Production of Protein Hydrolysates with Antioxidant and Antihypertensive Activity from Edible Larvae of Aegiale hesperiaris and Comadia redtenbacheri
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemical Reagents
2.3. Proximal Analysis
2.4. Preparation of Protein Concentrates from Aegiale hesperiaris (WW) and Comadia redtenbacheri (RW)
2.5. Enzymatic Hydrolysis
2.6. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.7. Determination of Antioxidant Capacity
2.7.1. DPPH Radical Scavenging Activity
2.7.2. ABTS Cation Radical Scavenging Activity
2.8. Determination of Percent ACE Inhibition
2.9. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition of WW and RW Flours
3.2. WW and RW Concentrates and Their Protein Profile
3.3. Antioxidant Properties of Protein Concentrates and Hydrolysates
3.4. Potential of Protein Concentrates and Hydrolysates to Inhibit ACE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
ACE | Angiotensin Converting Enzyme |
IC50 | Inhibitory concentration at 50% |
WW | Aegiale hesperiaris (maguey white worm) |
RW | Comadia redtenbacheri (maguey red worm) |
PH | Single hydrolysis with Pepsin only |
PTH | Sequential Hydrolysis with Pepsin and Trypsin |
WWPC | WW protein concentrate |
RWPC | RW protein concentrate |
SDS-PAGE | Sodium dodecyl sulfate polyacrylamide gel electrophoresis |
AOAC | Association of Official Analytical Chemists |
NFE | Nitrogen Free Extract |
Tris-HCl | Tris (hydroxymethyl) aminomethane-hydrogen chloride buffer |
BAEE | Benzyloxycarbonyl acid ethyl ester |
kDa | Kilodaltons |
B1 | Positive control without inhibition |
B2 | Reagent blank |
References
- Aiello, D.; Barbera, M.; Bongiorno, D.; Cammarata, M.; Censi, V.; Indelicato, S.; Mazzotti, F.; Napoli, A.; Piazzese, D.; Saiano, F. Edible Insects an Alternative Nutritional Source of Bioactive Compounds: A Review. Molecules 2023, 28, 699. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The Contribution of Insects to Food Security, Livelihoods and the Environment. 2013. Available online: https://www.fao.org/4/i3264e/i3264e00.pdf (accessed on 14 January 2025).
- Pan, J.; Xu, H.; Cheng, Y.; Mintah, B.K.; Dabbour, M.; Yang, F.; Chen, W.; Zhang, Z.; Dai, C.; He, R.; et al. Recent Insight on Edible Insect Protein: Extraction, Functional Properties, Allergenicity, Bioactivity, and Applications. Foods 2022, 11, 2931. [Google Scholar] [CrossRef] [PubMed]
- Rumpold, B.A.; Schlüter, O.K. Potential and Challenges of Insects as an Innovative Source for Food and Feed Production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Schlüter, O.; Rumpold, B.; Holzhauser, T.; Roth, A.; Vogel, R.F.; Quasigroch, W.; Vogel, S.; Heinz, V.; Jäger, H.; Bandick, N.; et al. Safety Aspects of the Production of Foods and Food Ingredients from Insects. Mol. Nutr. Food Res. 2017, 61, 1600520. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Ngah, N.; Eddy-Doh, A.; Ucak, I.; Afreen, M.; Fernando, I.; Singh, S.; Shah, M.; Povetkin, S.; Castro-Muñoz, R. Edible Lepidoptera as human foods—A comprehensive review. J. Insects Food Feed 2023, 10, 25–49. [Google Scholar] [CrossRef]
- Belluco, S.; Halloran, A.; Ricci, A. New Protein Sources and Food Legislation: The Case of Edible Insects and EU Law. Food Sec. 2017, 9, 803–814. [Google Scholar] [CrossRef]
- Devi, W.D.; Bonysana, R.; Kapesa, K.; Mukherjee, P.K.; Rajashekar, Y. Edible Insects: As Traditional Medicine for Human Wellness. Future Foods 2023, 7, 100219. [Google Scholar] [CrossRef]
- Oonincx, D.G.a.B.; Finke, M.D. Nutritional Value of Insects and Ways to Manipulate Their Composition. J. Insects Food Feed 2021, 7, 639–659. [Google Scholar] [CrossRef]
- Chantawannakul, P. From Entomophagy to Entomotherapy. Front. Biosci. 2020, 25, 179–200. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, T.K.; Jeong, C.H.; Yong, H.I.; Cha, J.Y.; Kim, B.K.; Choi, Y.S. Biological Activity and Processing Technologies of Edible Insects: A Review. Food Sci. Biotechnol. 2021, 30, 1003–1023. [Google Scholar] [CrossRef]
- Quah, Y.; Tong, S.R.; Bojarska, J.; Giller, K.; Tan, S.A.; Ziora, Z.M.; Esatbeyoglu, T.; Chai, T.T. Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture. Molecules 2023, 28, 1233. [Google Scholar] [CrossRef] [PubMed]
- De Matos, F.M.; Rasera, G.B.; De Castro, R.J.S. Insects as a Sustainable Source of Emerging Proteins and Their Processing to Obtain Bioactive Compounds: An Updated Review. Sustain. Food Technol. 2024, 2, 19–31. [Google Scholar] [CrossRef]
- Sierra-Lopera, L.M.; Zapata-Montoya, J.E. Optimization of Enzymatic Hydrolysis of Red Tilapia Scales (Oreochromis sp.) to Obtain Bioactive Peptides. Biotechnol. Rep. 2021, 30, e00611. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.; Borges, S.; Pintado, M. Enzymatic Hydrolysis of Insect Alphitobius diaperinus Towards the Development of Bioactive Peptide Hydrolysates. Food Funct. 2020, 11, 3539–3548. [Google Scholar] [CrossRef]
- Xu, Y.; Galanopoulos, M.; Sismour, E.; Ren, S.; Mersha, Z.; Lynch, P.; Almutaimi, A. Effect of Enzymatic Hydrolysis Using Endo- and Exo-Proteases on Secondary Structure, Functional, and Antioxidant Properties of Chickpea Protein Hydrolysates. Food Meas. 2020, 14, 343–352. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Unlocking the Biological Potential of Proteins from Edible Insects through Enzymatic Hydrolysis: A Review. Innov. Food Sci. Emerg. Technol. 2017, 43, 239–252. [Google Scholar] [CrossRef]
- Yang, R.; Zhao, X.; Kuang, Z.; Ye, M.; Luo, G.; Xiao, G.; Liao, S.; Li, L.; Xiong, Z. Optimization of Antioxidant Peptide Production in the Hydrolysis of Silkworm (Bombyx mori L.) Pupa Protein Using Response Surface Methodology. J. Food Agric. Environ. 2013, 11, 952–956. [Google Scholar]
- Vercruysse, L.; Van Camp, J.; Morel, N.; Rougé, P.; Herregods, G.; Smagghe, G. Ala-Val-Phe and Val-Phe: ACE Inhibitory Peptides Derived from Insect Protein with Antihypertensive Activity in Spontaneously Hypertensive Rats. Peptides 2010, 31, 482–488. [Google Scholar] [CrossRef]
- Yoon, S.; Wong, N.A.K.; Chae, M.; Auh, J.H. Comparative Characterization of Protein Hydrolysates from Three Edible Insects: Mealworm Larvae, Adult Crickets, and Silkworm Pupae. Foods 2019, 8, 563. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J. Anthropo-Entomophagy: Cultures, Evolution and Sustainability. Entomol. Res. 2009, 39, 271–288. [Google Scholar] [CrossRef]
- Ronquillo-de Jesús, E.; Aguilar-Méndez, M.A.; Rodríguez-Ortega, L.T.; San Juan-Lara, J. Entomophagy in Mexico: Current Trends and Outlook. J. Insects Food Feed 2024, 1, 1–15. [Google Scholar] [CrossRef]
- Cruz-García, K.; Ortiz-Hernández, Y.D.; Acevedo-Ortiz, M.A.; Aquino-Bolaños, T.; Aquino-López, T.; Lugo-Espinosa, G.; Ortiz-Hernández, F.E. Edible Insects: Global Research Trends, Biosafety Challenges, and Market Insights in the Mexican Context. Foods 2025, 14, 663. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Janssen, R.H.; Vincken, J.P.; Van Den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Kim, Y.B.; Jung, S.; Kim, H.W.; Choi, Y.S. Effects of Organic Solvent on Functional Properties of Defatted Proteins Extracted from Protaetia Brevitarsis Larvae. Food Chem. 2021, 336, 127679. [Google Scholar] [CrossRef]
- Bose, U.; Broadbent, J.A.; Juhász, A.; Karnaneedi, S.; Johnston, E.B.; Stockwell, S.; Byrne, K.; Limviphuvadh, V.; Maurer-Stroh, S.; Lopata, A.L.; et al. Protein extraction protocols for optimal proteome measurement and arginine kinase quantitation from cricket Acheta domesticus for food safety assessment. Food Chem. 2021, 348, 129110. [Google Scholar] [CrossRef]
- Cortazar-Moya, S.; Jiménez-González, O.; Bojórquez-Velázquez, E.; Ruiz-May, E.; López-Malo, A.; Morales-Camacho, J.I. Isolation of Peptide Mixtures with Potential Biological Activities from the Protein Hydrolysate of Arsenura armida Larval Meal. J. Insects Food Feed 2024, 10, 1881–1895. [Google Scholar] [CrossRef]
- Yi, L.; Lakemond, C.M.M.; Sagis, L.M.C.; Eisner-Schadler, V.; van Huis, A.; van Boekel, M.A.J.S. Extraction and Characterisation of Protein Fractions from Five Insect Species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Anuduang, A.; Mustapha, W.A.W.; Lim, S.J.; Jomduang, S.; Phongthai, S.; Ounjaijean, S.; Boonyapranai, K. Evaluation of Thai Silkworm (Bombyx mori L.) Hydrolysate Powder for Blood Pressure Reduction in Hypertensive Rats. Foods 2024, 13, 943. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, N.; Sasaki, A.; Maizawa, T.; Hamada-Sato, N. Abalone Viscera Fermented with Aspergillus Oryzae 001 Prevents Pressure Elevation by Inhibiting Angiotensin Converting Enzyme. Nutrients 2023, 15, 947. [Google Scholar] [CrossRef]
- Kawahara, A.Y.; Martinez, J.I.; Plotkin, D.; Markee, A.; Butterwort, V.; Couch, C.D.; Toussaint, E.F. Mezcal worm in a bottle: DNA evidence suggests a single moth species. PeerJ 2023, 11, e14948. [Google Scholar] [CrossRef]
- Choi, B.D.; Wong, N.A.K.; Auh, J.H. Defatting and Sonication Enhances Protein Extraction from Edible Insects. Korean J. Food Sci. Anim. Resour. 2017, 37, 955–961. [Google Scholar] [CrossRef]
- Hasnan, F.F.B.; Feng, Y.; Sun, T.; Parraga, K.; Schwarz, M.; Zarei, M. Insects as Valuable Sources of Protein and Peptides: Production, Functional Properties, and Challenges. Foods 2023, 12, 4243. [Google Scholar] [CrossRef]
- Laroche, M.; Perreault, V.; Marciniak, A.; Gravel, A.; Chamberland, J.; Doyen, A. Comparison of Conventional and Sustainable Lipid Extraction Methods for the Production of Oil and Protein Isolate from Edible Insect Meal. Foods 2019, 8, 572. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Gahukar, R.T.; Ghosh, S.; Jung, C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A Systematic Review of Nutrient Composition Data Available for Twelve Commercially Available Edible Insects, and Comparison with Reference Values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Gamborg, C.; Röcklinsberg, H.; Gjerris, M. Sustainable Proteins? Values Related to Insects in Food Systems. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 199–211. [Google Scholar] [CrossRef]
- Karnaneedi, S.; Johnston, E.B.; Bose, U.; Juhász, A.; Broadbent, J.A.; Ruethers, T.; Jerry, E.M.; Kamath, S.D.; Limviphuvadh, V.; Stockwell, S.; et al. The Allergen Profile of Two Edible Insect Species—Acheta domesticus and Tenebrio molitor. Mol. Nutr. Food Res. 2024, 68, e202300811. [Google Scholar] [CrossRef]
- Ghosh, S.; Meyer-Rochow, V.B.; Jung, C. Processing of Edible Insects for Protein Production. In Insects as Food and Food Ingredients; Elsevier: Amsterdam, The Netherlands, 2024; pp. 93–104. [Google Scholar] [CrossRef]
- Brogan, E.N.; Park, Y.L.; Matak, K.E.; Jaczynski, J. Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silkworm pupae (Bombyx mori) insect powders. LWT 2021, 152, 112314. [Google Scholar] [CrossRef]
- Yi, L.; Van Boekel, M.A.J.S.; Boeren, S.; Lakemond, C.M.M. Protein Identification and in Vitro Digestion of Fractions from Tenebrio Molitor. Eur. Food Res. Technol. 2016, 242, 1285–1297. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Yang, H.J.; Chen, M.; Lou, C.F.; Zhang, Y.Z.; Chen, K.P.; Wang, Y.; Yu, M.L.; Yu, F.; Li, J.Y.; et al. Comparative Proteomic Analysis between the Domesticated Silkworm (Bombyx mori) Reared on Fresh Mulberry Leaves and on Artificial Diet. J. Proteome Res. 2008, 7, 5103–5111. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Zhao, M.; Regenstein, J.M.; Ren, J. Changes in the Antioxidant Activity of Loach (Misgurnus anguillicaudatus) Protein Hydrolysates A Simulated Gastrointestinal Digestion. Food Chem. 2010, 120, 810–816. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, L.; Li, P.; Cai, P.; Zhang, M.; Sun, Z.; Sun, C.; Geng, Z.; Xu, W.; Xu, X.; et al. Effects of Ultrasound Assisted Extraction on the Physiochemical, Structural and Functional Characteristics of Duck Liver Protein Isolate. Process Biochem. 2017, 52, 174–182. [Google Scholar] [CrossRef]
- Ajibola, C.F.; Fashakin, J.B.; Fagbemi, T.N.; Aluko, R.E. Effect of Peptide Size on Antioxidant Properties of African Yam Bean Seed (Sphenostylis stenocarpa) Protein Hydrolysate Fractions. Int. J. Mol. Sci. 2011, 12, 6685–6702. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, S.; Liu, J.; Zou, Y.; Liao, S. Antioxidant Activity and Stability Study of Peptides from Enzymatically Hydrolyzed Male Silkmoth. J. Food Process. Preserv. 2017, 41, e13081. [Google Scholar] [CrossRef]
- Li, Y.W.; Li, B. Characterization of Structure–Antioxidant Activity Relationship of Peptides in Free Radical Systems Using QSAR Models: Key Sequence Positions and Their Amino Acid Properties. J. Theor. Biol. 2013, 318, 29–43. [Google Scholar] [CrossRef]
- Cermeño, M.; Bascón, C.; Amigo-Benavent, M.; Felix, M.; FitzGerald, R.J. Identification of Peptides from Edible Silkworm Pupae (Bombyx mori) Protein Hydrolysates with Antioxidant Activity. J. Funct. Foods 2022, 92, 105052. [Google Scholar] [CrossRef]
- Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants. Nutrients 2017, 9, 316. [Google Scholar] [CrossRef]
- Ma, Z.; Mondor, M.; Goycoolea Valencia, F.; Hernández-Álvarez, A.J. Current State of Insect Proteins: Extraction Technologies, Bioactive Peptides and Allergenicity of Edible Insect Proteins. Food Funct. 2023, 14, 8129–8156. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis Jr, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health Benefits of Dietary Fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Cc, U.; Re, A. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef]
- Wongsrangsap, N.; Chukiatsiri, S. Purification and Identification of Novel Antioxidant Peptides from Enzymatically Hydrolysed Samia Ricini Pupae. Molecules 2021, 26, 2588. [Google Scholar] [CrossRef]
- Hartmann, R.; Meisel, H. Food-Derived Peptides with Biological Activity: From Research to Food Applications. Curr. Opin. Biotechnol. 2007, 18, 163–169. [Google Scholar] [CrossRef]
- Wu, H.C.; Chen, H.M.; Shiau, C.Y. Free Amino Acids and Peptides as Related to Antioxidant Properties in Protein Hydrolysates of Mackerel (Scomber austriasicus). Food Res. Int. 2003, 36, 949–957. [Google Scholar] [CrossRef]
- Chou, T.C. Derivation and Properties of Michaelis-Menten Type and Hill Type Equations for Reference Ligands. J. Theor. Biol. 1976, 59, 253–276. [Google Scholar] [CrossRef]
- Prinz, H. Hill Coefficients, Dose–Response Curves and Allosteric Mechanisms. J. Chem. Biol. 2010, 3, 37–44. [Google Scholar] [CrossRef]
- Georgakis, N.; Ioannou, E.; Varotsou, C.; Premetis, G.; Chronopoulou, E.G.; Labrou, N.E. Determination of Half-Maximal Inhibitory Concentration of an Enzyme Inhibitor. In Targeting Enzymes for Pharmaceutical Development: Methods and Protocols; Labrou, N.E., Ed.; Springer: New York, NY, USA, 2020; pp. 41–46. [Google Scholar] [CrossRef]
- Chow, C.C.; Ong, K.M.; Dougherty, E.J.; Simons, S.S. Chapter Sixteen—Inferring Mechanisms from Dose–Response Curves. In Computer Methods, Part C; Johnson, M.L., Brand, L., Eds.; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2011; Volume 487, pp. 465–483. [Google Scholar] [CrossRef]
- Kuhnert, N.; Dairpoosh, F.; Jaiswal, R.; Matei, M.; Deshpande, S.; Golon, A.; Nour, H.; Karaköse, H.; Hourani, N. Hill Coefficients of Dietary Polyphenolic Enzyme Inhibitiors: Can Beneficial Health Effects of Dietary Polyphenols Be Explained by Allosteric Enzyme Denaturing? J. Chem. Biol. 2011, 4, 109–116. [Google Scholar] [CrossRef]
- Garcia-Molina, P.; Garcia-Molina, F.; Teruel-Puche, J.A.; Rodriguez-Lopez, J.N.; Garcia-Canovas, F.; Muñoz-Muñoz, J.L. The Relationship between the IC50 Values and the Apparent Inhibition Constant in the Study of Inhibitors of Tyrosinase Diphenolase Activity Helps Confirm the Mechanism of Inhibition. Molecules 2022, 27, 3141. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, J.; Yan, H.; Du, J.; Gui, Z. A Novel Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptide from Gastrointestinal Protease Hydrolysate of Silkworm Pupa (Bombyx mori) Protein: Biochemical Characterization and Molecular Docking Study. Peptides 2015, 68, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Ma, H.; Luo, L.; Yin, X. Angiotensin I-converting enzyme (ACE) inhibitory peptide derived from Tenebrio molitor (L.) larva protein hydrolysate. Eur. Food Res. Technol. 2013, 236, 681–689. [Google Scholar] [CrossRef]
- Zielińska, E.; Karaś, M.; Baraniak, B.; Jakubczyk, A. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. Eur. Food Res. Technol. 2020, 246, 1361–1369. [Google Scholar] [CrossRef]
- Vercruysse, L.; Smagghe, G.; Matsui, T.; Van Camp, J. Purification and Identification of an Angiotensin I Converting Enzyme (ACE) Inhibitory Peptide from the Gastrointestinal Hydrolysate of the Cotton Leafworm, Spodoptera littoralis. Process Biochem. 2008, 43, 900–904. [Google Scholar] [CrossRef]
- Tejada, L.; Buendía-Moreno, L.; Hernández, I.; Abellán, A.; Cayuela, J.M.; Salazar, E.; Bueno-Gavilá, E. Bioactivities of Mealworm (Alphitobius diaperinus L.) Larvae Hydrolysates Obtained from Artichoke (Cynara scolymus L.) Proteases. Biology 2022, 11, 631. [Google Scholar] [CrossRef]
- Teixeira, C.S.S.; Villa, C.; Costa, J.; Ferreira, I.M.P.L.V.O.; Mafra, I. Edible Insects as a Novel Source of Bioactive Peptides: A Systematic Review. Foods 2023, 12, 2026. [Google Scholar] [CrossRef]
- Lammi, C.; Aiello, G.; Boschin, G.; Arnoldi, A. Multifunctional Peptides for the Prevention of Cardiovascular Disease: A New Concept in the Area of Bioactive Food-Derived Peptides. J. Funct. Foods 2019, 55, 135–145. [Google Scholar] [CrossRef]
- Navarro del Hierro, J.; Hernández-Ledesma, B.; Martin, D. Chapter 14—Bioactive Peptides Released from Edible Insects during Gastrointestinal Digestion. In Protein Digestion-Derived Peptides; Martínez-Villaluenga, C., Hernández-Ledesma, B., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 387–407. [Google Scholar] [CrossRef]
Reactant | Sample (µL) | B1 (µL) | B2 (µL) |
---|---|---|---|
Sample solution | 10 | - | - |
Deionized water | - | 10 | 20 |
Substrate buffer | 10 | 10 | 10 |
Enzyme working solution | 10 | 10 | - |
Sample incubation at 37 °C × 1 h | |||
Working solution indicator | 100 | 100 | 100 |
Sample incubation at 37 °C × 10 min |
Flour Sample | %Protein ** | %Fat | %Ash | %Crude fiber | NFE * (%) |
---|---|---|---|---|---|
A. hesperiaris (WW) | 28.11 ± 0.40 a | 32.63 ± 0.20 b | 2.25 ± 0.70 b | 9.60 ± 0.07 b | 27.41 a |
C. redtenbacheri (RW) | 22.87 ± 0.27 b | 56.22 ± 1.50 a | 2.08 ± 0.36 b | 10.53 ± 0.19 a | 8.30 c |
Insect Species | Sample | DPPH Radical Scavenging Activity (IC50 mg/mL) | ABTS Radical Scavenging Activity (IC50 mg/mL) |
---|---|---|---|
WWPC | NC | NC | |
A. hesperiaris (WW) | WWPH | 64.68 ± 5.33 a | 46.31 ± 5.81 b |
WWPTH | 51.16 ± 3.56 a | 38.31 ± 6.18 b | |
RWPC | NC | NC | |
C. retdenbacheri (RW) | RWPH | 81.01 ± 4.28 a | 39.87 ± 6.43 b |
RWPTH | 62.57 ± 5.12 a | 19.86 ± 2.81 b |
Insect Species | Treatment | ACE Inhibitory Activity (IC50 µg/mL) | Hill’s Coefficient (n) | Correlation Coefficient () |
---|---|---|---|---|
WWPC | 0.73 ± 0.047 A | 0.13 | 0.90 | |
A. hesperiaris (WW) | WWPH | 0.58 ± 0.018 B | 0.40 | 0.96 |
WWPTH | 0.35 ± 0.004 C | 0.39 | 0.95 | |
RWPC | 961.96 ± 0.005 a | 0.12 | 0.95 | |
C. retdenbacheri (RW) | RWPH | 0.061 ± 0.009 c | 0.48 | 0.99 |
RWPTH | 0.017 ± 0.002 d | 0.28 | 0.98 | |
Enalapril * | NT | 0.11 ± 0.028 D,b | 0.90 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Ortiz, E.R.; Morales-Camacho, J.I. Production of Protein Hydrolysates with Antioxidant and Antihypertensive Activity from Edible Larvae of Aegiale hesperiaris and Comadia redtenbacheri. Foods 2025, 14, 2124. https://doi.org/10.3390/foods14122124
Garrido-Ortiz ER, Morales-Camacho JI. Production of Protein Hydrolysates with Antioxidant and Antihypertensive Activity from Edible Larvae of Aegiale hesperiaris and Comadia redtenbacheri. Foods. 2025; 14(12):2124. https://doi.org/10.3390/foods14122124
Chicago/Turabian StyleGarrido-Ortiz, Eduardo R., and Jocksan I. Morales-Camacho. 2025. "Production of Protein Hydrolysates with Antioxidant and Antihypertensive Activity from Edible Larvae of Aegiale hesperiaris and Comadia redtenbacheri" Foods 14, no. 12: 2124. https://doi.org/10.3390/foods14122124
APA StyleGarrido-Ortiz, E. R., & Morales-Camacho, J. I. (2025). Production of Protein Hydrolysates with Antioxidant and Antihypertensive Activity from Edible Larvae of Aegiale hesperiaris and Comadia redtenbacheri. Foods, 14(12), 2124. https://doi.org/10.3390/foods14122124