Transcriptome Analysis Unveils the Molecular Mechanisms of Ethylene-Induced Ready-to-Eat Kiwifruit-Picking Ripening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Ethylene Treatment
2.2. Sequence and Filtering of Clean Reads
2.3. Transcriptome Sequencing
2.4. Differentially Expressed Genes Analysis
2.5. Gene Ontology Enrichment Analysis
2.6. Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis
2.7. Quality Property Analysis
2.8. Canonical Correlation Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Quality Changes and Principal Component Analysis During Ripening of Ready-to-Eat Kiwifruit
3.2. Transcriptomic Profiles During Kiwifruit Development and Ripening
3.3. Canonical Correlation Analysis
3.4. A Comprehensive Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Analysis of Genes Associated with Firmness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, T.; Lan, T.; Geng, T.; Ju, Y.; Cheng, G.; Que, Z.; Gao, G.; Fang, Y.; Sun, X. Nutritional properties and biological activities of kiwifruit (Actinidia) and kiwifruit products under simulated gastrointestinal in vitro digestion. Food Nutr. Res. 2019, 63, 1654–1661. [Google Scholar] [CrossRef]
- Ferguson, A.; Stanley, R. Kiwifruit, Encyclopedia of Food Sciences and Nutrition; Academic Press: Oxford, UK, 2003. [Google Scholar]
- Guo, J.; Yuan, Y.; Dou, P.; Yue, T. Multivariate statistical analysis of the polyphenolic constituents in kiwifruit juices to trace fruit varieties and geographical origins. Food Chem. 2017, 232, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Sun, X.; Zhao, J.; You, Y.; Lei, Y.; Gao, G.; Zhan, J. Nutrient compositions and antioxidant capacity of kiwifruit (Actinidia) and their relationship with flesh color and commercial value. Food Chem. 2017, 218, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Wu, H.; Naraginti, S.; Wu, Y. Facile synthesis of ZnO nanoparticles by Actinidia deliciosa fruit peel extract: Bactericidal, anticancer and detoxification properties. Environ. Res. 2021, 200, 111433. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.R.; Tilahun, S.; Park, D.S.; Lee, Y.M.; Choi, J.H.; Baek, M.W.; Jeong, C.S. Harvest time affects quality and storability of kiwifruit (Actinidia spp.) Cultivars during long-term cool storage. Sci. Hortic. 2019, 256, 108523. [Google Scholar] [CrossRef]
- Bakhshipour, A. A data fusion approach for nondestructive tracking of the ripening process and quality attributes of green Hayward kiwifruit using artificial olfaction and proximal hyperspectral imaging techniques. Food Sci. Nutr. 2023, 11, 6116–6132. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Gao, Z.; Lin, M.; Zhang, X.; Ning, X.; Gong, X.; Lu, Y.; Chen, L.; Wang, X. Targeted multi-platform metabolome analysis and enzyme activity analysis of kiwifruit during postharvest ripening. Front. Plant Sci. 2023, 14, 1120166. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, G.; Li, H.; Wang, Y.; Gao, H.; Jemrić, T.; Fu, D. Molecular and Genetic Events Determining the Softening of Fleshy Fruits: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 12482. [Google Scholar] [CrossRef]
- Atkinson, R.G.; Gunaseelan, K.; Wang, M.Y.; Luo, L.; Wang, T.; Norling, C.L.; Johnston, S.L.; Maddumage, R.; Schröder, R.; Schaffer, R.J. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. J. Exp. Bot. 2011, 62, 3821–3835. [Google Scholar] [CrossRef]
- Fan, X.; Shu, C.; Zhao, K.; Wang, X.; Cao, J.; Jiang, W. Regulation of apricot ripening and softening process during shelf life by post-storage treatments of exogenous ethylene and 1-methylcyclopropene. Sci. Hortic. 2018, 232, 63–70. [Google Scholar] [CrossRef]
- Hu, Z.L.; Deng, L.; Chen, X.Q.; Wang, P.Q.; Chen, G.P. Co-suppression of the EIN2-homology gene LeEIN2 inhibits fruit ripening and reduces ethylene sensitivity in tomato. Russ. J. Plant Physiol. 2010, 57, 554–559. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.G.; Lim, S.; Lee, E.J. A comparison of physicochemical and ripening characteristics of golden-fleshed ‘Haegeum’ and green-fleshed ‘Hayward’ kiwifruit during storage at 0 °C and ripening at 25 °C. Postharvest Biol. Technol. 2023, 196, 112166. [Google Scholar] [CrossRef]
- Miao, H.; Zhang, J.; Zheng, Y.; Jia, C.; Hu, Y.; Wang, J.; Zhang, J.; Sun, P.; Jin, Z.; Zhou, Y.; et al. Shaping the future of bananas: Advancing genetic trait regulation and breeding in the postgenomics era. Hortic. Res. 2025, 12, uhaf044. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Chen, X.; Wei, W.; Kou, Y.; Deng, C.; Lin, H.; Chen, Y.; Xu, Q.; Wu, L.; Zhu, C.; et al. Occurrence of White Flesh Color and Refreshing Flavor Following Phytoene Synthase 2A Gene Variation in Loquat Fruit. J. Agric. Food Chem. 2025, 73, 10531–10544. [Google Scholar] [CrossRef]
- Slugina, M.A.; Efremov, G.I.; Shchennikova, A.V.; Kochieva, E.Z. Characterization of RIN Isoforms and Their Expression in Tomato Fruit Ripening. Cells 2021, 10, 1739. [Google Scholar] [CrossRef]
- Tang, Y.; Yan, Y.; Tie, W.; Ye, X.; Zeng, L.; Zeng, L.; Yang, J.; Xu, B.; Li, M.; Wang, Y.; et al. Transcriptional regulation of MbACO2-mediated ethylene synthesis during postharvest banana ripening. Postharvest Biol. Technol. 2023, 200, 112325. [Google Scholar] [CrossRef]
- Zeng, J.; Jiang, G.; Liang, H.; Yan, H.; Kong, X.; Duan, X.; Li, Z. Histone demethylase MaJMJ15 is involved in the regulation of postharvest banana fruit ripening. Food Chem. 2023, 407, 135102. [Google Scholar] [CrossRef]
- Huang, G.; Qu, Y.; Li, T.; Yuan, H.; Wang, A.; Tan, D. Comparative Transcriptome Analysis of Actinidia arguta Fruits Reveals the Involvement of Various Transcription Factors in Ripening. Hortic. Plant J. 2018, 4, 35–42. [Google Scholar] [CrossRef]
- Wang, R.; Shu, P.; Zhang, C.; Zhang, J.; Chen, Y.; Zhang, Y.; Du, K.; Xie, Y.; Li, M.; Ma, T.; et al. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). N. Phytol. 2022, 233, 373–389. [Google Scholar] [CrossRef]
- Shan, N.; Zhang, Y.; Xu, Y.; Yuan, X.; Wan, C.; Chen, C.; Chen, J.; Gan, Z. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC Plant Biol. 2022, 22, 108. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Ge, J.; Liu, X.-C.; Wang, W.-Q.; Liu, X.-F.; Yin, X.-R. Consensus co-expression network analysis identifies AdZAT5 regulating pectin degradation in ripening kiwifruit. J. Adv. Res. 2022, 40, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shu, P.; Wang, R.; Du, X.; Xie, Y.; Du, K.; Deng, H.; Li, M.; Zhang, Y.; Grierson, D.; et al. Ethylene response factor AcERF91 affects ascorbate metabolism via regulation of GDP-galactose phosphorylase encoding gene (AcGGP3) in kiwifruit. Plant Sci. 2021, 313, 111063. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.H.; Muneer, S.; Kim, Y.-H.; Lee, J.J.; Bae, D.W.; Kwack, Y.-B.; Kumarihami, H.M.P.C.; Kim, J.G. Proteomic analysis reveals dynamic regulation of fruit ripening in response to exogenous ethylene in kiwifruit cultivars. Hortic. Environ. Biotechnol. 2020, 61, 93–114. [Google Scholar] [CrossRef]
- Nieuwenhuizen, N.J.; Chen, X.; Pellan, M.; Zhang, L.; Guo, L.; Laing, W.A.; Schaffer, R.J.; Atkinson, R.G.; Allan, A.C. Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC Plant Biol. 2021, 21, 411. [Google Scholar] [CrossRef]
- Ampomah-Dwamena, C.; Thrimawithana, A.H.; Dejnoprat, S.; Lewis, D.; Espley, R.V.; Allan, A.C. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. N. Phytol. 2019, 221, 309–325. [Google Scholar] [CrossRef]
- Babaei-Rad, S.; Mumivand, H.; Mollaei, S.; Khadivi, A. Postharvest UV-B and UV-C treatments combined with fermentation enhance the quality characteristics of Capparis spinosa L. fruit, improving total phenols, flavonoids, anthocyanins, phenolic acids, and antioxidant activity. Food Chem. 2025, 483, 144306. [Google Scholar] [CrossRef]
- Zheng, Y.; Lin, Y.; Wen, H.; Sang, Y.; Lin, M.; Fan, Z.; Wang, H.; Chen, Y.; Lin, Y.; Lin, H. The role of respiration metabolism in dicyclohexylcarbodiimide and disodium succinate regulating the pulp breakdown occurrence of fresh longan (Dimocarpus longan Lour.) during storage. Food Chem. X 2025, 27, 102385. [Google Scholar] [CrossRef]
- Wang, N.; Liu, W.; Zhang, T.; Jiang, S.; Xu, H.; Wang, Y.; Zhang, Z.; Wang, C.; Chen, X. Transcriptomic Analysis of Red-Fleshed Apples Reveals the Novel Role of MdWRKY11 in Flavonoid and Anthocyanin Biosynthesis. J. Agric. Food Chem. 2018, 66, 7076–7086. [Google Scholar] [CrossRef]
- Zhao, C.; Cheng, L.; Guo, Y.; Hui, W.; Niu, J.; Song, S. An integrated quality, physiological and transcriptomic analysis reveals mechanisms of kiwifruit response to postharvest transport vibrational stress. Plant Physiol. Biochem. 2024, 217, 109285. [Google Scholar] [CrossRef]
- Benitez, S.; Achaerandio, I.; Sepulcre, F.; Pujola, M. Aloe vera based edible coatings improve the quality of minimally processed ‘Hayward’ kiwifruit. Postharvest Biol. Technol. 2013, 81, 29–36. [Google Scholar] [CrossRef]
- Xu, F.; Liu, S.; Liu, Y.; Xu, J.; Liu, T.; Dong, S. Effectiveness of lysozyme coatings and 1-MCP treatments on storage and preservation of kiwifruit. Food Chem. 2019, 288, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ding, Y.; Liu, X.; Su, X. HKAM-MKM: A hybrid kernel alignment maximization-based multiple kernel model for identifying DNA-binding proteins. Comput. Biol. Med. 2022, 145, 105395. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, X.; Shi, Q.; Lu, Y.; Yan, J.; Wu, D.-T.; Qin, W. Changes in the Fruit Quality, Phenolic Compounds, and Antioxidant Potential of Red-Fleshed Kiwifruit during Postharvest Ripening. Foods 2023, 12, 1509. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, Z.; Zhang, Q.; Feng, S.; Burdon, J.; Zhong, C. Maturity, Ripening and Quality of ‘Donghong’ Kiwifruit Evaluated by the Kiwi-MeterTM. Horticulturae 2022, 8, 852. [Google Scholar] [CrossRef]
- Giovannoni, J.J. Genetic regulation of fruit development and ripening. Plant Cell 2004, 16, S170–S180. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, X.; Li, W.; Cheng, R.; Wu, H.; Liu, P.; Ma, M. Effect of hydrogen-rich water and slightly acidic electrolyzed water treatments on storage and preservation of fresh-cut kiwifruit. J. Food Meas. Charact. 2021, 15, 5203–5210. [Google Scholar] [CrossRef]
- Yan, H.; Wang, R.; Ji, N.; Cao, S.; Ma, C.; Li, J.; Wang, G.; Huang, Y.; Lei, J.; Ba, L. Preparation, Shelf, and Eating Quality of Ready-to-Eat “Guichang” Kiwifruit: Regulation by Ethylene and 1-MCP. Front. Chem. 2022, 10, 934032. [Google Scholar] [CrossRef]
- Hu, K.-D.; Zhang, X.-Y.; Yao, G.-F.; Rong, Y.-L.; Ding, C.; Tang, J.; Yang, F.; Huang, Z.-Q.; Xu, Z.-M.; Chen, X.-Y.; et al. A nuclear-localized cysteine desulfhydrase plays a role in fruit ripening in tomato. Hortic. Res. 2020, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Dai, Z.; Zeng, B.; Li, J.; Ouyang, J.; Kang, L.; Wang, W.; Jia, W. Autocatalytic biosynthesis of abscisic acid and its synergistic action with auxin to regulate strawberry fruit ripening. Hortic. Res. 2022, 9, uhab076. [Google Scholar] [CrossRef]
- Ning, T.; Chen, C.; Yi, G.; Chen, H.; Liu, Y.; Fan, Y.; Liu, J.; Chen, S.; Wei, S.; Li, Z.; et al. Changes in Homogalacturonan Metabolism in Banana Peel during Fruit Development and Ripening. Int. J. Mol. Sci. 2021, 23, 243. [Google Scholar] [CrossRef]
- Tang, W.; Zheng, Y.; Dong, J.; Yu, J.; Yue, J.; Liu, F.; Guo, X.; Huang, S.; Wisniewski, M.; Sun, J.; et al. Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis). Front. Plant Sci. 2016, 7, 335. [Google Scholar] [CrossRef] [PubMed]
- Tsaniklidis, G.; Charova, S.N.; Fanourakis, D.; Tsafouros, A.; Nikoloudakis, N.; Goumenaki, E.; Tsantili, E.; Roussos, P.A.; Spiliopoulos, I.K.; Paschalidis, K.A.; et al. The role of temperature in mediating postharvest polyamine homeostasis in tomato fruit. Postharvest Biol. Technol. 2021, 179, 111586. [Google Scholar] [CrossRef]
- Omini, J.J.; Krassovskaya, I.; Obata, T. Malate Dehydrogenase-Citrate Synthase Multienzyme Complex Dynamics Is Affected By TCA Cycle Flux In Living Yeast Cells. FASEB J. 2022, 36. [Google Scholar] [CrossRef]
- Jia, D.; Xu, Z.; Chen, L.; Huang, Q.; Huang, C.; Tao, J.; Qu, X.; Xu, X. Analysis of organic acid metabolism reveals citric acid and malic acid play major roles in determining acid quality during the development of kiwifruit (Actinidia eriantha). J. Sci. Food Agric. 2023, 103, 6055–6069. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Han, G.; Meng, Z.; Lin, L.; Sui, N. Roles of malic enzymes in plant development and stress responses. Plant Signal. Behav. 2019, 14, e1644596. [Google Scholar] [CrossRef]
- Rastogi, R.; Davies, P.J. Polyamine Metabolism in Ripening Tomato Fruit: II. Polyamine Metabolism and Synthesis in Relation to Enhanced Putrescine Content and Storage Life of a/c Tomato Fruit. Plant Physiol. 1991, 95, 41–45. [Google Scholar] [CrossRef]
- Hubona, G.S.; Schuberth, F.; Henseler, J. A clarification of Confirmatory Composite Analysis (CCA). Int. J. Inf. Manag. 2021, 61, 102399. [Google Scholar] [CrossRef]
- Choi, H.; Baek, M.; Jeong, C.; Tilahun, S. Comparative Transcriptome Analysis of Softening and Ripening-related Genes in Kiwifruit Cultivars Treated with Ethylene. Curr. Issues Mol. Biol. 2022, 44, 2593–2613. [Google Scholar] [CrossRef]
- He, M.; Wu, Y.; Wang, Y.; Hong, M.; Li, T.; Deng, T.; Jiang, Y. Valeric acid suppresses cell wall polysaccharides disassembly to maintain fruit firmness of harvested ‘Waizuili’ plum (Prunus salicina Lindl). Sci. Hortic. 2022, 291, 110608. [Google Scholar] [CrossRef]
- Zerpa-Catanho, D.; Esquivel, P.; Mora-Newcomer, E.; Saenz, M.V.; Herrera, R.; Jimenez, V.M. Transcription analysis of softening-related genes during postharvest of papaya fruit (Carica papaya L. ‘Pococi’ hybrid). Postharvest Biol. Technol. 2017, 125, 42–51. [Google Scholar] [CrossRef]
- Soares, C.G.; do Prado, S.B.R.; Andrade, S.C.S.; Fabi, J.P. Systems Biology Applied to the Study of Papaya Fruit Ripening: The Influence of Ethylene on Pulp Softening. Cells 2021, 10, 2339. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qiu, L.; Wang, Y.; Yuan, Y.; Qu, H. Ca2+ efflux is negatively correlated with apple firmness. Sci. Hortic. 2020, 270, 109439. [Google Scholar] [CrossRef]
- Polychroniadou, C.; Karagiannis, E.; Michailidis, M.; Adamakis, I.-D.S.; Ganopoulos, I.; Tanou, G.; Bazakos, C.; Molassiotis, A. Identification of genes and metabolic pathways involved in wounding-induced kiwifruit ripening. Plant Physiol. Biochem. 2022, 179, 179–190. [Google Scholar] [CrossRef]
- Gerlee, P.; Basanta, D.; Anderson, A.R.A. The Influence of Cellular Characteristics on the Evolution of Shape Homeostasis. Artif. Life 2017, 23, 424–448. [Google Scholar] [CrossRef]
- Burdon, J.; Martin, P.; Ireland, H.; Schaffer, R.; McAtee, P.; Boldingh, H.; Nardozza, S. Transcriptomic analysis reveals differences in fruit maturation between two kiwifruit cultivars. Sci. Hortic. 2021, 286, 110207. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Su, X.; Chen, L.; Zhu, Z. Transcriptome analysis reveals key metabolic pathways and gene expression involving in cell wall polysaccharides-disassembling and postharvest fruit softening in custard apple (Annona squamosa L.). Int. J. Biol. Macromol. 2023, 240, 124356. [Google Scholar] [CrossRef] [PubMed]
- Schwerdt, J.; Qiu, H.; Shirley, N.; Little, A.; Bulone, V. Phylogenomic Analyses of Nucleotide-Sugar Biosynthetic and Interconverting Enzymes Illuminate Cell Wall Composition in Fungi. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef]
- Manna, M.; Rengasamy, B.; Sinha, A.K. Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement. Plant Cell Environ. 2023, 46, 2277–2295. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, J.; Zhang, Q.; Li, X.; Li, M.; Yang, Y.; Zhou, J.; Wei, Q.; Zhou, B. Exogenous application of acetic acid enhances drought tolerance by influencing the MAPK signaling pathway induced by ABA and JA in apple plants. Tree Physiol. 2022, 42, 1827–1840. [Google Scholar] [CrossRef]
- Chiplunkar, S.S.; Silva, C.A.; Bermudez, L.E.; Danelishvili, L. Characterization of membrane vesicles released by Mycobacterium avium in response to environment mimicking the macrophage phagosome. Futur. Microbiol. 2019, 14, 293–313. [Google Scholar] [CrossRef]
- Ojkic, N.; Lopez-Garrido, J.; Pogliano, K.; Endres, R.G. Cell-wall remodeling drives engulfment during Bacillus subtilis porulation. Elife 2016, 5, e18657. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, A.; Ashrafi-Dehkordi, E.; Shahriari, A.G.; Mazloomi, S.M.; Ebrahimie, E. Integrative meta-analysis of transcriptomic responses to abiotic stress in cotton. Prog. Biophys. Mol. Biol. 2019, 146, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Qiu, W.; He, X.; Wu, L.; Bi, D.; Deng, Z.; He, Z.; Wu, C.; Zhuo, R. Integrative analysis of transcriptome and proteome provides insights into adaptation to cadmium stress in Sedum plumbizincicola. Ecotoxicol. Environ. Saf. 2022, 230, 113149. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, D.; Liu, J.; Shang, B.; Duan, X.; Sun, H. Storage Drives Alterations of Proteomic and Protein Structural Properties in Rice (Oryza sativa L.). Foods 2022, 11, 3541. [Google Scholar] [CrossRef]
ET0 | ET24 h | ET48 h | ET84 h | p | |
---|---|---|---|---|---|
Firmness (g) | 297.82 | 115.52 | 62.49 | 27.85 | 0.007 |
Soluble solids content (°Brix) | 13.33 | 12.74 | 13.84 | 14.00 | 0.385 |
Total soluble sugar (°Brix) | 13.82 | 13.15 | 14.17 | 14.37 | 0.420 |
pH | 3.48 | 3.47 | 3.51 | 3.50 | 0.979 |
L* | 70.03 | 67.28 | 65.45 | 58.38 | <0.001 |
a* | −0.76 | −1.26 | −1.40 | −0.91 | 0.004 |
b* | 26.67 | 27.46 | 30.96 | 31.87 | 0.019 |
Respiration rate (mg·Kg −1·h −1) | 6.15 | 10.11 | 16.72 | 28.17 | <0.001 |
Weight loss rate (%) | 0.00 | 0.33 | 0.40 | 0.91 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cao, S.; Li, N.; Li, H.; Liu, Z.; Xu, D.; Mo, H. Transcriptome Analysis Unveils the Molecular Mechanisms of Ethylene-Induced Ready-to-Eat Kiwifruit-Picking Ripening. Foods 2025, 14, 2026. https://doi.org/10.3390/foods14122026
Zhang J, Cao S, Li N, Li H, Liu Z, Xu D, Mo H. Transcriptome Analysis Unveils the Molecular Mechanisms of Ethylene-Induced Ready-to-Eat Kiwifruit-Picking Ripening. Foods. 2025; 14(12):2026. https://doi.org/10.3390/foods14122026
Chicago/Turabian StyleZhang, Jiayi, Shangqiao Cao, Na Li, Hongbo Li, Zhenbin Liu, Dan Xu, and Haizhen Mo. 2025. "Transcriptome Analysis Unveils the Molecular Mechanisms of Ethylene-Induced Ready-to-Eat Kiwifruit-Picking Ripening" Foods 14, no. 12: 2026. https://doi.org/10.3390/foods14122026
APA StyleZhang, J., Cao, S., Li, N., Li, H., Liu, Z., Xu, D., & Mo, H. (2025). Transcriptome Analysis Unveils the Molecular Mechanisms of Ethylene-Induced Ready-to-Eat Kiwifruit-Picking Ripening. Foods, 14(12), 2026. https://doi.org/10.3390/foods14122026