Impact Dynamics and Freezing Performance of Porcine Bile Droplets on Horizontal Cold Substrates: Towards Advanced and Sustainable Food Processing
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Pretreatment
2.2. Experimental Setup
2.3. Experimental Procedure and Conditions
3. Results and Discussion
3.1. Spreading Factor and Rebound Ratio
- Phase 1 (Rapid Increase): The spreading factor undergoes a significant increase, reaching its maximum.
- Phase 2 (Slow Decrease): The spreading factor gradually decreases after the initial sharp rise.
- Phase 3 (Stabilization): The spreading factor reaches a stable value after the second phase.
- Effect of Surface Temperature: As the surface temperature decreases, the time to reach the maximum spreading factor decreases. This could be because a larger temperature difference between the porcine bile droplet and the cold substrate enhances the heat exchange rate, increasing the cooling rate. The faster cooling affects the molecular motion and spreading behaviour of the droplet.
- Effect of Release Height (Impact Speed): For the same surface temperature, the rate of change of the spreading factor increases with the release height (or impact speed). The increase in impact speed enhances inertial effects (which can be observed through the Reynolds number (Re) and Weber number (We). A higher impact speed increases the Reynolds number, indicating a stronger inertial effect, and the square relationship of speed significantly increases the Weber number. This means that the porcine bile droplet has a greater ability to overcome surface tension, leading to a greater spread of the droplet.
- Interaction of Low Release Height and Low Surface Temperature: The combined effect of a lower release height (resulting in lower impact speed) and lower surface temperature reduces the inertial forces and spreading ability of the porcine bile droplet. This also enhances the cooling and freezing effects. This combined effect usually results in a significantly reduced spreading factor. Under extreme low-temperature conditions, the porcine bile droplet may freeze before it reaches its maximum spread, showing a strong inhibition effect.
3.2. Dynamics and Freezing Morphology of Porcine Bile Droplets Characterized by Five Dimensionless Numbers
3.2.1. Impact Dynamics and the Role of Dimensionless Numbers
- (1)
- Maximum Spreading Time and Weber Number (We)
- (2)
- Retraction Oscillation Time and Reynolds (Re) and Ohnesorge (Oh) Numbers
3.2.2. Interfacial Nucleation and Propagation: Effects of the Prandtl Number (Pr) and Bond Number (Bo)
- (1)
- Interfacial Nucleation Time
- (2)
- Interfacial Propagation and Freezing Rate
3.2.3. Final Ice Crown Morphology and Total Freezing Time
- (1)
- Total Freezing Duration
- (2)
- Macroscopic Ice Crown Morphology
4. Conclusions
- (1)
- Impact Dynamics:
- (2)
- Freezing behaviour:
- (3)
- Dimensionless Number Effects:
- (4)
- Engineering Relevance:
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michel, M.; Eldridge, A.L.; Hartmann, C.; Klassen, P.; Ingram, J.; Meijer, G.W. Benefits and challenges of food processing in the context of food systems, value chains and sustainable development goals. Trends Food Sci. Technol. 2024, 153, 104703. [Google Scholar] [CrossRef]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of agri-food by-products in the food industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Schulte, H.; Pleissner, D.; Schönfelder, S.; Kvangarsnes, K.; Dauksas, E.; Rustad, T.; Cropotova, J.; Heinz, V.; Smetana, S. Transformation of seafood side-streams and residuals into valuable products. Foods 2023, 12, 422. [Google Scholar] [CrossRef]
- Dos Santos, F.K.; Barcellos-Silva, I.G.; Leite-Barbosa, O.; Ribeiro, R.; Cunha-Silva, Y.; Veiga-Junior, V.F. High added-value by-products from biomass: A case study unveiling opportunities for strengthening the agroindustry value chain. Biomass 2024, 4, 217–242. [Google Scholar] [CrossRef]
- Almaraz-Sánchez, I.; Amaro-Reyes, A.; Acosta-Gallegos, J.A.; Mendoza-Sánchez, M. Processing agroindustry by-products for obtaining value-added products and reducing environmental impact. J. Chem. 2022, 2022, 3656932. [Google Scholar] [CrossRef]
- Chamorro, F.; Carpena, M.; Fraga-Corral, M.; Echave, J.; Rajoka, M.S.R.; Barba, F.J.; Cao, H.; Xiao, J.; Prieto, M.A.; Simal-Gandara, J. Valorization of kiwi agricultural waste and industry by-products by recovering bioactive compounds and applications as food additives: A circular economy model. Food Chem. 2022, 370, 131315. [Google Scholar] [CrossRef]
- Yoha, K.S.; Moses, J.A. 3D printing approach to valorization of agri-food processing waste streams. Foods 2023, 12, 212. [Google Scholar] [CrossRef]
- Yang, K.; Qing, Y.; Yu, Q.; Tang, X.; Chen, G.; Fang, R.; Liu, H. By-product feeds: Current understanding and future perspectives. Agriculture 2021, 11, 207. [Google Scholar] [CrossRef]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef]
- Latoch, A.; Stasiak, D.M.; Siczek, P. Edible offal as a valuable source of nutrients in the diet—A review. Nutrients 2024, 16, 1609. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Naveen Kumar, M.; Chitra Devi, V.; Saravanan, K.; Easwaramoorthi, S. Agro-industrial waste valorization to energy and value added products for environmental sustainability. In Biomass Valorization to Bioenergy; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–9. [Google Scholar]
- Rahman, M.S.; Velez-Ruiz, J.F. Food preservation by freezing. In Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2007; pp. 653–684. [Google Scholar]
- Jiang, M.; Sun, J.; Obadi, M.; Bai, X.; Zhu, W. Effects of ultrasonic vacuum drying on the drying kinetics, dynamic moisture distribution, and microstructure of honey drying process. Food Sci. Technol. Int. 2021, 27, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, M.; Wu, T.; Yang, K.; Wang, Y.; Zhang, Y.; Gu, Y.; Deng, K. Screening of the freeze-drying protective agent for high-quality milk beer yeast (Kluyveromyces marxianus) and optimization of freeze-drying process conditions. J. Food Process. Preserv. 2021, 45, e16016. [Google Scholar] [CrossRef]
- Aider, M.; De Halleux, D. Cryoconcentration technology in the bio-food industry: Principles and applications. LWT Food Sci. Technol. 2009, 42, 679–685. [Google Scholar] [CrossRef]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and bio-based food packaging: A review on past and current design innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Taniguchi, S.; Ye, Y.; Niekrasz, M.; Nour, B.; Cooper, D.K. Comparison of bile chemistry between humans, baboons, and pigs: Implications for clinical and experimental liver xenotransplantation. Comp. Med. 1998, 48, 197–200. [Google Scholar]
- Chen, C.; Zhu, W.; Steibel, J.; Siegford, J.; Han, J.; Norton, T. Classification of drinking and drinker-playing in pigs by a video-based deep learning method. Biosyst. Eng. 2020, 196, 1–4. [Google Scholar] [CrossRef]
- Cazabat, A.M. How does a droplet spread? Contemp. Phys. 1987, 28, 347–364. [Google Scholar] [CrossRef]
- He, Y.; Wu, J.; Xiao, S.; Fang, H.; Zheng, Q. Investigating the wettability of rapeseed leaves. Appl. Eng. Agric. 2021, 37, 399–409. [Google Scholar] [CrossRef]
- Chang, S.; Qi, H.; Zhou, S.; Yang, Y. Experimental study on freezing characteristics of water droplets on cold surfaces. Int. J. Heat Mass Transf. 2022, 194, 123108. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.Y. Control of ice nucleation: Freezing and antifreeze strategies. Chem. Soc. Rev. 2018, 47, 7116–7139. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Z.; Wang, J.; Wang, R. Characteristics of single droplet impact on cold plate surfaces. Dry. Technol. 2012, 30, 1756–1762. [Google Scholar] [CrossRef]
- Yang, G.; Guo, K.; Li, N. Freezing mechanism of supercooled water droplet impacting on metal surfaces. Int. J. Refrig. 2011, 34, 2007–2017. [Google Scholar] [CrossRef]
- Teske, M.E.; Thistle, H.W.; Riley, C.M.; Hewitt, A.J. Initial laboratory measurements of the evaporation rate of droplets inside a spray cloud. Trans. ASABE 2016, 59, 487–493. [Google Scholar]
- Kumar, A.; Mandal, D.K. Impact of emulsion drops on a solid surface: The effect of viscosity. Phys. Fluids 2019, 31, 102101. [Google Scholar] [CrossRef]
- De Goede, T.C.; Laan, N.; De Bruin, K.G.; Bonn, D. Effect of wetting on drop splashing of Newtonian fluids and blood. Langmuir 2018, 34, 5163–5168. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhao, B.; Zou, S.; Guo, J.; Wei, Z.; Chen, L. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation. J. Colloid Interface Sci. 2018, 516, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhu, H.; Liu, H.; Chen, Y.; Ozkan, E. Development of a laser-guided, embedded-computer-controlled, air-assisted precision sprayer. Trans. ASABE 2017, 60, 1827–1838. [Google Scholar] [CrossRef]
- Appah, S.; Wang, P.; Ou, M.; Gong, C.; Jia, W. Review of electrostatic system parameters, charged droplets characteristics and substrate impact behaviour from pesticides spraying. Int. J. Agric. Biol. Eng. 2019, 12, 1–9. [Google Scholar]
Density | Dynamic Viscosity | Surface Tension | Specific Heat Capacity |
---|---|---|---|
993.6 kg/m3 | 2.389 mPa·s | 0.04471 N/m | 19870 J/(kg·K) |
D0 | Ts | H0 | v0 | We | Re | Bo | Oh | Pr |
---|---|---|---|---|---|---|---|---|
1.028 mm | −10 °C | 10 mm | 0.25 m/s | 1.428 | 106.888 | 0.027 | 0.011 | 76.627 |
20 mm | 0.38 m/s | 3.299 | 162.470 | 0.042 | ||||
30 mm | 0.59 m/s | 7.953 | 252.255 | 0.065 | ||||
−15 °C | 10 mm | 0.25 m/s | 1.428 | 106.888 | 0.027 | |||
20 mm | 0.38 m/s | 3.299 | 162.470 | 0.042 | ||||
30 mm | 0.59 m/s | 7.953 | 252.255 | 0.065 | ||||
−20 °C | 10 mm | 0.25 m/s | 1.428 | 106.888 | 0.027 | |||
20 mm | 0.38 m/s | 3.299 | 162.470 | 0.042 | ||||
30 mm | 0.59 m/s | 7.953 | 252.255 | 0.065 | ||||
0.532 mm | −10 °C | 10 mm | 0.18 m/s | 0.383 | 39.827 | 0.005 | 0.016 | |
20 mm | 0.26 m/s | 0.799 | 57.528 | 0.008 | ||||
30 mm | 0.39 m/s | 1.798 | 86.292 | 0.011 | ||||
−15 °C | 10 mm | 0.18 m/s | 0.383 | 39.827 | 0.005 | |||
20 mm | 0.26 m/s | 0.799 | 57.528 | 0.008 | ||||
30 mm | 0.39 m/s | 1.798 | 86.292 | 0.011 | ||||
−20 °C | 10 mm | 0.18 m/s | 0.383 | 39.827 | 0.005 | |||
20 mm | 0.26 m/s | 0.799 | 57.528 | 0.008 | ||||
30 mm | 0.39 m/s | 1.798 | 86.292 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhang, B.; Chen, L.; Zhang, Z.; Zhang, H.; Du, X.; Wang, X.; Zhang, L.; Yang, T.; Wu, C. Impact Dynamics and Freezing Performance of Porcine Bile Droplets on Horizontal Cold Substrates: Towards Advanced and Sustainable Food Processing. Foods 2025, 14, 2173. https://doi.org/10.3390/foods14132173
Hu X, Zhang B, Chen L, Zhang Z, Zhang H, Du X, Wang X, Zhang L, Yang T, Wu C. Impact Dynamics and Freezing Performance of Porcine Bile Droplets on Horizontal Cold Substrates: Towards Advanced and Sustainable Food Processing. Foods. 2025; 14(13):2173. https://doi.org/10.3390/foods14132173
Chicago/Turabian StyleHu, Xinkang, Bo Zhang, Libang Chen, Zhenpeng Zhang, Huanhuan Zhang, Xintong Du, Xu Wang, Lulu Zhang, Tao Yang, and Chundu Wu. 2025. "Impact Dynamics and Freezing Performance of Porcine Bile Droplets on Horizontal Cold Substrates: Towards Advanced and Sustainable Food Processing" Foods 14, no. 13: 2173. https://doi.org/10.3390/foods14132173
APA StyleHu, X., Zhang, B., Chen, L., Zhang, Z., Zhang, H., Du, X., Wang, X., Zhang, L., Yang, T., & Wu, C. (2025). Impact Dynamics and Freezing Performance of Porcine Bile Droplets on Horizontal Cold Substrates: Towards Advanced and Sustainable Food Processing. Foods, 14(13), 2173. https://doi.org/10.3390/foods14132173