19 March 2025). (In Japanese)
- Klussman, W.; Tribble, M.; Mason, L.; Reasonover, F.; Cox, M. Wild Game—Care and Cooking; Texas Agricultural Extension Service, The Texas A&M University System: College Station, TX, USA, 1963. [Google Scholar]
- Dovey, T.M.; Staples, P.A.; Gibson, E.L.; Halford, J.C.G. Food Neophobia and “picky/Fussy” Eating in Children: A Review. Appetite 2008, 50, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Jürkenbeck, K.; Spiller, A. Importance of Sensory Quality Signals in Consumers’ Food Choice. Food Qual. Prefer. 2021, 90, 104155. [Google Scholar] [CrossRef]
- Murray, J.M.; Delahunty, C.M.; Baxter, I.A. Descriptive Sensory Analysis: Past, Present and Future. Food Res. Int. 2001, 34, 461–471. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Sensory Profiling, the Blurred Line between Sensory and Consumer Science. A Review of Novel Methods for Product Characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar] [CrossRef]
- Valentin, D.; Chollet, S.; Lelièvre, M.; Abdi, H. Quick and Dirty but Still Pretty Good: A Review of New Descriptive Methods in Food Science: New Descriptive Methods in Food Science. Int. J. Food Sci. Technol. 2012, 47, 1563–1578. [Google Scholar] [CrossRef]
- Qannari, E.M. Sensometrics Approaches in Sensory and Consumer Research. Curr. Opin. Food Sci. 2017, 15, 8–13. [Google Scholar] [CrossRef]
- Santos, B.A.D.; Cichoski, A.J.; Lorenzo, J.M.; Teixeira, A.; Santos, E.M.; Sepúlveda, N.; Campagnol, P.C.B. Check-All-That-Apply Method to Develop Low-Sodium Sausages: A Case Study. In Sensory Analysis for the Development of Meat Products; Lorenzo, J.M., Pateiro, M., Saldaña, E., Munekata, P.E.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 121–135. ISBN 9780128228326. [Google Scholar]
- Abe, A.; Mori, A.; Kuwabara, K.; Watanabe, G.; Sasaki, K. Screening of Sensory Vocabularies for Preference and Jidori-like Traits of Ground Chicken Meat Using a Check-All-That-Apply Question. Nihon Chikusan Gakkaiho 2023, 94, 199–207. (In Japanese) [Google Scholar] [CrossRef]
- Jorge, É. da C.; Mendes, A.C.G.; Auriema, B.E.; Cazedey, H.P.; Fontes, P.R.; Ramos, A.d.L.S.; Ramos, E.M. Application of a Check-All-That-Apply Question for Evaluating and Characterizing Meat Products. Meat Sci. 2015, 100, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Saldaña, E.; Saldarriaga, L.; Cabrera, J.; Behrens, J.H.; Selani, M.M.; Rios-Mera, J.; Contreras-Castillo, C.J. Descriptive and Hedonic Sensory Perception of Brazilian Consumers for Smoked Bacon. Meat Sci. 2019, 147, 60–69. [Google Scholar] [CrossRef] [PubMed]
- ISO 3972; Sensory Analysis—Methodology—Method of Investigating Sensitivity of Taste 2011. ISO: Geneva, Switzerland, 2011.
- Lê, S.; Husson, F. Sensominer: A Package for Sensory Data Analysis. J. Sens. Stud. 2008, 23, 14–25. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Food Code. U.S. Department of Health and Human Services. 2017. Available online: https://www.fda.gov/media/110822/download (accessed on 15 October 2024).
- Young, O.A.; West, J.; Hart, A.L.; van Otterdijk, F.F.H. A Method for Early Determination of Meat Ultimate pH. Meat Sci. 2004, 66, 493–498. [Google Scholar] [CrossRef]
- Węglarz, A. Meat Quality Defined Based on pH and Colour Depending on Cattle Category and Slaughter Season. Czech J. Anim. Sci. 2010, 55, 548–556. [Google Scholar] [CrossRef]
- Pollard, J.C.; Jm, S.; Littlejohn, R. Factors Affecting Behaviour, Bruising and pHu in a Deer Slaughter Premises. Proc. N. Z. Soc. Anim. Prod. 1999, 59, 148–151. [Google Scholar]
- Wiklund, E.; Andersson, A.; Malmfors, G.; Lundström, K.; Danell, Ö. Ultimate pH Values in Reindeer Meat with Particular Regard to Animal Sex and Age, Muscle and Transport Distance. Rangifer 1995, 15, 47. [Google Scholar] [CrossRef]
- Purchas, R. An Assessment of the Role of pH Differences in Determining the Relative Tenderness of Meat from Bulls and Steers. Meat Sci. 1990, 27, 129–140. [Google Scholar] [CrossRef]
- Mori, S.; Haruno, A.; Hayashi, T.; Haga, S.; Iida, S.; Tatsumi, R.; Ito, T.; Ikeuchi, Y. Rheological Properties of Emulsion-Type Sausage Prepared from Deer Meat. West Jpn. J. Anim. Sci. 2004, 47, 87–91. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Kritzinger, B.; Ferreira, A.V. The Effects of Region and Gender on the Fatty Acid, Amino Acid, Mineral, Myoglobin and Collagen Contents of Impala (Aepyceros Melampus) Meat. Meat Sci. 2005, 69, 551–558. [Google Scholar] [CrossRef]
- Nair, M.N.; Suman, S.P.; Li, S.; Joseph, P.; Beach, C.M. Lipid Oxidation-Induced Oxidation in Emu and Ostrich Myoglobins. Meat Sci. 2014, 96, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.C.; Field, R.A.; Miller, G.J.; Welke, R.A. Evaluation of TBA Methods for Determination of Lipid Oxidation in Red Meat from Four Species. J. Food Sci. 1983, 48, 1776–1778. [Google Scholar] [CrossRef]
- University of Rochester Medical Center Health Encyclopedia. Available online: https://www.urmc.rochester.edu/encyclopedia/content?contenttypeid=76&contentid=17182-2 (accessed on 15 October 2024).
- Burger, J. Gender Differences in Meal Patterns: Role of Self-Caught Fish and Wild Game in Meat and Fish Diets. Environ. Res. 2000, 83, 140–149. [Google Scholar] [CrossRef]
- Gaines, K.F.; Lord, C.G.; Boring, C.S.; Brisbin, I.L., Jr; Gochfeld, M.; Burger, J. Raccoons as Potential Vectors of Radionuclide Contamination to Human Food Chains from a Nuclear Industrial Site. J. Wildl. Manag. 2000, 64, 199. [Google Scholar] [CrossRef]
- Goguen, A.D.; Riley, S.J. Consumption of Wild-harvested Meat in Society. Wildl. Soc. Bull. 2020, 44, 553–563. [Google Scholar] [CrossRef]
- Ares, G.; Tárrega, A.; Izquierdo, L.; Jaeger, S.R. Investigation of the Number of Consumers Necessary to Obtain Stable Sample and Descriptor Configurations from Check-All-That-Apply (CATA) Questions. Food Qual. Prefer. 2014, 31, 135–141. [Google Scholar] [CrossRef]
- Cruz, A.G.; Cadena, R.S.; Castro, W.F.; Esmerino, E.A.; Rodrigues, J.B.; Gaze, L.; Faria, J.A.F.; Freitas, M.Q.; Deliza, R.; Bolini, H.M.A. Consumer Perception of Probiotic Yogurt: Performance of Check All That Apply (CATA), Projective Mapping, Sorting and Intensity Scale. Food Res. Int. 2013, 54, 601–610. [Google Scholar] [CrossRef]
- Tiepo, C.B.V.; Werlang, S.; Reinehr, C.O.; Colla, L.M. Sensory Methodologies Used in Descriptive Studies with Consumers: Check-All-That-Apply (CATA) and Variations. Res. Soc. Dev. 2020, 9, e407985705. [Google Scholar] [CrossRef]
- Alexi, N.; Nanou, E.; Lazo, O.; Guerrero, L.; Grigorakis, K.; Byrne, D.V. Check-All-That-Apply (CATA) with Semi-Trained Assessors: Sensory Profiles Closer to Descriptive Analysis or Consumer Elicited Data? Food Qual. Prefer. 2018, 64, 11–20. [Google Scholar] [CrossRef]
- Engel, L.; Hamedy, A.; Kornacka-Stackonis, A.; Langner, T.; Birka, S.; Koethe, M. Toxoplasma Gondii in Raccoons (Procyon Lotor) in Germany: A Serosurvey Based on Meat Juice. Parasitol. Res. 2022, 121, 3417–3425. [Google Scholar] [CrossRef]
- Sato, S.; Kabeya, H.; Makino, T.; Suzuki, K.; Asano, M.; Inoue, S.; Sentsui, H.; Nogami, S.; Maruyama, S. Seroprevalence of Toxoplasma Gondii Infection in Feral Raccoons (Procyon Lotor) in Japan. J. Parasitol. 2011, 97, 956–957. [Google Scholar] [CrossRef] [PubMed]
Taste | Compound | Half Threshold | Threshold | Twice Threshold |
---|---|---|---|---|
Sweetness | sucrose | 0.25 | 0.5 | 1.0 |
Saltiness | sodium chloride | 0.1 | 0.2 | 0.4 |
Sourness | citric acid | 0.035 | 0.07 | 0.14 |
Bitterness | anhydrous caffeine | 0.024 | 0.048 | 0.096 |
Umami | monosodium glutamate | 0.015 | 0.03 | 0.06 |
Type (num.) | Descriptors |
---|---|
Flavor/taste (19) | ‘beef-like’, ‘pork-like’, ‘chicken-like’, ‘fish-like’, ‘lamb/mutton-like’, ‘sweet’, ‘bitter’, ‘salty’, ‘sour’, ‘umami’, ‘plain’, ‘bloody’, ‘rich’, ‘quirky’, ‘having aftertaste’, ‘gamey’, ‘liver-like’, ‘full-bodied’, ‘light’ |
Texture (8) | ‘chewy’, ‘juicy’, ‘tender’, ‘dry’, ‘pleasant on the tongue’, ‘unpleasant on the tongue’, ‘crumbly’, ‘difficult to swallow’ |
Color Indices | Beef | Pork | Chicken | Lamb | Tuna | Frog | Venison | Raccoon | Significance |
---|---|---|---|---|---|---|---|---|---|
Lightness (L*) | 33.13 ± 0.32 a | 56.17 ± 0.41 b | 56.83 ± 0.47 b | 34.30 ± 0.30 a | 44.00 ± 1.44 d | 55.97 ± 0.87 c | 21.67 ± 0.84 d | 24.07 ± 0.19 d | *** |
Redness (a*) | 21.27 ± 0.74 ab | 9.60 ± 0.26 c | 1.63 ± 0.15 d | 22.73 ± 0.56 abe | 12.97 ± 0.46 c | 0.83 ± 0.26 d | 24.77 ± 1.33 e | 22.87 ± 0.97 ae | *** |
Yellowness (b*) | 14.43 ± 0.15 ab | 17.07 ± 1.51 a | 14.43 ± 0.15 ab | 16.70 ± 0.42 a | 16.33 ± 0.69 a | 11.13 ± 0.62 b | 15.10 ± 0.59 a | 14.33 ± 0.41 ab | *** |
Chroma (C*) | 8.45 ± 0.10 a | 7.30 ± 0.22 b | 5.67 ± 0.03 c | 8.88 ± 0.09 a | 7.65 ± 0.03 b | 4.89 ± 0.12 d | 8.92 ± 0.21 a | 8.62 ± 0.16 a | *** |
Hue angle (h*) | 34.20 ± 0.74 a | 60.38 ± 2.02 b | 83.54 ± 0.61 c | 36.31 ± 0.71 a | 51.50 ± 2.18 d | 85.64 ± 1.52 c | 31.41 ± 0.71 a | 32.11 ± 0.51 a | *** |
Descriptor | Beef | Pork | Chicken | Lamb | Tuna | Frog | Venison | Raccoon | Significance |
---|---|---|---|---|---|---|---|---|---|
beef-like | 4 | 2 | 4 | 3 | 0 | 0 | 1 | 2 | NS |
pork-like | 4 | 5 | 6 | 1 | 1 | 0 | 1 | 0 | ** |
chicken-like | 1 | 7 | 3 | 2 | 3 | 1 | 1 | 1 | * |
fish-like | 1 | 0 | 2 | 1 | 8 | 16 | 2 | 1 | *** |
lamb/mutton-like | 8 | 0 | 0 | 8 | 1 | 0 | 3 | 7 | *** |
sweet | 2 | 0 | 1 | 1 | 3 | 1 | 1 | 0 | NS |
bitter | 1 | 0 | 0 | 3 | 3 | 0 | 3 | 0 | NS |
salty | 2 | 6 | 5 | 1 | 6 | 6 | 1 | 4 | * |
sour | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | * |
umami | 7 | 6 | 12 | 4 | 10 | 7 | 3 | 1 | NS |
plain | 2 | 9 | 5 | 1 | 4 | 10 | 1 | 2 | *** |
bloody | 1 | 1 | 0 | 2 | 0 | 0 | 4 | 2 | NS |
rich | 2 | 2 | 1 | 6 | 3 | 0 | 5 | 3 | NS |
quirky | 4 | 4 | 0 | 12 | 1 | 2 | 14 | 12 | *** |
light | 2 | 10 | 10 | 1 | 10 | 15 | 2 | 2 | *** |
having aftertaste | 8 | 4 | 0 | 14 | 4 | 3 | 10 | 8 | *** |
gamey | 4 | 1 | 0 | 13 | 0 | 2 | 11 | 12 | *** |
liver-like | 0 | 5 | 1 | 3 | 0 | 0 | 6 | 3 | ** |
full-bodied | 4 | 1 | 3 | 3 | 1 | 1 | 1 | 2 | NS |
chewy | 13 | 2 | 2 | 5 | 5 | 5 | 0 | 13 | *** |
juicy | 3 | 2 | 6 | 4 | 11 | 5 | 5 | 4 | * |
tender | 3 | 13 | 12 | 8 | 11 | 8 | 15 | 2 | *** |
dry | 11 | 12 | 4 | 7 | 2 | 8 | 8 | 5 | ** |
pleasant on the tongue | 3 | 1 | 6 | 3 | 6 | 6 | 4 | 4 | NS |
unpleasant on the tongue | 2 | 7 | 1 | 4 | 1 | 2 | 5 | 2 | NS |
crumbly | 1 | 7 | 3 | 3 | 1 | 8 | 7 | 1 | ** |
difficult to swallow | 2 | 4 | 1 | 4 | 0 | 1 | 1 | 5 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizunoya, W.; Hayashi, N.; Kataoka, A.; Nishikawa, H.; Todoroki, M.; Kase, C.; Takeda, S. Assessing the Flavor of Various Edible Meats Including Wild Raccoon Meat by the Check-All-That-Apply Method. Foods 2025, 14, 2191. https://doi.org/10.3390/foods14132191
Mizunoya W, Hayashi N, Kataoka A, Nishikawa H, Todoroki M, Kase C, Takeda S. Assessing the Flavor of Various Edible Meats Including Wild Raccoon Meat by the Check-All-That-Apply Method. Foods. 2025; 14(13):2191. https://doi.org/10.3390/foods14132191
Chicago/Turabian StyleMizunoya, Wataru, Nanami Hayashi, Asuka Kataoka, Hinako Nishikawa, Minori Todoroki, Chihiro Kase, and Shiro Takeda. 2025. "Assessing the Flavor of Various Edible Meats Including Wild Raccoon Meat by the Check-All-That-Apply Method" Foods 14, no. 13: 2191. https://doi.org/10.3390/foods14132191
APA StyleMizunoya, W., Hayashi, N., Kataoka, A., Nishikawa, H., Todoroki, M., Kase, C., & Takeda, S. (2025). Assessing the Flavor of Various Edible Meats Including Wild Raccoon Meat by the Check-All-That-Apply Method. Foods, 14(13), 2191. https://doi.org/10.3390/foods14132191