Impact of Magnetic Biostimulation and Environmental Conditions on the Agronomic Quality and Bioactive Composition of INIA 601 Purple Maize
Abstract
1. Introduction
2. Materials and Methods
2.1. Vegetal Material
2.2. Regents
2.3. Experimental Location
2.4. Methods
2.4.1. Biostimulation of INIA 601 Purple Corn Seeds
2.4.2. Evaluation of the Physical Characteristics of INIA 601 Purple Corn
2.4.3. Production Yield of INIA 601 Purple Corn
2.4.4. Obtaining INIA 601 Purple Corn Extracts
2.4.5. Determination of Total Anthocyanin Content (TAC)
2.4.6. Determination of Total Phenol Content (TPC)
2.4.7. Profile of Phenolic Compounds by HPLC
2.4.8. Determination of Antioxidant Activity
2.4.9. Statistical Analysis
3. Results
3.1. Physical Characteristics
3.2. Bioactive Composition
3.3. Phenolic Compound Profile
3.4. Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ministerio de Desarrollo Agrario y Riego [MIDAGRI] MIDAGRI Impulsa Consumo y Comercialización de Maíz Peruano con Exitoso Festival que Reunió a Pequeños Productores de 9 Regiones. Available online: https://www.gob.pe/institucion/midagri/noticias/948885-midagri-impulsa-consumo-y-comercializacion-de-maiz-peruano-con-exitoso-festival-que-reunio-a-pequenos-productores-de-9-regiones (accessed on 5 May 2024).
- Kang, M.K.; Lim, S.S.; Lee, J.Y.; Yeo, K.M.; Kang, Y.H. Anthocyanin-Rich Purple Corn Extract Inhibit Diabetes-Associated Glomerular Angiogenesis. PLoS ONE 2013, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Lee, K.Y.; Kim, M.; Hong, M.; Deepa, P.; Kim, S. A Review of the Biological Properties of Purple Corn (Zea mays L.). Sci. Pharm. 2023, 91, 6. [Google Scholar] [CrossRef]
- León-Perez, D.; Domínguez-Perles, R.; Collado-González, J.; Cano-Lamadrid, M.; Durand, T.; Guy, A.; Galano, J.M.; Carbonell-Barrachina, Á.; Londoño-Londoño, J.; Ferreres, F.; et al. Bioactive Plant Oxylipins-Based Lipidomics in Eighty Worldwide Commercial Dark Chocolates: Effect of Cocoa and Fatty Acid Composition on Their Dietary Burden. Microchem. J. 2020, 157, 105083. [Google Scholar] [CrossRef]
- Barbosa, M.R.; Moreira, B.R.; Carreira, V.; Brito, A.; Trentin, C.; Pereira, F.; Tedesco, D.; Setiyono, T.; Flores, J.; Ampatzidis, Y.; et al. Precision Agriculture in the United States: A Comprehensive Meta-Review Inspiring Further Research, Innovation, and Adoption. Comput. Electron. Agric. 2024, 221, 108993. [Google Scholar] [CrossRef]
- Effland, A.; Saavoss, M.; Capehart, T.; McBride, W.D.; Boline, A. Innovations in Seed and Farming Technologies Drive Productivity Gains and Costs on Corn Farms; USDA: New York, NY, USA, 2022; 18p.
- Amir, M.; Prasad, D.; Khan, F.A.; Khan, A.; Ahamd, B. Astha Seed Priming: An Overview of Techniques, Mechanisms, and Applications. Plant Sci. Today 2024, 11, 553–563. [Google Scholar] [CrossRef]
- Dadlani, M.; Yadava, D.K. Seed Science and Technology: Biology, Production, Quality; Springer: Cham, Switzerland, 2023; ISBN 9789811958885. [Google Scholar]
- Lasso-Rivas, N. Efectos Positivos Del Campo Magnético En Plantas Cultivadas. Intropica 2019, 14, 160–170. [Google Scholar] [CrossRef]
- Martinez, E.; Florez, M.; Carbonell, M.V. Stimulatory Effect of the Magnetic Treatment on the Germination of Cereal Seeds. Int. J. Environ. Agric. Biotechnol. 2017, 2, 375–381. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Sun, W.; Ruan, Y.; Dou, H.; Song, M.; Long, H.; Zhang, Y.; Wang, Y.; Guo, J.; et al. An Effective Method of Magnetic Field Treatment in Increasing Soil Phosphorus Availability in Wheat Rhizosphere. Rhizosphere 2023, 27, 100760. [Google Scholar] [CrossRef]
- Gollan, P.J.; Tikkanen, M.; Aro, E.M. Photosynthetic Light Reactions: Integral to Chloroplast Retrograde Signalling. Curr. Opin. Plant Biol. 2015, 27, 180–191. [Google Scholar] [CrossRef]
- Kataria, S.; Baghel, L.; Guruprasad, K.N. Pre-Treatment of Seeds with Static Magnetic Field Improves Germination and Early Growth Characteristics under Salt Stress in Maize and Soybean. Biocatal. Agric. Biotechnol. 2017, 10, 83–90. [Google Scholar] [CrossRef]
- Luo, L.; Zhu, M.; Jia, L.; Xie, Y.; Wang, Z.; Xuan, W. Ammonium Transporters Cooperatively Regulate Rice Crown Root Formation Responding to Ammonium Nitrogen. J. Exp. Bot. 2022, 73, 3671–3685. [Google Scholar] [CrossRef]
- Podleśna, A.; Bojarszczuk, J.; Podleśny, J. Effect of Pre-Sowing Magnetic Field Treatment on Some Biochemical and Physiological Processes in Faba Bean (Vicia Faba L. Spp. Minor). J. Plant Growth Regul. 2019, 38, 1153–1160. [Google Scholar] [CrossRef]
- Alattar, E.; Elwasife, K.; Radwan, E. Effects of Magnetic Field Treated Water on Some Growth Parameters of Corn (Zea mays) Plants. AIMS Biophys. 2021, 8, 266–288. [Google Scholar] [CrossRef]
- Pietruszewski, S.; Martínez, E. Magnetic Field as a Method of Improving the Quality of Sowing Material: A Review. Int. Agrophys. 2015, 29, 377–389. [Google Scholar] [CrossRef]
- Castro, C.; McNab, A. Enfermedades del Maíz: Una Guía para su Identificación en el Campo; Food and Agriculture Organization: Rome, Italy, 2019; Volume 11, ISBN 9788578110796. [Google Scholar]
- Medina-Hoyos, A.; Narro-León, L.A.; Chávez-Cabrera, A. Purple Corn (Zea mays L.) Crop in the Peruvian Highlands: Adaptation and Identification of High-Yield and High Anthocyanin Content Cultivars. Sci. Agropecu. 2020, 11, 291–299. [Google Scholar] [CrossRef]
- Lao, F.; Giusti, M.M. Extraction of Purple Corn (Zea mays L.) Cob Pigments and Phenolic Compounds Using Food-Friendly Solvents. J. Cereal Sci. 2018, 80, 87–93. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Albarici, T.R.; De Freitas, D.; Cruz, J.D. Empresa Brasileira de Pesquisa Agropecuária Ministério da AgricProtocolos de Análises para Polpa de Açaí: Um Guia Prático de Consulta; Embrapa Instrumentação: Sao Carlos, Brazil, 2009; ISBN 9788586463198. [Google Scholar]
- Jin, T.Z.; Yu, Y.; Gurtler, J.B. Effects of Pulsed Electric Field Processing on Microbial Survival, Quality Change and Nutritional Characteristics of Blueberries. LWT 2017, 77, 517–524. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Muñoz, A.M.; Alvarado-Ortíz, C.; Alvarado, Á.; Yáñez, J.A. Purple Corn (Zea mays L.) Phenolic Compounds Profile and Its Assessment as an Agent against Oxidative Stress in Isolated Mouse Organs. J. Med. Food 2012, 15, 206–215. [Google Scholar] [CrossRef]
- Ratha, J.; Yongram, C.; Panyatip, P.; Powijitkul, P.; Siriparu, P.; Datham, S.; Priprem, A.; Srisongkram, T.; Puthongking, P. Polyphenol and Tryptophan Contents of Purple Corn (Zea mays L.) Variety KND and Butterfly Pea (Clitoria ternatea) Aqueous Extracts: Insights into Phytochemical Profiles with Antioxidant Activities and PCA Analysis. Plants 2023, 12, 603. [Google Scholar] [CrossRef]
- Huaychani, F.E. Evaluación del Comportamiento del Maíz Morado INIA 601 (Zea mays L.) con Tres Niveles de Fertilización en Condiciones de 3450 Msnm en Huanchac-Independencia-Huaraz-2019. Bachelor’s Thesis, Universidad Nacional Santiago Antunez de Mayolo, Huaraz, Peru, 2022. [Google Scholar]
- Mohamed, G.; Lertrat, K.; Suriharn, B. Phenolic Compound, Anthocyanin Content, and Antioxidant Activity in Some Parts of Purple Waxy Corn across Maturity Stages and Locations. Int. Food Res. J. 2017, 24, 490–497. [Google Scholar]
- Radhakrishnan, R. Seed Pretreatment with Magnetic Field Alters the Storage Proteins and Lipid Profiles in Harvested Soybean Seeds. Physiol. Mol. Biol. Plants 2018, 24, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Ulgen, C.; Yildirim, A.B.; Sahin, G.; Turker, A.U. Do Magnetic Field Applications Affect in Vitro Regeneration, Growth, Phenolic Profiles, Antioxidant Potential and Defense Enzyme Activities (SOD, CAT and PAL) in Lemon Balm (Melissa officinalis L.)? Ind. Crops Prod. 2021, 169, 113624. [Google Scholar] [CrossRef]
- Abou El-Yazied, A.; El-Gizawy, A.M.; Khalf, S.M.; El-Satar, A.; Shalaby, O.A. Effect of Magnetic Field Treatments for Seeds and Irrigation Water as Well as N, P and K Levels on Productivity of Tomato Plants. J. Appl. Sci. Res. 2012, 8, 2088–2099. [Google Scholar]
- Socci, V.; Tempesta, D.; Desideri, G.; De Gennaro, L.; Ferrara, M. Enhancing Human Cognition with Cocoa Flavonoids. Front. Nutr. 2017, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Žilić, S.; Serpen, A.; Akillioǧlu, G.; Gökmen, V.; Vančetović, J. Phenolic Compounds, Carotenoids, Anthocyanins, and Antioxidant Capacity of Colored Maize (Zea mays L.) Kernels. J. Agric. Food Chem. 2012, 60, 1224–1231. [Google Scholar] [CrossRef]
- Shi, L.; Li, X.; Fu, Y.; Li, C. Environmental Stimuli and Phytohormones in Anthocyanin Biosynthesis: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 16415. [Google Scholar] [CrossRef]
- Wang, L.; Yang, S.; Ni, J.; Teng, Y.; Bai, S. Advances of Anthocyanin Synthesis Regulated by Plant Growth Regulators in Fruit Trees. Sci. Hortic. 2023, 307, 111476. [Google Scholar] [CrossRef]
- Shan, X.; Zhang, Y.; Peng, W.; Wang, Z.; Xie, D. Molecular Mechanism for Jasmonate-Induction of Anthocyanin Accumulation in Arabidopsis. J. Exp. Bot. 2009, 60, 3849–3860. [Google Scholar] [CrossRef]
- Li, Z.; Ahammed, G.J. Hormonal Regulation of Anthocyanin Biosynthesis for Improved Stress Tolerance in Plants. Plant Physiol. Biochem. 2023, 201, 107835. [Google Scholar] [CrossRef]
- LaFountain, A.M.; Yuan, Y.W. Repressors of Anthocyanin Biosynthesis. New Phytol. 2021, 231, 933–949. [Google Scholar] [CrossRef] [PubMed]
Location | Political Location | Geographic Coordinates | ||||
---|---|---|---|---|---|---|
Altitude (masl) | Latitude | Longitude | ||||
Cajabamba | Plot of land of INIA Pampa Grande Annex, district and province of Cajabamba | 2640 | 7°36′39″ | 78°04′15″ | ||
Cochamarca | INIA land lot, Gregorio Pita district, San Marcos province | 2864 | 7°16′52″ | 78°13′09″ | ||
Climatic characteristics | ||||||
Minimum daily temperature (°C) | Maximum daily temperature (°C) | Average daily precipitation (mm) | Daily relative humidity (%) | Hours of sun/day (h) | Wind speed (m/s) | |
Cajabamba | 12.82 | 23.33 | 3.53 | 74.96 | 5.47 | 0.37 |
Cochamarca | 7.94 | 20.49 | 2.87 | 82.22 | 3.20 | 0.60 |
Compound | LOD (µg mL−1) | LOQ (µg mL−1) |
---|---|---|
Hydroxytyrosol | 0.0017 | 0.0051 |
Tyrosol | 0.0002 | 0.0007 |
Catechin | 0.0029 | 0.0087 |
Procyanidin B2 | 0.0057 | 0.0171 |
Epicatechin | 0.0009 | 0.0026 |
Vanillin | 0.0003 | 0.0008 |
Routine | 0.0001 | 0.0003 |
Procyanidin A2 | 0.0005 | 0.0014 |
Resveratrol | 0.0076 | 0.0229 |
Kersetrin | 0.0088 | 0.0264 |
Aspecinine | 0.0007 | 0.0022 |
Kaempferol | 0.0049 | 0.0147 |
Variable Means | MFD (Days) | FFD (Days) | Plant Height (m) | N° of Cobs/Plant | Cob Length (cm) | Rot (%) | Root Canker (%) | Stem Canker (%) | Yield (t/ha) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | NMF | 99.100 a | 105.100 a | 2.245 a | 0.849 a | 15.791 a | 14.992 a | 7.448 a | 7.208 a | 4.155 a | ||
SD | 2.211 | 2.809 | 0.055 | 0.073 | 0.429 | 3.356 | 2.639 | 3.979 | 0.699 | |||
SMF | 98.800 a | 103.400 a | 2.304 a | 0.856 a | 16.526 b | 13.982 a | 14.515 a | 8.102 a | 4.107 a | |||
SD | 1.506 | 2.125 | 0.118 | 0.086 | 0.481 | 3.625 | 7.426 | 2.701 | 0.738 | |||
PMF | 98.400 a | 103.000 a | 2.290 a | 0.871 a | 16.889 b | 15.491 a | 10.383 a | 7.713 a | 4.117 a | |||
SD | 1.587 | 1.842 | 0.098 | 0.091 | 0.426 | 3.676 | 2.802 | 3.634 | 0.944 | |||
Place | Cajabamba | 92.200 a | 98.933 a | 2.342 b | 0.723 a | 16.475 a | 19.992 b | 20.837 b | 10.846 b | 3.353 a | ||
SD | 2.709 | 3.786 | 0.102 | 0.111 | 0.534 | 4.938 | 7.627 | 5.171 | 0.828 | |||
Cochamarca | 105.333 b | 108.733 b | 2.217 a | 0.994 b | 16.329 a | 9.651 a | 0.727 a | 4.503 a | 4.899 b | |||
SD | 0.827 | 0.730 | 0.078 | 0.055 | 0.356 | 2.167 | 0.950 | 1.704 | 0.759 | |||
p-Value (Place) | 0.000 | 0.000 | 0.000 | 0.000 | 0.393 | 0.000 | 0.000 | 0.000 | 0.000 | |||
p-Value (Treatment) | 0.720 | 0.165 | 0.233 | 0.866 | 0.000 | 0.665 | 0.071 | 0.864 | 0.991 |
Part of the Corn Cob | Phenolic Compound | Cajabamba | Cochamarca | ||||
---|---|---|---|---|---|---|---|
NMF | SMF | PMF | NMF | SMF | PMF | ||
Grain | Tyrosol | * | * | * | * | * | * |
Routine | * | * | * | 0.696 ± 0.043 | 1.089 ± 0.264 | 0.938 ± 0.299 | |
Kersetrin | 0.882 ± 0.092 | 0.865 ± 0.046 | 0.923 ± 0.01 | 1.038 ± 0.151 | 0.928 ± 0.01 | 0.911 ± 0.026 | |
Hydroxytyrosol | 4.695 ± 0.039 | 4.585 ± 0.129 | 4.65 ± 0.005 | 4.635 ± 0.006 | 4.674 ± 0.027 | * | |
Catechin | 0.29 ± 0.129 | 0.19 ± 0.012 | * | * | * | * | |
Procyanidin B2 | 24.954 ± 1.574 | 26.157 ± 0.821 | 26.038 ± 0.507 | 27.408 ± 1.414 | 27.683 ± 1.678 | 26.839 ± 1.959 | |
Epicatechin | * | * | * | * | * | * | |
Vanilina | 5.903 ± 0.171 | 5.921 ± 0.182 | 5.807 ± 0.058 | 5.819 ± 0.106 | 5.884 ± 0.087 | 5.974 ± 0.112 | |
Procyanidin A2 | 0.309 ± 0.153 | 0.277 ± 0.084 | 0.256 ± 0.142 | 0.275 ± 0.022 | 0.338 ± 0.051 | 0.231 ± 0.159 | |
Resveratrol | * | * | 15.88 ± 0.024 | 15.9 ± 0.003 | 15.934 ± 0.053 | 15.978 ± 0.106 | |
Aspecinine | 1.039 ± 0.312 | 1.106 ± 0.208 | 1.601 ± 0.499 | 2.274 ± 0.631 | 1.897 ± 0.706 | 1.771 ± 0.526 | |
Kaempferol | 2.16 ± 0.334 | 2.679 ± 0.197 | 2.514 ± 0.349 | 3.142 ± 0.627 | 2.798 ± 0.412 | 2.637 ± 0.483 | |
Purple corn cob | Tyrosol | * | * | * | * | * | * |
Routine | * | * | * | 0.696 ± 0.043 | 1.089 ± 0.264 | 0.938 ± 0.299 | |
Kersetrin | 0.882 ± 0.092 | 0.865 ± 0.046 | 0.923 ± 0.01 | 1.038 ± 0.151 | 0.928 ± 0.01 | 0.911 ± 0.026 | |
Hydroxytyrosol | 4.695 ± 0.039 | 4.585 ± 0.129 | 4.65 ± 0.005 | 4.635 ± 0.006 | 4.674 ± 0.027 | * | |
Catechin | 0.29 ± 0.129 | 0.19 ± 0.012 | * | * | * | * | |
Procyanidin B2 | 24.954 ± 1.574 | 26.157 ± 0.821 | 26.038 ± 0.507 | 27.408 ± 1.414 | 27.683 ± 1.678 | 26.839 ± 1.959 | |
Epicatechin | * | * | * | * | * | * | |
Vanilina | 5.903 ± 0.171 | 5.921 ± 0.182 | 5.807 ± 0.058 | 5.819 ± 0.106 | 5.884 ± 0.087 | 5.974 ± 0.112 | |
Procyanidin A2 | 0.309 ± 0.153 | 0.277 ± 0.084 | 0.256 ± 0.142 | 0.275 ± 0.022 | 0.338 ± 0.051 | 0.231 ± 0.159 | |
Resveratrol | * | * | 15.88 ± 0.024 | 15.9 ± 0.003 | 15.934 ± 0.053 | 15.978 ± 0.106 | |
Aspecinine | 1.039 ± 0.312 | 1.106 ± 0.208 | 1.601 ± 0.499 | 2.274 ± 0.631 | 1.897 ± 0.706 | 1.771 ± 0.526 | |
Kaempferol | 2.16 ± 0.334 | 2.679 ± 0.197 | 2.514 ± 0.349 | 3.142 ± 0.627 | 2.798 ± 0.412 | 2.637 ± 0.483 | |
Bract | Tyrosol | 0.976 ± 0.651 | 0.613 ± 0.282 | 0.985 ± 0.582 | 0.878 ± 0.307 | 0.764 ± 0.168 | 0.511 ± 0.336 |
Routine | 3.697 ± 0.293 | 3.375 ± 1.175 | 6.025 ± 2.843 | 4.405 ± 0.994 | 1.343 ± 0.788 | 3.954 ± 0.422 | |
Kersetrin | 3.049 ± 0.025 | 3.233 ± 0.839 | 3.905 ± 0.788 | 3.028 ± 0.226 | 2.959 ± 0.759 | 3.474 ± 0.237 | |
Hydroxytyrosol | 5.145 ± 0.181 | 5.054 ± 0.062 | 5.741 ± 1.324 | 5.522 ± 0.751 | 5.311 ± 0.289 | 5.305 ± 0.376 | |
Catechin | 0.336 ± 0.063 | 0.343 ± 0.105 | 0.345 ± 0.035 | 0.275 ± 0.034 | 0.338 ± 0.032 | 0.268 ± 0.115 | |
Procyanidin B2 | 42.133 ± 2.873 | 40.484 ± 1.53 | 37.286 ± 1.289 | 41.687 ± 0.352 | 37.685 ± 1.71 | 41.668 ± 1.329 | |
Epicatechin | * | * | 6.762 ± 6.86 | * | 6.523 ± 6.322 | 5.934 ± 5.957 | |
Vanilina | 10.114 ± 2.438 | 5.218 ± 0.407 | 5.658 ± 1.135 | 6.625 ± 1.775 | 6.806 ± 2.451 | 5.677 ± 0.41 | |
Procyanidin A2 | 1.857 ± 0.003 | 2.414 ± 0.347 | 2.24 ± 0.246 | 2.155 ± 0.502 | 2.292 ± 1.121 | 2.35 ± 0.061 | |
Resveratrol | 16.276 ± 0.115 | 16.096 ± 0.047 | 16.17 ± 0.245 | 16.131 ± 0.169 | 16.064 ± 0.066 | 16.1 ± 0.027 | |
Aspecinine | 1.869 ± 0.503 | * | * | * | * | * | |
Kaempferol | 2.552 ± 0.704 | 2.268 ± 0.323 | 4.347 ± 3.586 | 4.714 ± 4.453 | 2.576 ± 0.5 | 2.103 ± 0.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuquizuta, T.; Lobato, C.; Zirena Vilca, F.; Huamán-Castilla, N.L.; Castro, W.; Castro-Giraldez, M.; Fito, P.J.; Chavez, S.G.; Arteaga, H. Impact of Magnetic Biostimulation and Environmental Conditions on the Agronomic Quality and Bioactive Composition of INIA 601 Purple Maize. Foods 2025, 14, 2045. https://doi.org/10.3390/foods14122045
Chuquizuta T, Lobato C, Zirena Vilca F, Huamán-Castilla NL, Castro W, Castro-Giraldez M, Fito PJ, Chavez SG, Arteaga H. Impact of Magnetic Biostimulation and Environmental Conditions on the Agronomic Quality and Bioactive Composition of INIA 601 Purple Maize. Foods. 2025; 14(12):2045. https://doi.org/10.3390/foods14122045
Chicago/Turabian StyleChuquizuta, Tony, Cesar Lobato, Franz Zirena Vilca, Nils Leander Huamán-Castilla, Wilson Castro, Marta Castro-Giraldez, Pedro J. Fito, Segundo G. Chavez, and Hubert Arteaga. 2025. "Impact of Magnetic Biostimulation and Environmental Conditions on the Agronomic Quality and Bioactive Composition of INIA 601 Purple Maize" Foods 14, no. 12: 2045. https://doi.org/10.3390/foods14122045
APA StyleChuquizuta, T., Lobato, C., Zirena Vilca, F., Huamán-Castilla, N. L., Castro, W., Castro-Giraldez, M., Fito, P. J., Chavez, S. G., & Arteaga, H. (2025). Impact of Magnetic Biostimulation and Environmental Conditions on the Agronomic Quality and Bioactive Composition of INIA 601 Purple Maize. Foods, 14(12), 2045. https://doi.org/10.3390/foods14122045