Color Development Characteristic and Kinetic Modeling of Maillard Reaction in Membrane-Clarified Sugarcane Juice During Vacuum Evaporation Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Sample Preparation
2.3. Preparation of MCSJ Model Systems
2.4. Determination of Colorimetric Parameters
2.5. Determination of Sugars
2.6. Determination of Protein and Amino Acids
2.7. Determination of Key MR Products
2.7.1. Determination of α-Dicarbonyl Compounds
2.7.2. Determination of 5-HMF
2.7.3. Determination of CML and CEL
2.7.4. Determination of Melanoidins
2.8. Kinetic Modeling
2.9. Statistical Analysis
3. Results and Discussion
3.1. Changes of Colorimetric Parameters of MCSJ and Model System
3.2. Change in Sugars of MCSJ and Model System
3.3. Changes in Protein and Amino Acids of MCSJ and Model System
3.4. Changes in Key MR Products of MCSJ and Model System
3.4.1. Changes in α-Dicarbonyl Compounds
3.4.2. Changes in 5-HMF
3.4.3. Changes in CML and CEL
3.4.4. Changes in the Content of Melanoidins
3.5. Kinetic Parameters of MR During Vacuum Evaporation
3.5.1. Simple Kinetic Modeling
3.5.2. Multiple-Response Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCSJ | Membrane-clarified sugarcane juice. |
MR | Maillard reaction. |
GO | Glyoxal. |
MGO | Methyl glyoxal. |
3-DG | 3-deoxyglucosaldoketone. |
5-HMF | 5-hydroxymethylfurfural. |
CML | Carboxymethyl Lysine. |
CEL | Carboxyethyl Lysine. |
Lys | Lysine. |
His | Histidine. |
Pro | Proline. |
Appendix A
References
- Luo, J.; Hang, X.; Zhai, W.; Qi, B.; Song, W.; Chen, X.; Wan, Y. Refining sugarcane juice by an integrated membrane process: Filtration behavior of polymeric membrane at high temperature. J. Membr. Sci. 2016, 509, 105–115. [Google Scholar] [CrossRef]
- Shi, C.; Xie, C.; Zhang, Z.; Rackemann, D.; Wei, B.; Hang, F.; Lu, H.; Li, K.; Doherty, W.O.S. Sugar and value-added products derived from retentate concentrate of sugarcane juice. J. Clean. Prod. 2021, 278, 123915. [Google Scholar] [CrossRef]
- Li, J.; Peng, C.; Guo, Z.; Shi, C.; Zhuang, R.; Hong, X.; Wang, X.; Xu, D.; Zhang, P.; Zhang, D.; et al. Radioiodinated Pentixather for SPECT Imaging of Expression of the Chemokine Receptor CXCR4 in Rat Myocardial-Infarction-Reperfusion Models. Anal. Chem. 2018, 90, 9614–9620. [Google Scholar] [CrossRef]
- Starowicz, M.; Zielinski, H. How Maillard Reaction Influences Sensorial Properties (Color, Flavor and Texture) of Food Products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Agcam, E. A Kinetic Approach to Explain Hydroxymethylfurfural and Furfural Formations Induced by Maillard, Caramelization, and Ascorbic Acid Degradation Reactions in Fruit Juice-Based Mediums. Food Anal. Methods 2022, 15, 1286–1299. [Google Scholar] [CrossRef]
- Geng, J.-T.; Takahashi, K.; Kaido, T.; Kasukawa, M.; Okazaki, E.; Osako, K. Relationship among pH, generation of free amino acids, and Maillard browning of dried Japanese common squid Todarodes pacificus meat. Food Chem. 2019, 283, 324–330. [Google Scholar] [CrossRef]
- Guilbaud, A.; Niquet-Leridon, C.; Boulanger, E.; Tessier, F.J. How Can Diet Affect the Accumulation of Advanced Glycation End-Products in the Human Body? Foods 2016, 5, 84. [Google Scholar] [CrossRef]
- Zhang, R.-L.; Zhang, M.-M.; Pu, Y.-F.; Zhu, L.-X. Evolution of nonenzymatic browning during the simulated Msalais-production process in models of grape juice. Food Sci. Nutr. 2022, 10, 2132–2140. [Google Scholar] [CrossRef]
- Pham, H.T.T.; Kityo, P.; Buve, C.; Hendrickx, M.E.; Van Loey, A.M. Influence of pH and Composition on Nonenzymatic Browning of Shelf-Stable Orange Juice during Storage. J. Agric. Food Chem. 2020, 68, 5402–5411. [Google Scholar] [CrossRef]
- Hemmler, D.; Roullier-Gall, C.; Marshall, J.W.; Rychlik, M.; Taylor, A.J.; Schmitt-Kopplin, P. Insights into the Chemistry of Non-Enzymatic Browning Reactions in Different Ribose-Amino Acid Model Systems. Sci. Rep. 2018, 8, 16879. [Google Scholar] [CrossRef]
- Asikin, Y.; Hirose, N.; Tamaki, H.; Ito, S.; Oku, H.; Wada, K. Effects of different drying–solidification processes on physical properties, volatile fraction, and antioxidant activity of non-centrifugal cane brown sugar. LWT-Food Sci. Technol. 2015, 66, 340–347. [Google Scholar] [CrossRef]
- Liu, J.; Wan, P.; Zhao, W.; Xie, C.; Wang, Q.; Chen, D.-W. Investigation on taste-active compounds profile of brown sugar and changes during lime water and heating processing by NMR and e-tongue. LWT-Food Sci. Technol. 2022, 165, 113702. [Google Scholar] [CrossRef]
- Ge, Y.; Li, K.; Xie, C.; Xu, Y.; Shi, C.; Hang, F.; Doherty, W.O.S. Formation of Volatile and Aroma Compounds during the Dehydration of Membrane-Clarified Sugarcane Juice to Non-Centrifugal Sugar. Foods 2021, 10, 1561. [Google Scholar] [CrossRef]
- Liu, J.; Wan, P.; Xie, C.; Chen, D.-W. Membrane filtration without adding lime water combined with vacuum heating enhances green odor in brown sugar processing. LWT-Food Sci. Technol. 2023, 182, 114834. [Google Scholar] [CrossRef]
- Mesias, M.; Delgado-Andrade, C.; Gomez-Narvaez, F.; Contreras-Calderon, J.; Morales, F.J. Formation of Acrylamide and Other Heat-Induced Compounds during Panela Production. Foods 2020, 9, 531. [Google Scholar] [CrossRef]
- Luo, C.; Yin, Q.; Zeng, L.; Zhang, Q.; Wang, B.; Yu, G.; Shen, S.; Xie, W. Insight into co-pyrolysis behavior of asparagine/fructose mixtures using on-line pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis 2025, 186, 106969. [Google Scholar] [CrossRef]
- Farroni, A.; Buera, M.d.P. Colour and surface fluorescence development and their relationship with Maillard reaction markers as influenced by structural changes during cornflakes production. Food Chem. 2012, 135, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Ramalingam, S.; Jo, I.G.; Kwon, Y.S.; Bahuguna, A.; Oh, Y.S.; Kwon, O.J.; Kim, M. Comparative study of the physicochemical, nutritional, and antioxidant properties of some commercial refined and non-centrifugal sugars. Food Rev. Int. 2018, 109, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Kebede, B.T.; Doan Ngoc Hai, D.; Buve, C.; Grauwet, T.; Van Loey, A.; Hu, X.; Hendrickx, M. Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT-Food Sci. Technol. 2017, 75, 85–92. [Google Scholar] [CrossRef]
- Hildebrandt, S.; Steinhart, H.; Paschke, A. Comparison of different extraction solutions for the analysis of allergens in hen’s egg. Food Chem. 2008, 108, 1088–1093. [Google Scholar] [CrossRef]
- Triki, M.; Herrero, A.M.; Jimenez-Colmenero, F.; Ruiz-Capillas, C. Quality Assessment of Fresh Meat from Several Species Based on Free Amino Acid and Biogenic Amine Contents during Chilled Storage. Foods 2018, 7, 132. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Y.; Li, C.; Xu, S.; Song, W.; Li, H.; Yu, J. Content and evolution of Maillard reaction products in commercial brown fermented milk during storage. Int. Dairy J. 2022, 129, 105343. [Google Scholar] [CrossRef]
- Asikin, Y.; Kamiya, A.; Mizu, M.; Takara, K.; Tamaki, H.; Wada, K. Changes in the physicochemical characteristics, including flavour components and Maillard reaction products, of non-centrifugal cane brown sugar during storage. Food Chem. 2013, 149, 170–177. [Google Scholar] [CrossRef]
- Polovkova, M.; Simko, P. Determination and occurrence of 5-hydroxymethyl-2-furaldehyde in white and brown sugar by high performance liquid chromatography. Food Control 2017, 78, 183–186. [Google Scholar] [CrossRef]
- Gomez-Ojeda, A.; Jaramillo-Ortiz, S.; Wrobel, K.; Wrobel, K.; Barbosa-Sabanero, G.; Luevano-Contreras, C.; Pia De La Maza, M.; Uribarri, J.; Dolores Del Castillo, M.; Eugenia Garay-Sevilla, M. Comparative evaluation of three different ELISA assays and HPLC-ESI-ITMS/MS for the analysis of Nε-carboxymethyl lysine in food samples. Food Chem. 2018, 243, 11–18. [Google Scholar] [CrossRef]
- Xiao, Y.; Lu, H.-Q.; Shi, C.-R.; Lei, F.-H.; Rackemann, D.; Li, K.; Li, W.; Doherty, W.O.S. High-performance quaternary ammonium-functionalized chitosan/graphene oxide composite aerogel for remelt syrup decolorization in sugar refining. Chem. Eng. J. 2022, 428, 132575. [Google Scholar] [CrossRef]
- Özdemir, M.; Devres, O. Kinetics of color changes of hazelnuts during roasting. J. Food Eng. 2000, 44, 31–38. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.; Huang, H.; Huang, W.; Wang, P.; Chen, J. Coloration mechanisms of fresh sugarcane juice: Investigating the critical components and enzyme activity. J. Food Sci. 2022, 87, 1552–1562. [Google Scholar] [CrossRef]
- Bolchini, S.; Angeli, L.; Ferrentino, G.; Van Boekel, M.A.J.S.; Amorati, R.; Scampicchio, M.; Morozova, K. Free radical scavenging kinetics of Maillard reaction products: A glucose-glycine model system. LWT-Food Sci. Technol. 2025, 217, 117316. [Google Scholar] [CrossRef]
- Adulvitayakorn, S.; Azhari, S.H.; Hasan, H. The effects of conventional thermal, microwave heating, and thermosonication treatments on the quality of sugarcane juice. J. Food Process Preserv. 2019, 44, 14322. [Google Scholar] [CrossRef]
- Prada Forero, L.E.; Chaves Guerrero, A.; García Bernal, H.R. Efectos de la presión de evaporación y la variedad de caña en la calidad de la miel y la panela. Cien. Tecnol. Agropecu. 2015, 16, 153–165. [Google Scholar] [CrossRef]
- Marasinghege, C.; Shi, C.; Bottle, S.; Bartley, J.; Doherty, W.O.S.; Rackemann, D.W. One pot two-alkali clarification process to minimize sucrose degradation of clarified sugarcane juice during evaporation. J. Food Eng. 2024, 374, 112022. [Google Scholar] [CrossRef]
- Huang, H.; Chen, J.; Zheng, M.; Zhang, L.; Ji, H.; Cao, H.; Dai, F.; Wang, L. Precursors and formation pathways of furfural in sugarcane juice during thermal treatment. Food Chem. 2023, 402, 134318. [Google Scholar] [CrossRef]
- Zhu, H.; Poojary, M.M.; Andersen, M.L.; Lund, M.N. Trapping of Carbonyl Compounds by Epicatechin: Reaction Kinetics and Identification of Epicatechin Adducts in Stored UHT Milk. J. Agric. Food Chem. 2020, 68, 7718–7726. [Google Scholar] [CrossRef]
- Verma, V.; Yadav, N. Inhibition of acrylamide and 5-hydroxymethylfurfural formation in French fries by additives in model reaction. J. Food Process Eng. 2022, 45, 14178. [Google Scholar] [CrossRef]
- Eliodório, K.P.; Pennacchi, C.; De Góis E Cunha, G.C.; Morandim-Giannetti, A.d.A.; Giudici, R.; Basso, T.O. Effects of caramelization and Maillard reaction products on the physiology of Saccharomyces cerevisiae. Fungal Biol. 2023, 127, 1534–1543. [Google Scholar] [CrossRef]
- Jung, J.Y.; Kim, J.-W. Economic hybrid configuration of a multi-effect evaporative crystallizer for heat-sensitive L-glutamine with the simultaneous production of a heat-stable substance. JFE 2025, 391, 112438. [Google Scholar] [CrossRef]
- Kocadagli, T.; Gokmen, V. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system. Food Chem. 2016, 211, 892–902. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Cui, H.; Hayat, K.; Hussain, S.; Tahir, M.U.; Zhai, Y.; Zhang, Q.; Zhang, X.; Ho, C.-T. Effect of Methionine on the Thermal Degradation of N-(1-Deoxy-d-fructos-1-yl)-methionine Affecting Browning Formation. J. Agric. Food Chem. 2021, 69, 5167–5177. [Google Scholar] [CrossRef]
- Rannou, C.; Laroque, D.; Renault, E.; Prost, C.; Sérot, T. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods. Food Res. Int. 2016, 90, 154–176. [Google Scholar] [CrossRef]
- Tas, N.G.; Gokmen, V. Effect of Roasting and Storage on the Formation of Maillard Reaction and Sugar Degradation Products in Hazelnuts (Corylus avellana L.). J. Agric. Food Chem. 2019, 67, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Li, L.; Le, T.T.; Larsen, L.B.; Su, G.; Liang, Y.; Li, B. Digestibility of Glyoxal-Glycated β-Casein and β-Lactoglobulin and Distribution of Peptide-Bound Advanced Glycation End Products in Gastrointestinal Digests. J. Agric. Food Chem. 2017, 65, 5778–5788. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.N.; Ray, C.A. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef] [PubMed]
- Yıltırak, S.; Kocadağlı, T.; Evrim Çelik, E.; Özkaynak Kanmaz, E.; Gökmen, V. Effects of sprouting and fermentation on the formation of Maillard reaction products in different cereals heated as wholemeal. Food Chem. 2022, 389, 133075. [Google Scholar] [CrossRef]
- Yin, J.; Hedegaard, R.V.; Skibsted, L.H.; Andersen, M.L. Epicatechin and epigallocatechin gallate inhibit formation of intermediary radicals during heating of lysine and glucose. Food Chem. 2014, 146, 48–55. [Google Scholar] [CrossRef]
- Gürsul Aktağ, I.; Gökmen, V. Multiresponse kinetic modelling of α-dicarbonyl compounds formation in fruit juices during storage. Food Chem. 2020, 320, 126620. [Google Scholar] [CrossRef]
- Han, Z.; Gao, J.; Li, J.; Zhang, Y.; Yang, Y.; Wang, S. Mitigation of 3-deoxyglucosone and 5-hydroxymethylfurfural in brown fermented milk via an alternative browning process based on the hydrolysis of endogenous lactose. Food Funct. 2019, 10, 2022–2029. [Google Scholar] [CrossRef]
- Feng, T.; Zhou, Y.; Wang, X.; Wang, X.; Xia, S. α-Dicarbonyl compounds related to antimicrobial and antioxidant activity of maillard reaction products derived from xylose, cysteine and corn peptide hydrolysate. Food Biosci. 2021, 41, 100951. [Google Scholar] [CrossRef]
- Wu, Q.; Tang, S.; Zhang, L.; Xiao, J.; Luo, Q.; Chen, Y.; Zhou, M.; Feng, N.; Wang, C. The inhibitory effect of the catechin structure on advanced glycation end product formation in alcoholic media. Food Funct. 2020, 11, 5396–5408. [Google Scholar] [CrossRef]
- Berk, E.; Hamzalıoğlu, A.; Gökmen, V. Investigations on the Maillard Reaction in Sesame (Sesamum indicum L.) Seeds Induced by Roasting. J. Agric. Food Chem. 2019, 67, 4923–4930. [Google Scholar] [CrossRef]
- Bork, L.V.T.; Haase, P.; Rohn, S.; Kanzler, C. Formation of melanoidins-Aldol reactions of heterocyclic and short-chain MAILLARD intermediates. Food Chem. 2022, 380, 131852. [Google Scholar] [CrossRef]
- Zhao, Y.-Y.; Wu, S.-P.; Liu, S.; Zhang, Y.; Lin, R.-C. Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chem. Biol. Interact. 2014, 220, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Van Der Fels-Klerx, H.J.; Van Boekel, M.A.J.S. Kinetics of Nε-(carboxymethyl)lysine formation in aqueous model systems of sugars and casein. Food Chem. 2016, 192, 125–133. [Google Scholar] [CrossRef]
- Cao, C.; Xie, J.; Hou, L.; Zhao, J.; Chen, F.; Xiao, Q.; Zhao, M.; Fan, M. Effect of glycine on reaction of cysteine-xylose: Insights on initial Maillard stage intermediates to develop meat flavor. Food Res. Int. 2017, 99, 444–453. [Google Scholar] [CrossRef]
- Hou, L.; Xie, J.; Zhao, J.; Zhao, M.; Fan, M.; Xiao, Q.; Liang, J.; Chen, F. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems. Food Chem. 2017, 232, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Chen, G. Dietary N-epsilon-carboxymethyllysine as for a major glycotoxin in foods: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4931–4949. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Ding, L.; Wang, P.; Wu, Y.; Areeprasert, C.; Wang, M.; Chen, X.; Wang, F.; Yu, G. Formation of melanoidins and development of characterization techniques during thermal pretreatment of organic solid waste: A critical review. Fuel 2023, 334, 126790. [Google Scholar] [CrossRef]
- Kayin, N.; Atalay, D.; Akcay, T.T.; Erge, H.S. Color stability and change in bioactive compounds of red beet juice concentrate stored at different temperatures. J. Food Sci. Technol. Mysore 2019, 56, 5097–5106. [Google Scholar] [CrossRef]
- Chutintrasri, B.; Noomhorm, A. Color degradation kinetics of pineapple puree during thermal processing. LWT-Food Sci. Technol. 2007, 40, 300–306. [Google Scholar] [CrossRef]
- Liao, H.; Zhu, W.; Zhong, K.; Liu, Y. Evaluation of colour stability of clear red pitaya juice treated by thermosonication. LWT-Food Sci. Technol. 2020, 121, 108997. [Google Scholar] [CrossRef]
- Zhan, H.; Tang, W.; Cui, H.; Hayat, K.; Hussain, S.; Tahir, M.U.; Zhang, S.; Zhang, X.; Ho, C.-T. Formation kinetics of Maillard reaction intermediates from glycine-ribose system and improving Amadori rearrangement product through controlled thermal reaction and vacuum dehydration. Food Chem. 2020, 311, 125877. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Long, Y.; Li, F.; Zhang, Y.; Gan, B.; Yu, Q.; Xie, J.; Chen, Y. Exploring Acrylamide and 5-Hydroxymethylfurfural Formation in Glucose-Asparagine-Linoleic Acid System With a Kinetic Model Approach. Front. Nutr. 2022, 9, 940202. [Google Scholar] [CrossRef] [PubMed]
- Damjanovic Desic, S.; Birlouez-Aragon, I. The FAST index—A highly sensitive indicator of the heat impact on infant formula model. Food Chem. 2010, 124, 1043–1049. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Z.; Miao, J.; Huang, Y.; Lai, K. Multi-response kinetic study of Maillard reaction hazards in the glucose-lysine model system. J. Sci. Food Agric. 2024, 105, 1207–1215. [Google Scholar] [CrossRef]
- Chansataporn, W.; Prathumars, P.; Nopharatana, M.; Siriwattanayotin, S.; Tangduangdee, C. Kinetics of Maillard reaction in a chicken meat model system using a multiresponses modeling approach. Int. J. Chem. Kinet. 2018, 51, 14–27. [Google Scholar] [CrossRef]
- Sen, D.; Gokmen, V. Multiresponse Kinetic Modeling of Acrylamide Formation in Low Moisture Food Systems Like Nuts and Seeds during Roasting. ACS Food Sci. Technol. 2023, 3, 1606–1616. [Google Scholar] [CrossRef]
- Tas, N.G.; Gokmen, V. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Food Chem. 2017, 221, 1911–1922. [Google Scholar]
- Brands, C.M.J.; Van Boekel, M.A.J.S. Kinetic modelling of reactions in heated disaccharide–casein systems. Food Chem. 2003, 83, 13–26. [Google Scholar] [CrossRef]
- Sen, D.; Gokmen, V. Kinetic modeling of Maillard and caramelization reactions in sucrose-rich and low moisture foods applied for roasted nuts and seeds. Food Chem. 2022, 395, 133583. [Google Scholar] [CrossRef]
Composition | Content (g/100 mL) |
Sucrose | 12.475 |
Fructose | 0.441 |
Glucose | 0.514 |
Proline | 0.45 × 10−3 |
Histidine | 1.03 × 10−3 |
Lysine | 0.56 × 10−3 |
mg/g DS | Heating Time (min) | ||||
---|---|---|---|---|---|
0 | 10 | 20 | 25 | 30 | |
Asp | 0.4827 ± 0.0011 e | 0.5852 ± 0.0004 b | 0.6216 ± 0.0009 a | 0.5194 ± 0.0008 d | 0.5452 ± 0.0020 c |
Glu | 3.0179 ± 0.0133 c | 3.3056 ± 0.0075 b | 3.4516 ± 0.0012 a | 2.8779 ± 0.0015 d | 3.0075 ± 0.0080 c |
Thr | 0.0878 ± 0.0001 e | 0.41056 ± 0.0008 b | 0.1125 ± 0.0006 a | 0.0950 ± 0.0005 d | 0.0971 ± 0.0002 c |
Ser | 0.2274 ± 0.0005 c | 0.2459 ± 0.0002 b | 0.2579 ± 0.0005 a | 0.2151 ± 0.0006 e | 0.2243 ± 0.0001 d |
Gly | 0.0331 ± 0.0001 b | 0.0324 ± 0.0001 c | 0.0385 ± 0.0001 a | 0.0325 ± 0.0002 c | 0.0322 ± 0.0002 d |
Ala | 0.2745 ± 0.0011 d | 0.3042 ± 0.0010 b | 0.3204 ± 0.0052 a | 0.2675 ± 0.0003 e | 0.2788 ± 0.0001 c |
Cys | 0.0120 ± 0.0002 a | 0.0764 ± 0.0886 b | 0.0177 ± 0.0004 a | 0.0143 ± 0.0003 a | 0.0137 ± 0.0006 a |
Val | 0.1245 ± 0.0032 e | 0.1508 ± 0.0032 b | 0.1570 ± 0.0012 a | 0.1318 ± 0.0002 d | 0.1367 ± 0.0004 c |
Met | 0.0113 ± 0.0003 c | 0.0229 ± 0.0082 a | 0.0200 ± 0.0021 ab | 0.0176 ± 0.0002 b | 0.0175 ± 0.0002 b |
Ile | 0.0543 ± 0.0003 c | 0.0768 ± 0.0063 a | 0.0771 ± 0.0002 a | 0.0637 ± 0.0031 a | 0.0665 ± 0.0010 b |
Leu | 0.0343 ± 0.0001 e | 0.0521 ± 0.0018 b | 0.0534 ± 0.0046 a | 0.0443 ± 0.0004 d | 0.0464 ± 0.0021 c |
Tyr | 0.0435 ± 0.0045 d | 0.0626 ± 0.0007 ab | 0.0684 ± 0.0017 a | 0.0539 ± 0.0088 c | 0.0615 ± 0.0005 b |
Phe | 0.0276 ± 0.0017 c | 0.0297 ± 0.0007 bc | 0.0313 ± 0.0002 b | 0.0349 ± 0.0011 a | 0.0316 ± 0.0016 b |
Hypro | 0.2699 ± 0.0046 c | 0.2919 ± 0.0058 b | 0.3118 ± 0.0040 a | 0.2635 ± 0.0015 d | 0.2705 ± 0.0012 c |
Pro | 0.0302 ± 0.0036 d | 0.0519 ± 0.0010 b | 0.0625 ± 0.0029 a | 0.0438 ± 0.0118 c | 0.0519 ± 0.0013 b |
Total amino acids | 4.8844 ± 0.0285 d | 5.5674 ± 0.0519 b | 5.7911 ± 0.0073 a | 4.8118 ± 0.0217 e | 5.0261 ± 0.0071 c |
Protein | 1.3190 ± 0.0060 a | 1.2450 ± 0.0310 b | 1.0320 ± 0.0100 c | 0.8910 ± 0.0180 d | 0.8130 ± 0.0070 e |
Temperature (°C) | Kinetic Model | Indicator | k (h−1) | R2 | Ea (kJ/mol) | Indicator | k (h−1) | R2 | Ea (kJ/mol) |
---|---|---|---|---|---|---|---|---|---|
60 | 0 | L* | −1.5060 | 0.898 | 20.835 ± 0.740 | a* | 0.4104 | 0.815 | 8.199 ± 2.883 |
1 | −0.0415 | 0.897 | -- | -- | |||||
2 | 0.0012 | 0.889 | -- | -- | |||||
70 | 0 | −1.6950 | 0.928 | 0.4926 | 0.943 | ||||
1 | −0.0467 | 0.925 | -- | -- | |||||
2 | 0.0013 | 0.93 | -- | -- | |||||
80 | 0 | −1.8702 | 0.952 | 0.5292 | 0.977 | ||||
1 | −0.0515 | 0.950 | -- | -- | |||||
2 | 0.0014 | 0.947 | -- | -- | |||||
90 | 0 | −2.9322 | 0.985 | 0.5244 | 0.882 | ||||
1 | −0.0816 | 0.984 | -- | -- | |||||
2 | 0.0023 | 0.981 | -- | -- | |||||
60 | 0 | b* | 0.8292 | 0.841 | 19.056 ± 8.767 | ΔE* | 1.7478 | 0.883 | 19.867 ± 8.767 |
1 | 0.8196 | 0.862 | -- | -- | |||||
2 | −0.8214 | 0.905 | -- | -- | |||||
70 | 0 | 1.4604 | 0.942 | 2.3016 | 0.937 | ||||
1 | 1.272 | 0.973 | -- | -- | |||||
2 | −1.1406 | 0.984 | -- | -- | |||||
80 | 0 | 1.4526 | 0.985 | 2.3916 | 0.973 | ||||
1 | 1.2486 | 0.964 | -- | -- | |||||
2 | −1.107 | 0.922 | -- | -- | |||||
90 | 0 | 1.5474 | 0.993 | 3.3378 | 0.996 | ||||
1 | 1.3134 | 0.972 | -- | -- | |||||
2 | −1.1514 | 0.931 | -- | -- |
Temperature (°C) | Types | Indicator | k (h−1) | R2 | Ea (kJ/mol) | Indicator | k (h−1) | R2 | Ea (kJ/mol) |
---|---|---|---|---|---|---|---|---|---|
60 | 0 | GO | 0.1476 | 0.972 | 11.464 ± 1.414 | MGO | 0.5694 | 0.814 | 16.656 ± 2.725 |
1 | 5.1860 | 0.961 | 7.1154 | 0.974 | |||||
2 | −293.1504 | 0.754 | −186.4026 | 0.899 | |||||
70 | 0 | 0.1644 | 0.976 | 0.6654 | 0.841 | ||||
1 | 5.3688 | 0.951 | 7.1286 | 0.994 | |||||
2 | −293.4474 | 0.731 | −173.9076 | 0.767 | |||||
80 | 0 | 0.1770 | 0.907 | 0.7308 | 0.794 | ||||
1 | 5.5398 | 0.980 | 7.4682 | 0.993 | |||||
2 | −297.0744 | 0.768 | −179.5134 | 0.831 | |||||
90 | 0 | 0.2106 | 0.937 | 0.9624 | 0.688 | ||||
1 | 5.9041 | 0.974 | 7.8924 | 0.998 | |||||
2 | −300.5466 | 0.753 | −176.8578 | 0.793 | |||||
60 | 0 | 3-DG | 11.5734 | 0.838 | 25.691 ± 3.081 | 5-HMF | 0.1158 | 0.812 | 18.836 ± 5.755 |
1 | 10.9242 | 0.946 | 5.0670 | 0.991 | |||||
2 | −71.6022 | 0.562 | −350.2164 | 0.845 | |||||
70 | 0 | 13.4322 | 0.924 | 0.1794 | 0.917 | ||||
1 | 10.5924 | 0.816 | 6.0372 | 0.980 | |||||
2 | −70.4520 | 0.515 | −362.4492 | 0.811 | |||||
80 | 0 | 18.7362 | 0.959 | 0.1908 | 0.892 | ||||
1 | 11.178 | 0.777 | 6.1572 | 0.987 | |||||
2 | −70.4040 | 0.508 | −362.5248 | 0.808 | |||||
90 | 0 | 24.4548 | 0.960 | 0.2088 | 0.883 | ||||
1 | 11.4942 | 0.737 | 6.3372 | 0.990 | |||||
2 | −70.3302 | 0.504 | −363.7416 | 0.806 | |||||
60 | 0 | CML | 0.0612 | 0.816 | 6.972 ± 0.621 | CEL | 0.0542 | 0.830 | 11.136 ± 0.668 |
1 | 7.9032 | 0.994 | 7.9440 | 0.993 | |||||
2 | −2692.6134 | 0.769 | −3124.0776 | 0.751 | |||||
70 | 0 | 0.0642 | 0.830 | 0.0593 | 0.880 | ||||
1 | 7.8348 | 0.989 | 8.0424 | 0.978 | |||||
2 | −2622.9192 | 0.701 | −3073.7130 | 0.699 | |||||
80 | 0 | 0.0708 | 0.841 | 0.0678 | 0.867 | ||||
1 | 7.7832 | 0.958 | 8.1606 | 0.972 | |||||
2 | −2557.2288 | 0.625 | −3022.2282 | 0.648 | |||||
90 | 0 | 0.0744 | 0.844 | 0.0750 | 0.854 | ||||
1 | 7.8954 | 0.958 | 8.4744 | 0.981 | |||||
2 | −2559.3384 | 0.623 | 22.353 ± 6.875 | −3057.0618 | 0.672 | ||||
60 | 0 | Mela-noid | 69.5022 | 0.970 | |||||
1 | 4.1634 | 0.948 | |||||||
2 | −0.351 | 0.750 | |||||||
70 | 0 | 116.7768 | 0.942 | ||||||
1 | 4.9932 | 0.908 | |||||||
2 | −0.3594 | 0.662 | |||||||
80 | 0 | 124.6932 | 0.972 | ||||||
1 | 5.0064 | 0.797 | |||||||
2 | −0.3552 | 0.586 | |||||||
90 | 0 | 141.6066 | 0.977 | ||||||
1 | 5.2716 | 0.840 | |||||||
2 | −0.3595 | 0.602 |
Elementary Reaction Steps | 60 °C | 70 °C | 80 °C | 90 °C | |||||
---|---|---|---|---|---|---|---|---|---|
k (h−1) | HPD | k (h−1) | HPD | k (h−1) | HPD | k (h−1) | HPD | ||
k1 | Suc → Glu+ Fru | 0.0000 | *ind | 0.0000 | *ind | 0.0087 | ±0.0070 | 0.0000 | *ind |
k2 | 1,2-E, D → Fru | 0.0031 | ±0.0634 | 0.0000 | *ind | 0.0000 | *ind | 0.0246 | ±0.0736 |
k3 | Fru → 1,2- E, D | 0.0385 | ±0.0915 | 0.0352 | ±0.0112 | 1.8862 | ±0.4520 | 0.0732 | ±0.0736 |
k4 | 1,2- E, D → Glu | 0.0001 | *ind | 0.0001 | *ind | 0.0001 | *ind | 0.0001 | *ind |
k5 | Glu → 1,2- E, D | 0.0548 | ±0.0880 | 0.0377 | ±0.0382 | 0.6368 | ±0.5970 | 0.0587 | ±0.0707 |
k6 | 1,2-E, D→3-DG | 0.0445 | ±0.0375 | 0.0343 | ±0.0196 | 0.5366 | ±0.3574 | 0.0506 | ±0.0252 |
k7 | Fru → 5-HMF | 0.0100 | ±0.0001 | 0.0100 | ±0.0001 | 0.0149 | ±0.0149 | 0.0100 | ±0.0001 |
k8 | 3-DG→ 5-HMF | 38,991 | ±37,170 | 20,453 | ±10,810 | 27,521 | ±21,480 | 28,918 | ±22,910 |
k9 | 3-DG → GO | 0.2808 | ±0.1528 | 0.2330 | ±0.1109 | 0.2180 | ±0.1239 | 0.2940 | ±0.2006 |
k10 | 3-DG → MGO | 46.4663 | ±29.7000 | 46.6424 | ±21.4401 | 51.9015 | ±29.9000 | 56.3724 | ±35.2000 |
k11 | GO → CML | 0.0079 | ±0.0017 | 0.0073 | ±0.0012 | 0.0065 | ±0.0036 | 0.0069 | ±0.0021 |
k12 | CML → melanoidin | 0.0100 | ±0.0001 | 0.0100 | ±0.0010 | 0.0010 | ±0.0010 | 0.0010 | ±0.0010 |
k13 | MGO → CEL | 114.1332 | ±87.4500 | 147.5678 | ±80.5500 | 167.6380 | ±116.4000 | 172.7986 | ±120.0400 |
k14 | CEL →melanoidin | 0.0050 | ±0.0297 | 0.0000 | ±0.0001 | 0.0043 | ±0.0020 | 0.0000 | ±0.0000 |
k15 | 5-HMF →melanoidin | 31,945 | ±26,290 | 23,069 | ±12,100 | 31,232 | ±24,990 | 28,874 | ±19,900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Zhao, H.; Liu, Z.; Liu, J.; Liu, X.; Hang, F.; Li, K.; Xie, C. Color Development Characteristic and Kinetic Modeling of Maillard Reaction in Membrane-Clarified Sugarcane Juice During Vacuum Evaporation Process. Foods 2025, 14, 2136. https://doi.org/10.3390/foods14122136
Han M, Zhao H, Liu Z, Liu J, Liu X, Hang F, Li K, Xie C. Color Development Characteristic and Kinetic Modeling of Maillard Reaction in Membrane-Clarified Sugarcane Juice During Vacuum Evaporation Process. Foods. 2025; 14(12):2136. https://doi.org/10.3390/foods14122136
Chicago/Turabian StyleHan, Meiyi, Hongkui Zhao, Zhihua Liu, Jing Liu, Xi Liu, Fangxue Hang, Kai Li, and Caifeng Xie. 2025. "Color Development Characteristic and Kinetic Modeling of Maillard Reaction in Membrane-Clarified Sugarcane Juice During Vacuum Evaporation Process" Foods 14, no. 12: 2136. https://doi.org/10.3390/foods14122136
APA StyleHan, M., Zhao, H., Liu, Z., Liu, J., Liu, X., Hang, F., Li, K., & Xie, C. (2025). Color Development Characteristic and Kinetic Modeling of Maillard Reaction in Membrane-Clarified Sugarcane Juice During Vacuum Evaporation Process. Foods, 14(12), 2136. https://doi.org/10.3390/foods14122136