Non-Destructive Detection of Fruit Quality: Technologies, Applications and Prospects
Abstract
1. Introduction
2. Optical Technology
2.1. Near-Infrared Spectroscopy
2.2. Hyperspectral Imaging
2.3. Visible Light Imaging
3. Electromagnetic Technology
3.1. Nuclear Magnetic Resonance
3.2. Terahertz
4. Acoustic Technology
4.1. Ultrasonic
4.2. Vibration
5. Dielectric Property Detection Technology
6. Electronic Nose
7. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adaskaveg, J.A.; Blanco-Ulate, B. Targeting ripening regulators to develop fruit with high quality and extended shelf life. Curr. Opin. Biotechnol. 2023, 79, 102872. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Anwar, R.; Yousef, A.F.; Li, B.; Luvisi, A.; De Bellis, L.; Aprile, A.; Chen, F. Influence of bagging on the development and quality of fruits. Plants 2021, 10, 358. [Google Scholar] [CrossRef]
- Sabbadini, S.; Capocasa, F.; Battino, M.; Mazzoni, L.; Mezzetti, B. Improved nutritional quality in fruit tree species through traditional and biotechnological approaches. Trends Food Sci. Technol. 2021, 117, 125–138. [Google Scholar] [CrossRef]
- Dhiman, B.; Kumar, Y.; Kumar, M. Fruit quality evaluation using machine learning techniques: Review, motivation and future perspectives. Multimed. Tools Appl. 2022, 81, 16255–16277. [Google Scholar] [CrossRef]
- Farina, V.; Gianguzzi, G.; Mazzaglia, A. Fruit quality evaluation of affirmed and local loquat (eriobotrya japonicalindl) cultivars using instrumental and sensory analyses. Fruits 2016, 71, 105–113. [Google Scholar] [CrossRef]
- Gunness, P.; Kravchuk, O.; Nottingham, S.M.; D’arcy, B.R.; Gidley, M.J. Sensory analysis of individual strawberry fruit and comparison with instrumental analysis. Postharvest Biol. Technol. 2009, 52, 164–172. [Google Scholar] [CrossRef]
- Wu, J.; Cao, J.P.; Chen, J.B.; Huang, L.X.; Wang, Y.; Sun, C.; Sun, C.D. Detection and classification of volatile compounds emitted by three fungi-infected citrus fruit using gas chromatography-mass spectrometry. Food Chem. 2023, 412, 135524. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Hu, B.Z.; Huang, C.Q.; Zhang, W.H.; Wu, H.Z.; Liu, C.Q.; Chen, Q.Y.; Shen, Y. Determination of morpholine residue in fruit and fruit juices by gas chromatography−tandem mass spectrometry. LWT 2022, 161, 113369. [Google Scholar] [CrossRef]
- Wen, J.; Xu, G.Q.; Zhang, A.; Ma, W.; Jin, G. Emerging technologies for rapid non-destructive testing of grape quality: A review. J. Food Compos. Anal. 2024, 133, 106446. [Google Scholar] [CrossRef]
- Mohd Ali, M.; Hashim, N.; Bejo, S.K.; Jahari, M.; Shahabudin, N.A. Innovative non-destructive technologies for quality monitoring of pineapples: Recent advances and applications. Trends Food Sci. Technol. 2023, 133, 176–188. [Google Scholar] [CrossRef]
- Huang, Y.P.; Xiong, J.; Li, Z.A.; Hu, D.; Sun, Y.; Jin, H.J.; Zhang, H.C.; Fang, H.M. Recent advances in light penetration depth for postharvest quality evaluation of fruits and vegetables. Foods 2024, 13, 2688. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.J.; Xu, H.R. Nondestructive methods for the quality assessment of fruits and vegetables considering their physical and biological variability. Food Eng. Rev. 2022, 14, 380–407. [Google Scholar] [CrossRef]
- Akter, T.; Bhattacharya, T.; Kim, J.-H.; Kim, M.S.; Baek, I.; Chan, D.E.; Cho, B.-K. A comprehensive review of external quality measurements of fruits and vegetables using nondestructive sensing technologies. J. Agric. Food Res. 2024, 15, 101068. [Google Scholar] [CrossRef]
- Jha, S.N.; Narsaiah, K.; Basediya, A.L.; Sharma, R.; Jaiswal, P.; Kumar, R.; Bhardwaj, R. Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods-a review. J. Food Sci. Technol. 2011, 48, 387–411. [Google Scholar] [CrossRef]
- Anwar, H.; Anwar, T. Application of electronic nose and machine learning in determining fruits quality: A review. J. Anim. Plant Sci. 2024, 34, 283–290. [Google Scholar] [CrossRef]
- Hu, G.R.; Zhang, E.Y.; Zhou, J.G.; Zhao, J.; Gao, Z.N.; Sugirbay, A.; Jin, H.L.; Zhang, S.; Chen, J. Infield apple detection and grading based on multi-feature fusion. Horticulturae 2021, 7, 276. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Maleva, T.; Soloviev, V. Using yolov3 algorithm with pre- and post-processing for apple detection in fruit-harvesting robot. Agronomy 2020, 10, 1016. [Google Scholar] [CrossRef]
- Li, B.; Yin, H.; Liu, Y.D.; Zhang, F.; Yang, A.K.; Su, C.T.; Ou-Yang, A.G. Detection storage time of mild bruise’s yellow peaches using the combined hyperspectral imaging and machine learning method. J. Anal. Sci. Technol. 2022, 13, 24. [Google Scholar] [CrossRef]
- Tong, Y.Q.; Wang, S.Y.; Han, K.G.; Song, X.X.; Zhang, W.; Ye, Y.X.; Ren, X.D. Development of a novel metal grating and its applications of terahertz spectroscopic detection of CuSO4 in fruit. Food Anal. Methods 2021, 14, 1590–1599. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Evaluation of sensory parameters of grapes using near infrared spectroscopy. J. Food Eng. 2013, 118, 333–339. [Google Scholar] [CrossRef]
- Basile, T.; Marsico, A.D.; Cardone, M.F.; Antonacci, D.; Perniola, R. Ft-nir analysis of intact table grape berries to understand consumer preference driving factors. Foods 2020, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.X.; Wang, H.Y. Application of near infrared reflectance spectroscopy on feed industry. Feed Ind. 2005, 26, 37–41. [Google Scholar]
- Park, S.; Jeon, S.; Kwon, N.-H.; Kwon, M.; Shin, J.-H.; Kim, W.-C.; Lee, J.G. Application of near-infrared spectroscopy to predict chemical properties in clay rich soil: A review. Eur. J. Agron. 2024, 159, 127228. [Google Scholar] [CrossRef]
- Hossain, M.E.; Kabir, M.A.; Zheng, L.; Swain, D.L.; Mcgrath, S.; Medway, J. Near-infrared spectroscopy for analysing livestock diet quality: A systematic review. Heliyon 2024, 10, e40016. [Google Scholar] [CrossRef]
- Suran, P. Use of near-infrared spectrometry in temperate fruit: A review. Hortic. Sci. 2024, 51, 169–188. [Google Scholar] [CrossRef]
- Zeng, J.; Guo, Y.; Han, Y.Q.; Li, Z.M.; Yang, Z.X.; Chai, Q.Q.; Wang, W.; Zhang, Y.; Fu, C.L. A review of the discriminant analysis methods for food quality based on near-infrared spectroscopy and pattern recognition. Molecules 2021, 26, 749. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, Y.T.; Wu, X.H.; Dai, C.X.; Chen, Y. Ssc prediction of cherry tomatoes based on iriv-cs-svr model and near infrared reflectance spectroscopy. J. Food Process Eng. 2018, 41, e12884. [Google Scholar] [CrossRef]
- Urraca, R.; Sanz-Garcia, A.; Tardaguila, J.; Diago, M.P. Estimation of total soluble solids in grape berries using a hand-held nir spectrometer under field conditions. J. Sci. Food Agric. 2016, 96, 3007–3016. [Google Scholar] [CrossRef]
- Bai, Y.H.; Xiong, Y.J.; Huang, J.C.; Zhou, J.; Zhang, B.H. Accurate prediction of soluble solid content of apples from multiple geographical regions by combining deep learning with spectral fingerprint features. Postharvest Biol. Technol. 2019, 156, 110943. [Google Scholar] [CrossRef]
- Daniels, A.J.; Poblete-Echeverria, C.; Opara, U.L.; Nieuwoudt, H.H. Measuring internal maturity parameters contactless on intact table grape bunches using nir spectroscopy. Front. Plant Sci. 2019, 10, 1517. [Google Scholar] [CrossRef]
- Yuan, L.M.; Cai, J.R.; Sun, L.; Han, E.; Ernest, T. Nondestructive measurement of soluble solids content in apples by a portable fruit analyzer. Food Anal. Methods 2015, 9, 785–794. [Google Scholar] [CrossRef]
- Yu, J.; Wang, H.; Sun, X.Y.; Huang, W.D. Parameter optimization in soluble solid content prediction of entire bunches of grape based on near infrared spectroscopic technique. J. Food Meas. Charact. 2017, 11, 1676–1680. [Google Scholar] [CrossRef]
- Bobelyn, E.; Serban, A.-S.; Nicu, M.; Lammertyn, J.; Nicolai, B.M.; Saeys, W. Postharvest quality of apple predicted by nir-spectroscopy: Study of the effect of biological variability on spectra and model performance. Postharvest Biol. Technol. 2010, 55, 133–143. [Google Scholar] [CrossRef]
- Guo, Z.M.; Huang, W.Q.; Peng, Y.K.; Chen, Q.S.; Ouyang, Q.; Zhao, J.W. Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of ‘fuji’ apple. Postharvest Biol. Technol. 2016, 115, 81–90. [Google Scholar] [CrossRef]
- Meng, Q.L.; Shang, J.; Chen, L.T.; Huang, R.S.; Zhang, Y. Nondestructive detection of soluble solids content in apple by visible-near infrared spectroscopy. Food Ferment. Ind. 2020, 46, 205–209. [Google Scholar] [CrossRef]
- Sheng, R.; Cheng, W.; Li, H.H.; Ali, S.; Agyekum, A.A.; Chen, Q.S. Model development for soluble solids and lycopene contents of cherry tomato at different temperatures using near-infrared spectroscopy. Postharvest Biol. Technol. 2019, 156, 110952. [Google Scholar] [CrossRef]
- Guo, Z.M.; Wang, M.M.; Agyekum, A.A.; Wu, J.Z.; Chen, Q.S.; Zuo, M.; El-Seedi, H.R.; Tao, F.F.; Shi, J.Y.; Ouyang, Q.; et al. Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy. J. Food Eng. 2020, 279, 109955. [Google Scholar] [CrossRef]
- Qiu, G.J.; Lu, H.Z.; Wang, X.; Wang, C.; Xu, S.; Liang, X.; Fan, C.X. Nondestructive detecting maturity of pineapples based on visible and near-infrared transmittance spectroscopy coupled with machine learning methodologies. Horticulturae 2023, 9, 889. [Google Scholar] [CrossRef]
- Lan, W.J.; Jaillais, B.; Renard, C.M.G.C.; Leca, A.; Chen, S.C.; Le Bourvellec, C.; Bureau, S. A method using near infrared hyperspectral imaging to highlight the internal quality of apple fruit slices. Postharvest Biol. Technol. 2021, 175, 111497. [Google Scholar] [CrossRef]
- Qi, Z.X.; Wu, X.H.; Yang, Y.J.; Wu, B.; Fu, H.J. Discrimination of the red jujube varieties using a portable nir spectrometer and fuzzy improved linear discriminant analysis. Foods 2022, 11, 763. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, A.; Aleixos, N.; Blasco, J.; Albert, F.; Munera, S. Study of light penetration depth of a vis-nir hyperspectral imaging system for the assessment of fruit quality. A case study in persimmon fruit. J. Food Eng. 2023, 358, 111673. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Ji, S.H.; Xuan, G.T.; Wang, K.L.; Xu, L.Q.; Shao, J. Soluble solids content monitoring and shelf life analysis of winter jujube at different maturity stages by vis-nir hyperspectral imaging. Postharvest Biol. Technol. 2024, 210, 112773. [Google Scholar] [CrossRef]
- Wieme, J.; Mollazade, K.; Malounas, I.; Zude-Sasse, M.; Zhao, M.; Gowen, A.; Argyropoulos, D.; Fountas, S.; Van Beek, J. Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review. Biosyst. Eng. 2022, 222, 156–176. [Google Scholar] [CrossRef]
- Bhargava, A.; Sachdeva, A.; Sharma, K.; Alsharif, M.H.; Uthansakul, P.; Uthansakul, M. Hyperspectral imaging and its applications: A review. Heliyon 2024, 10, e33208. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Franco, C.; Mendes-Ferreira, A.; Mendes-Faia, A.; Costa, P.L.D.; Melo-Pinto, P. Brix, ph and anthocyanin content determination in whole port wine grape berries by hyperspectral imaging and neural networks. Comput. Electron. Agric. 2015, 115, 88–96. [Google Scholar] [CrossRef]
- Gowen, A.; Odonnell, C.; Cullen, P.; Downey, G.; Frias, J. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Pu, Y.Y.; Feng, Y.Z.; Sun, D.W. Recent progress of hyperspectral imaging on quality and safety inspection of fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 176–188. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, J.; Yao, K.S.; Xu, M.; Wang, S.M.; Fu, L.H. Development of multi-disturbance bagging extreme learning machine method for cadmium content prediction of rape leaf using hyperspectral imaging technology. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 279, 121479. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, J.; Yao, K.S.; Xu, M.; Cao, Y. A variable selection method based on mutual information and variance inflation factor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 268, 120652. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, X.; Hu, Y.G.; Wu, X.H.; Zhang, X.D.; Wang, P. Visualizing distribution of moisture content in tea leaves using optimization algorithms and nir hyperspectral imaging. Comput. Electron. Agric. 2019, 160, 153–159. [Google Scholar] [CrossRef]
- Dai, C.X.; Sun, J.; Huang, X.Y.; Zhang, X.R.; Tian, X.Y.; Wang, W.; Sun, J.T.; Luan, Y. Application of hyperspectral imaging as a nondestructive technology for identifying tomato maturity and quantitatively predicting lycopene content. Foods 2023, 12, 2957. [Google Scholar] [CrossRef]
- Li, J.B.; Luo, W.; Han, L.H.; Cai, Z.L.; Guo, Z.M. Two-wavelength image detection of early decayed oranges by coupling spectral classification with image processing. J. Food Compos. Anal. 2022, 111, 104642. [Google Scholar] [CrossRef]
- Chen, H.Z.; Qiao, H.L.; Feng, Q.X.; Xu, L.L.; Lin, Q.Y.; Cai, K. Rapid detection of pomelo fruit quality using near-infrared hyperspectral imaging combined with chemometric methods. Front. Bioeng. Biotechnol. 2020, 8, 616943. [Google Scholar] [CrossRef]
- Xiang, Y.; Chen, Q.J.; Su, Z.J.; Zhang, L.; Chen, Z.H.; Zhou, G.Z.; Yao, Z.P.; Xuan, Q.; Cheng, Y. Deep learning and hyperspectral images based tomato soluble solids content and firmness estimation. Front. Plant Sci. 2022, 13, 860656. [Google Scholar] [CrossRef]
- Xu, M.; Sun, J.; Cheng, J.H.; Yao, K.S.; Wu, X.H.; Zhou, X. Non-destructive prediction of total soluble solids and titratable acidity in kyoho grape using hyperspectral imaging and deep learning algorithm. Int. J. Food Sci. Technol. 2022, 58, 9–21. [Google Scholar] [CrossRef]
- Mousavi, A.; Pourdarbani, R.; Sabzi, S.; Sotoudeh, D.; Moradzadeh, M.; García-Mateos, G.; Kasaei, S.; Rohban, M.H. Classification of healthy and frozen pomegranates using hyperspectral imaging and deep learning. Horticulturae 2024, 10, 43. [Google Scholar] [CrossRef]
- Shi, L.; Sun, J.; Zhang, B.; Wu, Z.Q.; Jia, Y.; Yao, K.S.; Zhou, X. Simultaneous detection for storage condition and storage time of yellow peach under different storage conditions using hyperspectral imaging with multi-target characteristic selection and multi-task model. J. Food Compos. Anal. 2024, 135, 106647. [Google Scholar] [CrossRef]
- Zhao, J.W.; Liu, J.H.; Chen, Q.S.; Saritporn, V. Detecting subtle bruises on fruits with hyperspectral imaging. Trans. Chin. Soc. Agric. Eng. 2008, 39, 106–109. [Google Scholar]
- Baranowski, P.; Mazurek, W.; Wozniak, J.; Majewska, U. Detection of early bruises in apples using hyperspectral data and thermal imaging. J. Food Eng. 2012, 110, 345–355. [Google Scholar] [CrossRef]
- Liu, G.S.; He, J.G.; Wang, S.L.; Luo, Y.; Wang, W.; Wu, L.G.; Si, Z.H.; He, X.G. Application of near-infrared hyperspectral imaging for detection of external insect infestations on jujube fruit. Int. J. Food Prop. 2015, 19, 41–52. [Google Scholar] [CrossRef]
- Gabrielli, M.; Lançon-Verdier, V.; Picouet, P.; Maury, C. Hyperspectral imaging to characterize table grapes. Chemosensors 2021, 9, 71. [Google Scholar] [CrossRef]
- Gao, S.; Xu, J.H. Hyperspectral image information fusion-based detection of soluble solids content in red globe grapes. Comput. Electron. Agric. 2022, 196, 106822. [Google Scholar] [CrossRef]
- Gomes, V.M.; Fernandes, A.M.; Faia, A.; Melo-Pinto, P. Comparison of different approaches for the prediction of sugar content in new vintages of whole port wine grape berries using hyperspectral imaging. Comput. Electron. Agric. 2017, 140, 244–254. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Tardaguila, J.; Fernández-Novales, J.; Diago, M.P. On-the-go hyperspectral imaging for the in-field estimation of grape berry soluble solids and anthocyanin concentration. Aust. J. Grape Wine Res. 2019, 25, 127–133. [Google Scholar] [CrossRef]
- Hasanzadeh, B.; Abbaspour-Gilandeh, Y.; Soltani-Nazarloo, A.; Hernández-Hernández, M.; Gallardo-Bernal, I.; Hernández-Hernández, J.L. Non-destructive detection of fruit quality parameters using hyperspectral imaging, multiple regression analysis and artificial intelligence. Horticulturae 2022, 8, 598. [Google Scholar] [CrossRef]
- Shah, I.H.; Jinhui, W.; Ding, X.T.; Li, X.Y.; Rehman, A.; Azam, M.; Manzoor, M.A.; Zhang, Y.D.; Niu, Q.L.; Li, P.L.; et al. A non-destructive approach: Estimation of melon fruit quality attributes and nutrients using hyperspectral imaging coupled with machine learning. Smart Agric. Technol. 2025, 10, 100811. [Google Scholar] [CrossRef]
- Xu, M.; Sun, J.; Zhou, X.; Tang, N.Q.; Shen, J.F.; Wu, X.H. Research on nondestructive identification of grape varieties based on eemd-dwt and hyperspectral image. J. Food Sci. 2021, 86, 2011–2023. [Google Scholar] [CrossRef]
- Zhao, J.W.; Chen, Q.S.; Saritporn, V.; Sumpun, C. Determination of apple firmness using hyperspectral imaging technique and multivariate calibrations. Trans. Chin. Soc. Agric. Eng. 2009, 25, 226–231. [Google Scholar] [CrossRef]
- Palumbo, M.; Cefola, M.; Pace, B.; Attolico, G.; Colelli, G. Computer vision system based on conventional imaging for non-destructively evaluating quality attributes in fresh and packaged fruit and vegetables. Postharvest Biol. Technol. 2023, 200, 112332. [Google Scholar] [CrossRef]
- Olorunfemi, B.O.; Nwulu, N.I.; Adebo, O.A.; Kavadias, K.A. Advancements in machine visions for fruit sorting and grading: A bibliometric analysis, systematic review, and future research directions. J. Agric. Food Res. 2024, 16, 101154. [Google Scholar] [CrossRef]
- Cubero, S.; Lee, W.S.; Aleixos, N.; Albert, F.; Blasco, J. Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest—A review. Food Bioprocess Technol. 2016, 9, 1623–1639. [Google Scholar] [CrossRef]
- Ji, W.; Pan, Y.; Xu, B.; Wang, J.C. A real-time apple targets detection method for picking robot based on shufflenetv2-yolox. Agriculture 2022, 12, 856. [Google Scholar] [CrossRef]
- Zhang, H.W.; Ji, W.; Xu, B.; Yu, X.W. Optimizing contact force on an apple picking robot end-effector. Agriculture 2024, 14, 996. [Google Scholar] [CrossRef]
- Ji, W.; He, G.Z.; Xu, B.; Zhang, H.W.; Yu, X.W. A new picking pattern of a flexible three-fingered end-effector for apple harvesting robot. Agriculture 2024, 14, 102. [Google Scholar] [CrossRef]
- Palei, S.; Behera, S.K.; Sethy, P.K. A systematic review of citrus disease perceptions and fruit grading using machine vision. Procedia Comput. Sci. 2023, 218, 2504–2519. [Google Scholar] [CrossRef]
- Chuquimarca, L.E.; Vintimilla, B.X.; Velastin, S.A. A review of external quality inspection for fruit grading using cnn models. Artif. Intell. Agric. 2024, 14, 1–20. [Google Scholar] [CrossRef]
- Azadnia, R.; Fouladi, S.; Jahanbakhshi, A. Intelligent detection and waste control of hawthorn fruit based on ripening level using machine vision system and deep learning techniques. Results Eng. 2023, 17, 100891. [Google Scholar] [CrossRef]
- Liu, X.Y.; Jia, W.K.; Ruan, C.Z.; Zhao, D.A.; Gu, Y.W.; Chen, W. The recognition of apple fruits in plastic bags based on block classification. Precis. Agric. 2017, 19, 735–749. [Google Scholar] [CrossRef]
- Huynh, H.X.; Lam, B.H.; Le, H.V.C.; Le, T.T.; Duong-Trung, N. Design of an iot ultrasonic-vision based system for automatic fruit sorting utilizing size and color. Internet Things 2024, 25, 101017. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Z.J.; Ali, S.; Yang, N.; Fu, S.L.; Zhang, Y.K. Multi-class detection of cherry tomatoes using improved yolov4-tiny. Int. J. Agric. Biol. Eng. 2023, 16, 225–231. [Google Scholar] [CrossRef]
- Ismail, N.; Malik, O.A. Real-time visual inspection system for grading fruits using computer vision and deep learning techniques. Inf. Process. Agric. 2022, 9, 24–37. [Google Scholar] [CrossRef]
- Giménez-Gallego, J.; Martinez-Del-Rincon, J.; González-Teruel, J.D.; Navarro-Hellín, H.; Navarro, P.J.; Torres-Sánchez, R. On-tree fruit image segmentation comparing mask r-cnn and vision transformer models. Application in a novel algorithm for pixel-based fruit size estimation. Comput. Electron. Agric. 2024, 222, 109077. [Google Scholar] [CrossRef]
- Qiu, D.K.; Guo, T.H.; Yu, S.Q.; Liu, W.; Li, L.; Sun, Z.Z.; Peng, H.H.; Hu, D. Classification of apple color and deformity using machine vision combined with cnn. Agriculture 2024, 14, 978. [Google Scholar] [CrossRef]
- Gu, Q.; Li, T.; Hu, Z.W.; Zhu, Y.H.; Shi, J.; Zhang, L.C.; Zhang, X.B. Quantitative analysis of watermelon fruit skin phenotypic traits via image processing and their potential in maturity and quality detection. Comput. Electron. Agric. 2025, 230, 109960. [Google Scholar] [CrossRef]
- Huang, X.Y.; Lv, R.Q.; Wang, S.; Aheto, J.H.; Dai, C.X. Integration of computer vision and colorimetric sensor array for nondestructive detection of mango quality. J. Food Process Eng. 2018, 41, e12873. [Google Scholar] [CrossRef]
- Huang, X.Y.; Pan, S.H.; Sun, Z.Y.; Ye, W.T.; Aheto, J.H. Evaluating quality of tomato during storage using fusion information of computer vision and electronic nose. J. Food Process Eng. 2018, 41, e12832. [Google Scholar] [CrossRef]
- Cai, Z.L.; Sun, C.J.; Zhang, H.L.; Zhang, Y.Z.; Li, J.B. Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods. Postharvest Biol. Technol. 2024, 210, 112788. [Google Scholar] [CrossRef]
- Ji, W.; Wang, J.C.; Xu, B.; Zhang, T. Apple grading based on multi-dimensional view processing and deep learning. Foods 2023, 12, 2117. [Google Scholar] [CrossRef]
- Reka, S.S.; Bagelikar, A.; Venugopal, P.; Ravi, V.; Devarajan, H. Deep learning-based classification of rotten fruits and identification of shelf life. Comput. Mater. Contin. 2024, 78, 781–794. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Tzani, M.; Aznaouridis, S.I. A general machine learning model for assessing fruit quality using deep image features. AI 2023, 4, 812–830. [Google Scholar] [CrossRef]
- Xu, B.; Cui, X.; Ji, W.; Yuan, H.; Wang, J.C. Apple grading method design and implementation for automatic grader based on improved yolov5. Agriculture 2023, 13, 124. [Google Scholar] [CrossRef]
- Knott, M.; Perez-Cruz, F.; Defraeye, T. Facilitated machine learning for image-based fruit quality assessment. J. Food Eng. 2023, 345, 111401. [Google Scholar] [CrossRef]
- Ferreira, M.V.D.S.; Barbon Junior, S.; Costa, V.G.T.D.; Barbin, D.F.; Barbosa, J.L., Jr. Deep computer vision system and explainable artificial intelligence applied for classification of dragon fruit (Hylocereus spp.). Sci. Hortic. 2024, 338, 113605. [Google Scholar] [CrossRef]
- S, S.M.; Shivur, B.S.; Kanavi, A.; Kuradagi, A.; Pendem, S. Improving apple fruit quality detection with ai and machine vision. Int. J. Multidiscip. Res. 2024, 6, 1–27. [Google Scholar] [CrossRef]
- Tian, Y.Q.; He, Q.Y.; Chen, X.; Wang, S.Y. Nuclear magnetic resonance spectroscopy for food quality evaluation. In Evaluation Technologies for Food Quality; Zhong, J., Wang, X.C., Eds.; Elsevier: Cambridge, UK; Cambridge, MA, USA; Oxfordshire, UK, 2019; pp. 193–217. [Google Scholar] [CrossRef]
- Iglesias, M.J.; Garcia Lopez, J.; Collados Lujan, J.F.; Lopez Ortiz, F.; Bojorquez Pereznieto, H.; Toresano, F.; Camacho, F. Effect of genetic and phenotypic factors on the composition of commercial marmande type tomatoes studied through hrmas nmr spectroscopy. Food Chem. 2014, 142, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-W.; Mo, X.Y.; Xiao, J.S.; Zhao, Z.J.; Wan, P. Use of nuclear magnetic resonance spectroscopy to identify phospholipids in food: A brief review. J. Food Compos. Anal. 2025, 140, 107268. [Google Scholar] [CrossRef]
- Lolli, V.; Caligiani, A. How nuclear magnetic resonance contributes to food authentication: Current trends and perspectives. Curr. Opin. Food Sci. 2024, 58, 101200. [Google Scholar] [CrossRef]
- Li, Y.T.; Obadi, M.; Shi, J.C.; Sun, J.; Chen, Z.W.; Xu, B. Determination of moisture, total lipid, and bound lipid contents in oats using low-field nuclear magnetic resonance. J. Food Compos. Anal. 2020, 87, 103401. [Google Scholar] [CrossRef]
- Nakashima, S.; Oda, C.; Masuda, S.; Tagashira, M.; Kanda, T. Isolation and structure elucidation of tetrameric procyanidins from unripe apples (Malus pumila cv. Fuji) by nmr spectroscopy. Phytochemistry 2012, 83, 144–152. [Google Scholar] [CrossRef]
- Silva Barbosa Correia, B.; Ferraz De Arruda, H.; Spricigo, P.C.; Ceribeli, C.; Souza Almeida, L.; Rodrigues Cardoso, D.; Jacomino, A.P.; Da Fontoura Costa, L.; Colnago, L.A. Emerging studies of nmr-based metabolomics of fruits regarding botanic family species associated with postharvest quality. J. Food Compos. Anal. 2024, 130, 106136. [Google Scholar] [CrossRef]
- Lucarini, M.; Di Cocco, M.E.; Raguso, V.; Milanetti, F.; Durazzo, A.; Lombardi-Boccia, G.; Santini, A.; Delfini, M.; Sciubba, F. Nmr-based metabolomic comparison of Brassica oleracea (Var. italica): Organic and conventional farming. Foods 2020, 9, 945. [Google Scholar] [CrossRef] [PubMed]
- Fazzi, M.C.; Girelli, C.R.; Migoni, D.; Fracasso, B.; Cesari, G.; Fanizzi, F.P. 1h-nmr-based metabolomic profiles of zucchini (Cucurbita pepo L.) grown with different agricultural practices for sustainable crop production. Foods 2025, 14, 919. [Google Scholar] [CrossRef]
- Sutil, G.L.; Aparecida, P.R.; Antonio, P.L.; Andersson, B.; Gilvan, W. Multivariate analysis of the spectroscopic profile of the sugar fraction of apple pomace. Braz. Arch. Biol. Technol. 2013, 56, 439–446. [Google Scholar] [CrossRef]
- Girelli, C.R.; Papadia, P.; Pagano, F.; Miglietta, P.P.; Cardinale, M.; Rustioni, L. Metabolomic nmr analysis and organoleptic perceptions of pomegranate wines: Influence of cultivar and yeast on the product characteristics. Heliyon 2023, 9, e16774. [Google Scholar] [CrossRef]
- Lyu, J.; Yu, X.Y.; Wang, F.Z.; Xie, J.; Bi, J.F. Cell wall modifications during storage: Changes in the texture behavior of the canned yellow peach. Innov. Food Sci. Emerg. Technol. 2024, 91, 103549. [Google Scholar] [CrossRef]
- Qiao, S.C.; Tian, Y.W.; Wang, Q.H.; Song, S.Y.; Song, P. Nondestructive detection of decayed blueberry based on information fusion of hyperspectral imaging (hsi) and low-field nuclear magnetic resonance (lf-nmr). Comput. Electron. Agric. 2021, 184, 106100. [Google Scholar] [CrossRef]
- Zhang, L.; Mccarthy, M.J. Assessment of pomegranate postharvest quality using nuclear magnetic resonance. Postharvest Biol. Technol. 2013, 77, 59–66. [Google Scholar] [CrossRef]
- Francini, A.; Romeo, S.; Cifelli, M.; Gori, D.; Domenici, V.; Sebastiani, L. 1h nmr and pca-based analysis revealed variety dependent changes in phenolic contents of apple fruit after drying. Food Chem. 2017, 221, 1206–1213. [Google Scholar] [CrossRef]
- Di Matteo, G.; Spano, M.; Esposito, C.; Santarcangelo, C.; Baldi, A.; Daglia, M.; Mannina, L.; Ingallina, C.; Sobolev, A.P. Nmr characterization of ten apple cultivars from the piedmont region. Foods 2021, 10, 289. [Google Scholar] [CrossRef]
- Pereira, G.E.; Padhi, E.M.T.; Sudarshana, M.R.; Fialho, F.B.; Medina-Plaza, C.; Girardello, R.C.; Tseng, D.; Bruce, R.C.; Erdmann, J.N.; Slupsky, C.M.; et al. Impact of grapevine red blotch disease on primary and secondary metabolites in ‘cabernet sauvignon’ grape tissues. Food Chem. 2021, 342, 128312. [Google Scholar] [CrossRef]
- Wang, M.Y.; Li, Y.T.; Wang, Z.J.; Li, H.T.; Zuo, C.Z.; Zhao, J.Y.; Yang, Y.C.; Tu, K.; Lan, W.J.; Pan, L.Q. Exploring the optical response of water status and light propagation in bruised ‘korla’ fragrant pear tissues based on low-field nuclear magnetic resonance coupled with monte carlo simulation. Food Chem. 2025, 477, 143504. [Google Scholar] [CrossRef] [PubMed]
- Marigheto, N.; Venturi, L.; Hills, B. Two-dimensional nmr relaxation studies of apple quality. Postharvest Biol. Technol. 2008, 48, 331–340. [Google Scholar] [CrossRef]
- Wenck, S.; Bachmann, R.; Barmbold, S.-M.; Horns, A.L.; Paasch, N.; Seifert, S. Authentication of apples (Malus × domestica Borkh.) according to geographical origin, variety and production method using 1h nmr spectroscopy and random forest. Food Control 2025, 167, 110817. [Google Scholar] [CrossRef]
- Vermathen, M.; Marzorati, M.; Vermathen, P. Exploring high-resolution magic angle spinning (hr-mas) nmr spectroscopy for metabonomic analysis of apples. Chimia 2012, 66, 747–751. [Google Scholar] [CrossRef]
- Cong, M.Y.; Zhang, Z.Q.; Song, W.; Qiu, J.F. Food safety application of terahertz spectroscopy based on metamaterials: A review. J. Food Compos. Anal. 2025, 139, 107034. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Akbari, E.; Toudeshki, A.; Homayouni, T.; Alizadeh, A.; Ehsani, R. Terahertz spectroscopy and imaging: A review on agricultural applications. Comput. Electron. Agric. 2020, 177, 105628. [Google Scholar] [CrossRef]
- Li, B.; Zhang, D.P.; Shen, Y. Study on terahertz spectrum analysis and recognition modeling of common agricultural diseases. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 243, 118820. [Google Scholar] [CrossRef]
- Ok, G.; Shin, H.J.; Lim, M.-C.; Choi, S.-W. Large-scan-area sub-terahertz imaging system for nondestructive food quality inspection. Food Control 2019, 96, 383–389. [Google Scholar] [CrossRef]
- Fakhlaei, R.; Babadi, A.A.; Sun, C.; Ariffin, N.M.; Khatib, A.; Selamat, J.; Xiaobo, Z. Application, challenges and future prospects of recent nondestructive techniques based on the electromagnetic spectrum in food quality and safety. Food Chem. 2024, 441, 138402. [Google Scholar] [CrossRef]
- Bawuah, P.; Zeitler, J.A. Advances in terahertz time-domain spectroscopy of pharmaceutical solids: A review. Trends Anal. Chem. 2021, 139, 116272. [Google Scholar] [CrossRef]
- Zhou, R.Y.; Wang, C.; Wang, Q.; Xie, L.J.; Ying, Y.B. Rapid analysis of fruit acids by laser-engraved free-standing terahertz metamaterials. Food Anal. Methods 2021, 15, 961–969. [Google Scholar] [CrossRef]
- Wang, X.H.; Feng, Y.H.; Wang, Y.; Zhu, H.L.; Song, D.J.; Shen, C.L.; Luo, Y.C. Enhancing optical non-destructive methods for food quality and safety assessments with machine learning techniques: A survey. J. Agric. Food Res. 2025, 19, 101734. [Google Scholar] [CrossRef]
- Fu, Y.; Ren, Y.Q.; Sun, D.-W. Novel analysis of food processes by terahertz spectral imaging: A review of recent research findings. Trends Food Sci. Technol. 2024, 147, 104463. [Google Scholar] [CrossRef]
- Ren, A.F.; Zahid, A.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. Introducing a novel technique of detecting fruits contaminations using terahertz sensing. In Proceedings of the International Workshop on Antenna Technology (iWAT)—Small Antennas and Novel Metamaterials, Miami, FL, USA, 3–6 March 2019. [Google Scholar] [CrossRef]
- Karmakar, S.; Kludze, A.; Chandra, R.; Ghasempour, Y. Sub-terahertz metamaterial stickers for non-invasive fruit ripeness sensing. Nat. Food 2025, 6, 97–104. [Google Scholar] [CrossRef]
- Lee, D.-K.; Kim, G.; Kim, C.; Jhon, Y.M.; Kim, J.H.; Lee, T.; Son, J.-H.; Seo, M. Ultrasensitive detection of residual pesticides using thz near-field enhancement. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 389–395. [Google Scholar] [CrossRef]
- Zidane, F.; Lanteri, J.; Marot, J.; Brochier, L.; Joachimowicz, N.; Roussel, H.; Migliaccio, C. Nondestructive control of fruit quality via millimeter waves and classification techniques: Investigations in the automated health monitoring of fruits. IEEE Antennas Propag. Mag. 2020, 62, 43–54. [Google Scholar] [CrossRef]
- Hao, G.H.; Liu, J.J.; Hong, Z. Determination of soluble solids content in apple products by terahertz time-domain spectroscopy. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2011: Terahertz Wave Technologies and Applications, Centre for THz Research, China Jiliang University, Hangzhou, China, 24–26 May 2011. [Google Scholar] [CrossRef]
- Lopez-Morales, G.; Lopez-Paez, M.F.; Lopez, P.; Carriles, R.; Vilchis, H. Detection of moisture ratio and carotenoid compounds in mamey (Pouteria sapota) fruit during dehydration process using spectroscopic techniques. J. Food Sci. Technol. 2023, 60, 1952–1959. [Google Scholar] [CrossRef]
- Ren, A.F.; Zahid, A.; Imran, M.A.; Abbasi, Q.H.; Alomainy, A. Monitoring quality control of fruits using terahertz sensing. In Proceedings of the International Workshop on Antenna Technology (iWAT)—Small Antennas and Novel Metamaterials, Miami, FL, USA, 3–6 March 2019. [Google Scholar] [CrossRef]
- Sciubba, F.; Di Cocco, M.E.; Gianferri, R.; Capuani, G.; De Salvador, F.R.; Fontanari, M.; Gorietti, D.; Delfini, M. Nuclear magnetic resonance-based metabolic comparative analysis of two apple varieties with different resistances to apple scab attacks. J. Agric. Food Chem. 2015, 63, 8339–8347. [Google Scholar] [CrossRef]
- Park, S.J. Time-dependent changes of fruit metabolites studied by 1h nmr. J. Korean Magn. Reson. Soc. 2022, 26, 24–33. [Google Scholar] [CrossRef]
- Møller, S.M.; Travers, S.; Bertram, H.C.; Bertelsen, M.G. Prediction of postharvest dry matter, soluble solids content, firmness and acidity in apples (cv. Elshof) using nmr and nir spectroscopy: A comparative study. Eur. Food Res. Technol. 2013, 237, 1021–1024. [Google Scholar] [CrossRef]
- Majid, I.; Nayik, G.A.; Nanda, V.; Yildiz, F. Ultrasonication and food technology: A review. Cogent Food Agric. 2015, 1, 1071022. [Google Scholar] [CrossRef]
- Mizrach, A. Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre- and postharvest processes. Postharvest Biol. Technol. 2008, 48, 315–330. [Google Scholar] [CrossRef]
- Raffaella, S.; Coupland, J.N. Non-contact ultrasonic measurements in food materials. Food Res. Int. 2001, 34, 865–870. [Google Scholar] [CrossRef]
- Hæggström, E.; Luukkala, M. Ultrasound detection and identification of foreign bodies in food products. Food Control 2001, 12, 37–45. [Google Scholar] [CrossRef]
- Wu, B.G.; Guo, X.Y.; Guo, Y.T.; Ma, H.L.; Zhou, C.S. Enhancing jackfruit infrared drying by combining ultrasound treatments: Effect on drying characteristics, quality properties and microstructure. Food Chem. 2021, 358, 129845. [Google Scholar] [CrossRef]
- Xu, B.G.; Sylvain Tiliwa, E.; Yan, W.Q.; Roknul Azam, S.M.; Wei, B.X.; Zhou, C.S.; Ma, H.L.; Bhandari, B. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Res. Int. 2022, 152, 110744. [Google Scholar] [CrossRef]
- Alenyorege, E.A.; Ma, H.; Ayim, I.; Zhou, C.S.; Wu, P.; Hong, C.; Osae, R. Effect of multi-frequency ultrasound surface washing treatments on escherichia coli inactivation and some quality characteristics of non-heading chinese cabbage. J. Food Process. Preserv. 2018, 42, e13747. [Google Scholar] [CrossRef]
- Alenyorege, E.A.; Ma, H.; Ayim, I.; Zhou, C. Ultrasound decontamination of pesticides and microorganisms in fruits and vegetables: A review. J. Food Saf. Food Qual. 2018, 69, 80–91. [Google Scholar] [CrossRef]
- Morrison, D.S.; Abeyratne, U.R. Ultrasonic technique for non-destructive quality evaluation of oranges. J. Food Eng. 2014, 141, 107–112. [Google Scholar] [CrossRef]
- Mizrach, A. Nondestructive ultrasonic technique for fruit quality determination. Acta Hortic. 2001, 553, 465–470. [Google Scholar] [CrossRef]
- He, Y.X. Research of Mango Maturity Based on Ultrasonic Method. Master’s Thesis, Guangxi University, Nanning, China, 26 June 2009. [Google Scholar]
- Mizrach, A. Assessing plum fruit quality attributes with an ultrasonic method. Food Res. Int. 2004, 37, 627–631. [Google Scholar] [CrossRef]
- Kim, K.-B.; Lee, S.; Kim, M.-S.; Cho, B.-K. Determination of apple firmness by nondestructive ultrasonic measurement. Postharvest Biol. Technol. 2009, 52, 44–48. [Google Scholar] [CrossRef]
- Vasighi-Shojae, H.; Gholami-Parashkouhi, M.; Mohammadzamani, D.; Soheili, A. Ultrasonic based determination of apple quality as a nondestructive technology. Sens. Bio-Sens. Res. 2018, 21, 22–26. [Google Scholar] [CrossRef]
- Godinez-Garcia, F.J.; Celis-Porras, J.; Guerrero-Rivera, R.; Gamero-Inda, E.; Valle-Cervantes, S.; Gallegos-Infante, J.-A.; Luna-Barcena, G.; Hann-Schlam, F.; Rocha-Fuentes, M. A noninvasive method to identify larvae in apples based on wavelets. Food Bioprocess Technol. 2010, 5, 568–575. [Google Scholar] [CrossRef]
- Yildiz, F.; Özdemir, A.T.; Uluışık, S. Evaluation performance of ultrasonic testing on fruit quality determination. J. Food Qual. 2019, 2019, 6810865. [Google Scholar] [CrossRef]
- Kim, G.-S.; Kim, K.-B.; Park, J.-G.; Lee, S.; Jung, H.-M.; Kim, M.-S. Correlation analysis between ultrasonic parameters and elastic modulus of apple. J. Korean Soc. Non Destruct. Test. 2008, 28, 279–284. [Google Scholar]
- Kim, G.; Baek, S.; Hong, J.-W.; Park, J.; Jhang, K.-Y. Analysis of transmitted ultrasound signals through apples at different storage times using the continuous wavelet transformation. Int. J. Precis. Eng. Manuf. 2012, 13, 1949–1954. [Google Scholar] [CrossRef]
- Vasighi-Shojae, H.; Gholami-Parashkouhi, M.; Mohammadzamani, D.; Soheili, A. Predicting mechanical properties of golden delicious apple using ultrasound technique and artificial neural network. Food Anal. Methods 2019, 13, 699–705. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.B.; Ma, X.H.; Cai, Y.L.; Cui, D.Q.; He, S. Application of acoustic technology in quality evaluation of agricultural products. Food Ind. 2018, 39, 255–259. [Google Scholar]
- Nishani, S.; Deshpande, S.; Nagajjanavar, K. A critical review of the acoustic resonance approach in food processing: A novel non-destructive technology. Pharma Innov. J. 2022, 11, 853–857. [Google Scholar] [CrossRef]
- Nouri, S.F.; Abdanan Mehdizadeh, S. Design, construction and evaluation of a device for non-destructive measurement of firmness in fruits using vibration analysis (case study: Kiwifruit). Sci. Hortic. 2024, 328, 112965. [Google Scholar] [CrossRef]
- Fathizadeh, Z.; Aboonajmi, M.; Beygi, S.R.H. Nondestructive firmness prediction of apple fruit using acoustic vibration response. Sci. Hortic. 2020, 262, 109073. [Google Scholar] [CrossRef]
- Fathizadeh, Z.; Aboonajmi, M.; Hassan-Beygi, R. Design, fabrication and test of integrated acoustic-vibration fruit texture analyzer. Iran. J. Biosyst. Eng. 2020, 51, 295–304. [Google Scholar] [CrossRef]
- Fathizadeh, Z.; Aboonajmi, M.; Hassan-Beygi, R. Nondestructive apple quality assessment using acoustic-vibrational response and artificial neural networks. Non-Destr. Test. Technol. 2022, 2, 98–106. [Google Scholar] [CrossRef]
- Zhang, W.; Lv, Z.Z.; Shi, B.; Xu, Z.H.; Zhang, L.J. Evaluation of quality changes and elasticity index of kiwifruit in shelf life by a nondestructive acoustic vibration method. Postharvest Biol. Technol. 2021, 173, 111398. [Google Scholar] [CrossRef]
- Chen, Y.J.; Liou, Y.-C.; Ho, W.-H.; Tsai, J.-T.; Liu, C.-C.; Hwang, K.-S. Non-destructive acoustic screening of pineapple ripeness by unsupervised machine learning and wavelet kernel methods. Sci. Progess 2021, 104, 00368504221110856. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.W.; Peng, Y.K.; Li, Y.Y.; Zou, W.L.; Zhao, X.L.; Sun, C. Watermelon sugar content detection and grading system based on acousic characteristics. Trans. Chin. Soc. Agric. Mach. 2022, 53, 316–323. [Google Scholar] [CrossRef]
- Liu, Z.; Lai, Q.R.; Zhang, T.Y.; Bin, L.; Song, Y.F.; Chen, N. Non-destruction detection of jelly orange granulation disease using laser doppler vibrometry. Chin. Opt. 2025, 18, 160–169. [Google Scholar] [CrossRef]
- Ding, C.Q.; Wu, H.L.; Feng, Z.; Wang, D.C.; Li, W.H.; Cui, D. Online assessment of pear firmness by acoustic vibration analysis. Postharvest Biol. Technol. 2020, 160, 111042. [Google Scholar] [CrossRef]
- Xu, H.B.; Wu, J.; Wang, Z.P.; Gao, Y.M.; Zhao, Z.Q. Discrimination of brownheart of korla pear using vibration frequency spectrum technique. Int. J. Agric. Biol. Eng. 2017, 10, 259–266. [Google Scholar] [CrossRef]
- Tian, S.J.; Wang, J.P.; Xu, H.R. Firmness measurement of kiwifruit using a self-designed device based on acoustic vibration technology. Postharvest Biol. Technol. 2022, 187, 111851. [Google Scholar] [CrossRef]
- Liu, Z.; Le, D.X.; Zhang, T.Y.; Lai, Q.R.; Zhang, J.S.; Li, B.; Song, Y.F.; Chen, N. Detection of apple moldy core disease by fusing vibration and vis/nir spectroscopy data with dual-input mlp-transformer. J. Food Eng. 2024, 382, 112219. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.-G.; Jeong, H.-M.; Kim, K.-B.; Cho, B.-K. Predicting the firmness of apples using a non-contact ultrasonic technique. J. Biosyst. Eng. 2013, 38, 192–198. [Google Scholar] [CrossRef]
- Lee, S.D.; Ha, T.H.; Kim, K.B.; Kim, M.S. Study on non-contact ultrasonic transducer for measurement of fruit firmness. J. Biosyst. Eng. 2010, 35, 189–196. [Google Scholar] [CrossRef]
- Hou, J.M.; Zhang, Y.X.; Sun, Y.H.; Xu, N.; Leng, Y. Prediction of firmness and ph for “golden delicious” apple based on elasticity index from modal analysis. J. Food Sci. 2018, 83, 661–669. [Google Scholar] [CrossRef]
- Fathizadeh, Z.; Aboonajmi, M.; Hassan-Beygi, S.R. Apple firmness prediction during shelf life using the finite element method and acoustic vibration response. Erwerbs-Obstbau 2023, 65, 2197–2206. [Google Scholar] [CrossRef]
- Cui, D.; Gao, Z.M.; Zhang, W.; Ying, Y.B. The use of a laser doppler vibrometer to assess watermelon firmness. Comput. Electron. Agric. 2015, 112, 116–120. [Google Scholar] [CrossRef]
- El Khaled, D.; Novas, N.; Gazquez, J.A.; Garcia, R.M.; Manzano-Agugliaro, F. Fruit and vegetable quality assessment via dielectric sensing. Sensors 2015, 15, 15363–15397. [Google Scholar] [CrossRef]
- Wu, Q.F.; Wang, L.K.; Chen, Z.W.; Xu, B. Effect of microwave frequency, water and inorganic salts on dielectric properties of wheat germ. Trans. Chin. Soc. Agric. Mach. 2016, 47, 225–230. [Google Scholar] [CrossRef]
- Liu, B. Research on Nondestructive Detection About Egg Quality Based on Dielectric Properties. Master’s Thesis, Jiangsu University, Zhenjiang, China, June 2017. [Google Scholar]
- Renshaw, R.C.; Dimitrakis, G.A.; Robinson, J.P. Mathematical modelling of dielectric properties of food with respect to moisture content using adapted water activity equations. J. Food Eng. 2021, 300, 110538. [Google Scholar] [CrossRef]
- Zhang, G.K. Research on Nondestructive Detection About Moisture Content of Maize Leaf Based on Dielectric Properties. Master’s Thesis, Jiangsu University, Zhenjiang, China, June 2016. [Google Scholar]
- Sun, J.; Mo, Y.N.; Dai, C.X.; Chen, Y.; Yang, N.; Tang, Y. Detection of moisture content of tomato leaves based on dielectric properties and iriv-gwo-svr algorithm. Trans. Chin. Soc. Agric. Eng. 2018, 34, 8. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, G.K.; Mao, H.P.; Wu, X.H.; Yang, N.; Li, Q.L. Non-destructive moisture content detection of corn leaves based on dielectric properties and regression algorithm. Trans. Chin. Soc. Agric. Mach. 2016, 47, 9. [Google Scholar] [CrossRef]
- Xu, J.J.; Wang, B.; Wang, Y.C. Electromagnetic fields assisted blanching—Effect on the dielectric and physicochemical properties of cabbage. J. Food Process Eng. 2019, 42, e13294. [Google Scholar] [CrossRef]
- Sun, J.; Tian, Y.; Wu, X.H.; Dai, C.X.; Lu, B. Nondestructive detection for moisture content in green tea based on dielectric properties and vissa-gwo-svr algorithm. J. Food Process. Preserv. 2020, 44, e14421. [Google Scholar] [CrossRef]
- Zhu, X.H.; Fang, L.J.; Gu, J.S.; Guo, W.C. Feasibility investigation on determining soluble solids content of peaches using dielectric spectra. Food Anal. Methods 2015, 9, 1789–1798. [Google Scholar] [CrossRef]
- Kundu, A.; Gupta, B. Broadband dielectric properties measurement of some vegetables and fruits using open ended coaxial probe technique. In Proceedings of the International Conference on Control, Instrumentation, Energy & Communication(CIEC), Kolkata, India, 31 January–2 February 2014. [Google Scholar] [CrossRef]
- Gu, Y.X.; Shi, W.Q.; Liu, R.; Xing, Y.N.; Yu, X.Z.; Jiang, H. Cold plasma enzyme inactivation on dielectric properties and freshness quality in bananas. Innov. Food Sci. Emerg. Technol. 2021, 69, 102649. [Google Scholar] [CrossRef]
- Cao, M.K.; Zeng, S.C.; Wang, J.X.; Guo, W.C. Dielectric properties of peaches with and without skin during storage and their relationship to internal quality. Postharvest Biol. Technol. 2023, 204, 112433. [Google Scholar] [CrossRef]
- Guo, W.C.; Shang, L.; Zhu, X.H.; Nelson, S.O. Nondestructive detection of soluble solids content of apples from dielectric spectra with ann and chemometric methods. Food Bioprocess Technol. 2015, 8, 1126–1138. [Google Scholar] [CrossRef]
- Kafarski, M.; Wilczek, A.; Szyplowska, A.; Lewandowski, A.; Pieczywek, P.; Janik, G.; Skierucha, W. Evaluation of apple maturity with two types of dielectric probes. Sensors 2018, 18, 121. [Google Scholar] [CrossRef]
- Liu, Z.X.; He, J.R.; Zhang, Y.Y.; Cao, Y.N.; Shi, A.Q. Nondestructive detection of apple mouldy core disease based on unbalanced dielectric data. In Proceedings of the Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019. [Google Scholar] [CrossRef]
- Bian, H.X.; Shi, P.; Tu, P. Determination of physicochemical quality of bruised apple using dielectric properties. J. Food Meas. Charact. 2020, 14, 2590–2599. [Google Scholar] [CrossRef]
- Liu, H.C.; He, J.R.; Shi, Y.X.; Bi, Y.Z. Combining dielectric and hyperspectral data for apple core browning detection. Appl. Sci. 2024, 14, 9136. [Google Scholar] [CrossRef]
- Bian, H.; Tu, P.; Hua-Li, X.; Shi, P. Quality predictions for bruised apples based on dielectric properties. J. Food Process. Preserv. 2019, 43, e14006. [Google Scholar] [CrossRef]
- Shang, L.; Guo, W.C.; Nelson, S.O. Apple variety identification based on dielectric spectra and chemometric methods. Food Anal. Methods 2014, 8, 1042–1052. [Google Scholar] [CrossRef]
- Reyes, A.; Yarlequé, M.; Castro, W.; Trigoso, T.S.C. Determination of dielectric properties of the red delicious apple and its correlation with quality parameters. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017. [Google Scholar] [CrossRef]
- Hiruta, T.; Hosoya, N.; Maeda, S.; Kajiwara, I. Experimental evaluation of frequency response and firmness of apples based on an excitation technique using a dielectric elastomer actuator. Sens. Actuators A Phys. 2021, 330, 112830. [Google Scholar] [CrossRef]
- Nelson, S.O.; Guo, W.C.; Trabelsi, S. Study of fruit permittivity measurements for quality detection. In Proceedings of the I2MTC 2008—IEEE International Instrumentation and Measurement Technology Conference, Victoria, BC, Canada, 12–15 May 2008. [Google Scholar] [CrossRef]
- Silva Júnior, P.F.; Santana, E.E.C.; Pinto, M.S.S.; Andrade, E.P.; Carvalho, J.N.; Freire, R.C.S.; Oliveira, M.A.; Oliveira, E.E.C.D. Characterization of the dielectric properties of the tommy atkins mango. J. Microw. Optoelectron. Electromagn. Appl. 2020, 19, 86–93. [Google Scholar] [CrossRef]
- Mu, S.L.; Shen, W.F.; Lyu, D.W.; Song, W.J.; Tan, R.Q. Advancements in electronic nose technology and its applications. Mater. Rep. 2024, 38, 52–65. [Google Scholar] [CrossRef]
- Cheng, L.; Meng, Q.H.; Lilienthal, A.J.; Qi, P.F. Development of compact electronic noses: A review. Meas. Sci. Technol. 2021, 32, 062002. [Google Scholar] [CrossRef]
- Pareek, V.; Chaudhury, S.; Singh, S. Handling non-stationarity in e-nose design: A review. Sens. Rev. 2021, 42, 39–61. [Google Scholar] [CrossRef]
- Wu, J.W.; Liu, Z.H.; Pang, L.J.; Cheng, J.Y. Research progress of electronic nose in fruit and vegetable disease detection. Food Mach. 2023, 39, 228–233. [Google Scholar] [CrossRef]
- Dai, C.X.; Huang, X.Y.; Lv, R.Q.; Zhang, Z.C.; Sun, J.; Aheto, J.H. Analysis of volatile compounds of tremella aurantialba fermentation via electronic nose and hs-spme-gc-ms. J. Food Saf. 2018, 38, e12555. [Google Scholar] [CrossRef]
- Dai, C.X.; Huang, X.Y.; Huang, D.M.; Lv, R.Q.; Sun, J.; Zhang, Z.C.; Ma, M.; Aheto, J.H. Detection of submerged fermentation of tremella aurantialba using data fusion of electronic nose and tongue. J. Food Process Eng. 2019, 42, e13002. [Google Scholar] [CrossRef]
- Wu, X.H.; Zhu, J.; Wu, B.; Zhao, C.; Sun, J.; Dai, C.X. Discrimination of chinese liquors based on electronic nose and fuzzy discriminant principal component analysis. Foods 2019, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.H.; Zhu, J.; Wu, B.; Huang, D.P.; Sun, J.; Dai, C.X. Classification of chinese vinegar varieties using electronic nose and fuzzy foley-sammon transformation. J. Food Sci. Technol. 2020, 57, 1310–1319. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.Y.; Yi, R.; Aheto, J.H.; Osae, R.; Golly, M. Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm. J. Food Process Eng. 2019, 42, e13236. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.Y.; Aheto, J.H.; Osae, R. Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: A review. J. Food Sci. Technol. 2020, 57, 1977–1990. [Google Scholar] [CrossRef]
- Huang, X.Y.; Yu, S.S.; Xu, H.X.; Aheto, J.H.; Bonah, E.; Ma, M.; Wu, M.Z.; Zhang, X.R. Rapid and nondestructive detection of freshness quality of postharvest spinaches based on machine vision and electronic nose. J. Food Saf. 2019, 39, e12708. [Google Scholar] [CrossRef]
- Qiao, J.L.; Su, G.Q.; Liu, C.; Zou, Y.J.; Chang, Z.Y.; Yu, H.L.; Wang, L.J.; Guo, R.X. Study on the application of electronic nose technology in the detection for the artificial ripening of crab apples. Horticulturae 2022, 8, 386. [Google Scholar] [CrossRef]
- Trebar, M.; Zalik, A.; Vidrih, R. Assessment of ‘golden delicious’ apples using an electronic nose and machine learning to determine ripening stages. Foods 2024, 13, 2530. [Google Scholar] [CrossRef]
- Fujioka, K. Evaluating the non-invasive measurement of apple aroma using electronic nose device through comparison with direct mass spectrometry, sugar content, and ripeness measurements. Sensors 2024, 24, 3114. [Google Scholar] [CrossRef]
- Niu, S.Y.; Liu, X.W.; Lin, M.L.; Fan, X.C.; Zhang, Y.; Sun, L.; Liu, C.H.; Jiang, J.F. Aroma analysis of table grape berries based on electronic nose detection. Agronomy 2025, 15, 104. [Google Scholar] [CrossRef]
- Ren, Y.M.; Ramaswamy, H.S.; Li, Y.; Yuan, C.L.; Ren, X.L. Classification of impact injury of apples using electronic nose coupled with multivariate statistical analyses. J. Food Process Eng. 2018, 41, e12698. [Google Scholar] [CrossRef]
- Yang, X.Z.; Chen, J.H.; Jia, L.W.; Yu, W.Q.; Wang, D.; Wei, W.W.; Li, S.J.; Tian, S.Y.; Wu, D. Rapid and non-destructive detection of compression damage of yellow peach using an electronic nose and chemometrics. Sensors 2020, 20, 1866. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhao, N.; Zhou, D.D.; Sun, Y.; Sun, K.; Pan, L.Q.; Tu, K. Discrimination and growth tracking of fungi contamination in peaches using electronic nose. Food Chem. 2018, 262, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Su, Y.Y.; Sun, L.; Cai, J.R. Detection of citrus huanglongbing at different stages of infection using a homemade electronic nose system. Comput. Electron. Agric. 2025, 229, 109845. [Google Scholar] [CrossRef]
- Hui, G.H.; Wu, Y.L.; Ye, D.D.; Ding, W.W. Fuji apple storage time predictive method using electronic nose. Food Anal. Methods 2012, 6, 82–88. [Google Scholar] [CrossRef]
- Hui, G.H.; Wu, Y.L.; Ye, D.D.; Ding, W.W.; Zhu, L.S.; Wang, L.Y. Study of peach freshness predictive method based on electronic nose. Food Control 2012, 28, 25–32. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, K.L.; Zhao, B.; Zhang, M.C.; Gong, C.H.; Wan, H.L.; Wang, Y.H.; Yang, Z.P. A novel electronic nose for the detection and classification of pesticide residue on apples. RSC 2021, 11, 20874–20883. [Google Scholar] [CrossRef]
- Zhao, C.T.; Ma, J.; Jia, W.S.; Wang, H.H.; Tian, H.; Wang, J.H.; Zhou, W. An apple fungal infection detection model based on bpnn optimized by sparrow search algorithm. Biosensors 2022, 12, 692. [Google Scholar] [CrossRef]
- Zou, X.G.; Wang, C.Y.; Luo, M.M.; Ren, Q.M.; Liu, Y.Y.; Zhang, S.K.; Bai, Y.G.; Meng, J.W.; Zhang, W.T.; Su, S.W. Design of electronic nose detection system for apple quality grading based on computational fluid dynamics simulation and k-nearest neighbor support vector machine. Sensors 2022, 22, 2997. [Google Scholar] [CrossRef]
- Zhang, J.C.; Zhang, P.; Xue, Y.L.; Jia, X.Y.; Li, J.K. Characterization of characteristic odor and establishment of nondestructive detection model of core rot apples based on electronic nose. Food Ferment. Ind. 2022, 48, 267–273. [Google Scholar] [CrossRef]
- Ezhilan, M.; Nesakumar, N.; Jayanth Babu, K.; Srinandan, C.S.; Rayappan, J.B.B. An electronic nose for royal delicious apple quality assessment—A tri-layer approach. Food Res. Int. 2018, 109, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.S.; Ren, X.J.; Wei, L.W.; Cao, X.H.; Ge, Y.H.; Liu, H.; Li, J.R. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Li, Y.; Ren, Y.M.; Zhang, S.; Zhao, H.; Zhou, L.A.; Ren, X.L. Prediction of low-temperature storage time and quality of apples based on electronic nose. J. Northwest AF Univ. (Nat. Sci. Ed.) 2015, 5, 183–191. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Liu, Y. Determination of apple storage period by using electronic senses and chemometrics. North. Hortic. 2017, 22, 137–141. [Google Scholar]
- Guo, Z.M.; Guo, C.; Chen, Q.S.; Ouyang, Q.; Shi, J.Y.; El-Seedi, H.R.; Zou, X.B. Classification for penicillium expansum spoilage and defect in apples by electronic nose combined with chemometrics. Sensors 2020, 20, 2130. [Google Scholar] [CrossRef]
- Martínez, A.; Hernández, A.; Arroyo, P.; Lozano, J.S.; Córdoba, M.D.G.; Martín, A. E-nose detection of changes in volatile profile associated with early decay of ‘golden delicious’ apple by penicillium expansum. Food Control 2025, 168, 110907. [Google Scholar] [CrossRef]
- Yang, C.Y.; Yuan, H.F.; Ma, H.L.; Ren, Y.M.; Ren, X.L. Nondestructive detection of apple moldy core based on ft-nir and electronic nose technology. Food Ferment. Ind. 2021, 47, 211–216. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhang, M.H.; Su, M.S.; Zeng, W.F.; Wang, S.C.; Du, J.H.; Zhou, H.J.; Yang, X.F.; Zhang, X.N.; Li, X.W. Multidimensional analysis of the flavor characteristics of yellow peach at different ripening stages: Chemical composition profiling and sensory evaluation. Food Chem. 2025, 471, 142772. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, K.; Zhao, N.; Yang, J.; Zhang, Y.; Ma, C.; Pan, L.; Tu, K. Information fusion of hyperspectral imaging and electronic nose for evaluation of fungal contamination in strawberries during decay. Postharvest Biol. Technol. 2019, 153, 152–160. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, C.; Wang, C.; Guo, W. Domada-fruitdet: Domain-adaptive anchor-free fruit detection model for auto labeling. Plant Phenomics 2024, 6, 0135. [Google Scholar] [CrossRef]
- Banlawe, I.A.P.; Dela Cruz, J.C. Machine learning-based classification of mango pulp weevil activity utilizing an acoustic sensor. Micromachines 2023, 14, 1979. [Google Scholar] [CrossRef] [PubMed]
- Borba, K.R.; Aykas, D.P.; Milani, M.I.; Colnago, L.A.; Ferreira, M.D.; Rodriguez-Saona, L.E. Portable near infrared spectroscopy as a tool for fresh tomato quality control analysis in the field. Appl. Sci. 2021, 11, 3209. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Mujumdar, A.S.; Chen, Y. From farm to market: Research progress and application prospects of artificial intelligence in the frozen fruits and vegetables supply chain. Trends Food Sci. Technol. 2024, 153, 104730. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Li, M.; Lin, J. Fruits and vegetables preservation based on ai technology: Research progress and application prospects. Comput. Electron. Agric. 2024, 226, 109382. [Google Scholar] [CrossRef]
Techniques | Samples | Applications | Modeling Methods | Best Accuracy/Coefficient of Determination | References |
---|---|---|---|---|---|
Near-infrared spectroscopy | “Millennium” cherry tomatoes | Detection of SSC and lycopene content | Mixed temperature correction model, EPO, PLS | 0.8988 for SSC, 0.8023 for lycopene content | [36] |
“Fuji” apples | Detection of SSC and the degree of water core disorder | PLS | 0.9808 for SSC, 0.9562 for the degree of water core disorder | [37] | |
“Golden Delicious”, “Granny Smith”, “Braeburn” and “Royal Gala” apples | Detection of the distribution of internal dry matter and total sugar content | PLS | 0.83 for dry matter, 0.81 for total sugar content | [39] | |
Five varieties of red jujubes from Henan, Shanxi, Xinjiang, Hebei and Gansu | Variety identification | FiLDA-KNN | 0.944 | [40] | |
FT-NIRS | “Victoria” and “Autumn Royal” grapes | Investigation of the relationship between glucose, acid value and consumer preferences | PLS, PCA, Spearman correlation analysis | 0.8304 for TSS | [21] |
Visible/near-Infrared spectroscopy | “Fuji” apples | Detection of SSC | BP, MLR | 0.87 | [35] |
Persimmons | Evaluation of fruit quality by the light penetration depth in the fruit | LR | 0.97 for 850 nm | [41] | |
“Comte de Paris” pineapples | Detection of maturity and SSC | PCR, PLSR, ANN, KNN, PLSDA, SVMDA | 0.908 for maturity, 0.7596 for SSC | [38] | |
Winter jujubes | Detection of SSC of fruits at different maturity stages and prediction of the shelf life | SVR, PLSR | 0.837 and 0.806 for SSC of mid-ripe and ripe winter jujube, 0.89 and 0.91 for shelf life of mid-ripe and ripe winter jujube | [42] | |
HSI | “Fuji” apples | Detection of hardness | PLS, SVR | 0.6808 | [68] |
“Touriga Franca” grapes | Detection of sugar content | PLSR, NN | 0.95 | [63] | |
“Tempranillo” grapes | Detection of SSC and anthocyanin concentration | Epsilon-SVM | 0.92 for SSC, 0.83 for anthocyanin concentration | [64] | |
“Red delicious” and “Golden Delicious” apples | Detection of pH, SSC, TA and total phenol | PLS, ANN | 0.9919 for pH, 0.9989 for TA, 0.9999 for SSC, 0.9989 for total phenol | [65] | |
“Red Globe” grapes | Detection of SSC | PLSR based on spectral, image and fusion information | 0.9762 | [62] | |
“Sugarone Superior Seedless”, “Thompson Seedless”, “Victoria”, “Sable Seedless”, “Alphonse Lavallée”, “Lival” and “Black Magic” grapes | Detection of SSC, total flavonoids and anthocyanins | PLS, MLR | 0.97 for SSC, 0.95 for total flavonoids, 0.99 for anthocyanins | [61] | |
“BiMei”, “Kula” and “Milv” melons | Detection of nitrogen and potassium in leaves, sucrose and reducing sugar in fruits | 11 CNN Models | 0.958 for nitrogen, 0.921 for potassium, 0.958 for sucrose, 0.936 for reducing sugar | [66] | |
“Hutai 8”, “Kyoho”, “Muscat” and “Summer black” grapes | Variety identification | EEMD-DWT, CARS-SPA, SVM | 0.993125 | [67] | |
Visible light imaging | Bananas, apples | Detection of banana maturity and apple insect damage defects | ViT-shallow classifier, CNN-transfer learning | 0.949 for banana maturity, 0.958 for apple insect damage defects | [92] |
16 kinds of fruits such as apples and bananas | Evaluation of fruit quality | ViT, CNN models, machine learning models, models trained for a single fruit | 0.9794 for union dataset | [90] | |
Apples, bananas, Oranges, papayas and guavas | Rotten fruit classification, fruit shelf life prediction | VGG16, InceptionV3 combined with CNN, Gaussian Naive Bayes, RF | 0.95 for rotten fruit classification, 0.88 for shelf life prediction | [89] | |
Dragon fruits | Maturity classification | ResNet18, ResNet50, ViT Tiny, ViT Small | 0.91 | [93] | |
“Red Fuji” apples | Quality grading | Improved YOLOv5s, Swin Transformer-ResNet18 | 0.9446 | [88] | |
Apples | Quality detection | Haar Cascade classifier, CNN, machine learning models | None | [94] | |
“Fengxian” apples and “Yantai” apples | Grading | Improved YOLOv5s, SSD, YOLOv4, original YOLOv5s | 0.906 | [91] |
Techniques | Samples | Applications | Modeling Methods | Best Accuracy/Coefficient of Determination | References | |
---|---|---|---|---|---|---|
NMR | “Almagold” and “Golden Delicious” apples | Analysis of metabolite and network differences related to apple scab resistance | None | None | [132] | |
Apples | Analysis of changes in nutritional components during the browning process | PLS-DA | None | [133] | ||
“Gala”, “Cripps Pink”, “Elstar”, “Boskoop”, “Braeburn” and “Holsteiner Cox” apples | Analysis of and identifying the geographical origin, variety and production method | PCA, RF | 0.885 for the differentiation of German and non-German samples, 0.807 for the differentiation of regional origin within Germany, 0.795 for the differentiation of biologically and conventionally produced apples, 0.732 for the taxonomic variety | [114] | ||
“Red Delicious “ and “Lord Derby” apples | Internal subcellular physiological changes during the ripening and mealiness processes | None | None | [113] | ||
High-Resolution Magic Angle Spinning NMR | “Golden Delicious”, “Rubens” and “Braeburn” apples | Metabolomic analysis and investigating the effects of different cultivation methods on apple metabolic profiles | PCA, PLS-DA | None | [115] | |
NMR and NIRS | Apples (cv. Elshof) | Prediction of postharvest dry matter, SSC, Hardness and Acidity | PCA, PLS | 0.82 for dry matter, 0.80 for SSC | [134] | |
THz | Apples and pears | Detection of moisture and transmission response | None | None | [131] | |
Terahertz time-domain transmission spectroscopy | Apples | Detection of SSC | PLS | Higher than 0.999 | [129] | |
NIRS, THz spectroscopy, FTIR-ATR spectroscopy, Raman spectroscopy | Mamey fruits | Study of changes in moisture ratio and carotenoid compounds during the dehydration process | Drying kinetics model, correlation between spectra and sample components | 0.9998 | [130] |
Techniques | Samples | Applications | Modeling Methods | Best Accuracy/Coefficient of Determination | References |
---|---|---|---|---|---|
Ultrasonic waves | Korean (Sansa cultivar) apples | Detection of hardness | MLR | 0.990 | [151] |
Korean (Sansa cultivar) apples | Analysis of softening during storage | Exponential function model, WLS | 0.9701 for the high frequency signal, 0.9686 for the low frequency signal | [152] | |
“YouKou” and “Fuji” apples | Prediction of hardness | MLR, PCA, ANN | 0.9435 for YouKou, 0.9023 for Fuji | [168] | |
“Golden Delicious” apples | Prediction of mechanical properties (hardness, elastic modulus, stiffness) | ANN | 0.999 for hardness, elastic modulus and stiffness | [153] | |
Special non-contact ultrasonic transducer | “Fuji” apples | Detection of hardness | Multi-gaussian beam | None | [169] |
Vibration spectrum | “Golden Delicious” apples | Prediction of hardness and pH value | SVR, PLSR | 0.72 for hardness and 0.55 for pH value | [170] |
“Korla” pears | Detection of internal defects (brown heart) | Dominant frequency and storage time, dominant frequency and the percentage of defective mass | 0.951 for dominant frequency and storage time, 0.967 for brown heart | [165] | |
“Gala” apples | Prediction of hardness within the shelf life | Geometric modeling of apple fruit, finite element simulation, hardness index modeling | 0.975 | [171] | |
“Hongyang” kiwifruits | Detection of pulp hardness, stiffness, and peel hardness | CARS-PLS | 0.96 for pulp hardness, 0.95 for stiffness, 0.93 for peel hardness | [166] | |
Vis/NIR, vibration | “Fuji” apples | Detection of core rot | DMLPT, improved MobileNet, PLS-DA, SVM, ELM | 0.9931 | [167] |
Laser doppler vibrometer | “Qilin” watermelons | Detection of postharvest hardness | None | None | [172] |
Pears | Detection of hardness | DA, KNN, BPNN, SMLR, PLSR | 0.905 in classification, 0.832 in regression | [164] |
Techniques | Samples | Applications | Modeling Methods | Best Accuracy/Coefficient of Determination | References |
---|---|---|---|---|---|
Dielectric property measurement | “Early Dew”, “Honey Brew” and “Rocio” honeydew melons, watermelons, apples | Detection of sweetness and hardness | None | None | [195] |
“Fuji”, “Pink Lady” and “Red Rome” apples | Variety and internal quality Identification | LVQ, SVM, ELM | 0.998 | [192] | |
“Red delicious” apples | prediction of apple pH and SSC | PCA-MLR, PLSR | 0.7765 for pH, 1.0000 for SSC | [193] | |
“Tommy Atkins” mangos | Prediction of maturity | None | None | [191] | |
“Fuji” apples | Prediction of the hardness, VC, SSC, TA, and SSC/TA of fruits with static pressure damage | Regression | 0.711 for hardness, 0.603 for VC, 0.608 for SSC, 0.557 for SSC/TA | [196] | |
Actuation by dielectric elastomer actuator, vibration | “Sun Fuji” and “Jonagold” apples | Evaluation of frequency response and hardness | Hardness index model | None | [194] |
Techniques | Samples | Applications | Modeling Methods | Best Accuracy/Coefficient of Determination | References |
---|---|---|---|---|---|
E-nose | “Dabai” peaches | Detection of freshness | LR based on the maximum SNR of SR | 0.85 | [217] |
“Fuji” apples | Prediction of storage time | LR based on the maximum SNR of SR | 0.8462 | [216] | |
“Fuji” apples | Prediction of low-temperature storage duration and quality (hardness, SSC, TA) | LDA, PLS, BPNN, MLPN | 0.9860 for storage duration, 0.9550 for hardness, 0.9504 for SSC, 0.9860 for TA | [224] | |
“Red Fuji” apples | Detection of storage period, including TA, SSC during storage | PLS | 0.9063 for TA, 0.9170 for SSC | [225] | |
“Royal Delicious” apples | Detection of bacterial contamination level | PCA, WHCA | 0.9678 (The variance interpretation rate of PCA) | [222] | |
“Fuji” apples | Detection of penicillium rot and defects | PCA, LDA, KNN, PCA-DA, PLS-DA; PLS, SI-PLS, GA-PLS, CARS-PLS | 0.9722 in classification, 0.972 in regression | [226] | |
“MaoYuan” apples | Detection and classification of pesticide residues | PCA, LDA, SVM | 0.9732 | [218] | |
“Fuji” apples | Detection of fungal infections | KNN, RF, SVM, CNN, BPNN and their optimized models | 0.9840 | [219] | |
“Red Fuji” apples | Quality grading detection system | KNN-SVM | 0.9778 | [220] | |
“Fuji” apples | Detection of core rot | Fisher, MLPNN, RBFNN | 0.8846 | [221] | |
“Golden Delicious” apples | Detection of early rot caused by penicillium | LDA | 0.974 | [227] | |
FT-NIRS, E-nose | “Fuji” apples | Detection of core rot | Fisher, MLPNN, RBFNN | 0.877 | [228] |
E-nose, E-tongue | “Ralls”, “Jonagold”, “Orin”, “Indo” and “Hanfu” apples | Assessment of flavor variations and quality indicators (color, texture, SSC, TA, starch content) | LDA, PCA, HCA | 0.9747 (The variance interpretation rate of LDA) | [223] |
“JinShuo” yellow peaches | Evaluation of flavor changes at different maturity stages | PCA, PLS-DA, correlation network analysis | 0.782 (The variance interpretation rate of E-nose), 0.823 (The variance interpretation rate of E-tongue) | [229] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Sun, J.; Wang, Y.; Liu, X.; Zhang, Y.; Fu, H. Non-Destructive Detection of Fruit Quality: Technologies, Applications and Prospects. Foods 2025, 14, 2137. https://doi.org/10.3390/foods14122137
Liu J, Sun J, Wang Y, Liu X, Zhang Y, Fu H. Non-Destructive Detection of Fruit Quality: Technologies, Applications and Prospects. Foods. 2025; 14(12):2137. https://doi.org/10.3390/foods14122137
Chicago/Turabian StyleLiu, Jingyi, Jun Sun, Yasong Wang, Xin Liu, Yingjie Zhang, and Haijun Fu. 2025. "Non-Destructive Detection of Fruit Quality: Technologies, Applications and Prospects" Foods 14, no. 12: 2137. https://doi.org/10.3390/foods14122137
APA StyleLiu, J., Sun, J., Wang, Y., Liu, X., Zhang, Y., & Fu, H. (2025). Non-Destructive Detection of Fruit Quality: Technologies, Applications and Prospects. Foods, 14(12), 2137. https://doi.org/10.3390/foods14122137