Assessing the Functional and Structural Properties of Peanut Meals Modified by Transglutaminase-Coupled Glycation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Modified PM (MPM)
2.3. Determination of the MPM Solubility
2.4. Evaluation of the Emulsifying Activity Index (EAI) and the Emulsion Stability Index (ESI)
2.5. Evaluation of the Foaming Capacity (FC) and Foaming Stability (FS)
2.6. Determination of the Water-Holding Capacity (WHC) and the Oil-Absorbing Capacity (OAC)
2.7. Determination of the Particle Size
2.8. Determination of the Surface Hydrophobicity (H0)
2.9. Determination of the Water Contact Angle
2.10. FTIR Spectroscopy
2.11. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the MPM Solubility
3.2. Emulsifying Properties of the MPM
3.3. Foaming Characteristics of the MPM Samples
3.4. WHC and OAC Evaluations for the Prepared MPM Specimens
3.5. Structural Characteristics of the MPM Specimens
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, L.; Ren, J.Y.; Su, G.W.; Yang, B.; Zhao, M.M. Comparison of in vitro digestion characteristics and antioxidant activity of hot- and cold-pressed peanut meals. Food Chem. 2013, 141, 4246–4252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.C.; Liu, L.; Jiang, Y.R.; Faisal, S.; Wei, L.L.; Cao, C.J.; Yan, W.H.; Wang, Q. Converting Peanut Protein Biomass Waste into “Double Green” Meat Substitutes Using a High-Moisture Extrusion Process: A Multiscale Method to Explore a Process for Forming a Meat-Like Fibrous Structure. J. Agric. Food Chem. 2019, 67, 10713–10725. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F. Peanut protein—An underutilised by-product with great potential: A review. Int. J. Food Sci. Technol. 2022, 57, 5585–5591. [Google Scholar] [CrossRef]
- Salve, A.R.; Arya, S.S. Bioactive constituents, microstructural and nutritional quality characterisation of peanut flat bread. J. Food Meas. Charact. 2020, 14, 1582–1594. [Google Scholar] [CrossRef]
- Adeboye, A.S.; Fayemi, O.E.; Bamgbose, A.; Adewunmi, A.; Sobowale, S.S. Towards the development of peanut-wheat flour composite dough: Influence of reduced-fat peanut flour on bread quality. J. Food Process. Preserv. 2018, 42, e13385. [Google Scholar] [CrossRef]
- Zhu, T.; Ma, L.; Jiang, H.; Li, W.; Guo, X.; Yang, C.; Bu, G. Functional, structural properties of pea protein isolate-xylooligosaccharide glycosylated conjugate and its application in O/W emulsion preparation. J. Food Meas. Charact. 2023, 17, 6135–6143. [Google Scholar] [CrossRef]
- Zhao, S.L.; Huang, Y.; McClements, D.J.; Liu, X.B.; Wang, P.J.; Liu, F.G. Improving pea protein functionality by combining high-pressure homogenization with an ultrasound-assisted Maillard reaction. Food Hydrocoll. 2022, 126, 107441. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Mu, D.C.; Jiao, Y.; Xu, Z.; Chen, M.L. Microwave-assisted maillard reaction between rice protein and dextran induces structural changes and functional improvements. J. Cereal Sci. 2021, 97, 103134. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Mu, D.C.; Feng, Y.Y.; Xu, Z.; Wen, L.; Chen, M.L.; Ye, J. Glycosylation of rice protein with dextran via the Maillard reaction in a macromolecular crowding condition to improve solubility. J. Cereal Sci. 2022, 103, 103374. [Google Scholar] [CrossRef]
- Boonlao, N.; Ruktanonchai, U.R.; Anal, A.K. Glycation of soy protein isolate with maltodextrin through Maillard reaction via dry and wet treatments and compare their techno-functional properties. Polym. Bull. 2022, 80, 8603–8626. [Google Scholar] [CrossRef]
- Giosafatto, C.V.L.; Al-Asmar, A.; Mariniello, L. Transglutaminase Protein Substrates of Food Interest. In Enzymes in Food Technology—Improvements and Innovations; Springer: Singapore, 2018; pp. 293–317. [Google Scholar] [CrossRef]
- Ding, X.Y.; Zhang, G.W. Effect of wet Maillard reaction and transglutaminase cross-linking on functional properties of soy protein isolate. J. Nanchang Univ. (Nat. Sci.) 2017, 41, 464–469. [Google Scholar] [CrossRef]
- Chen, X.; Dai, Y.; Huang, Z.; Zhao, L.; Du, J.; Li, W.; Yu, D. Effect of ultrasound on the glycosylation reaction of pea protein isolate-arabinose: Structure and emulsifying properties. Ultrason. Sonochem. 2022, 89, 106157. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Guo, Z.; Wang, C.; Kang, H.; Li, J.; Wang, W.; Li, Y.; Lu, F.; Liu, Y. Enhancing the functional characteristics of soy protein isolate via cross-linking catalyzed by Bacillus subtilis transglutaminase. J. Sci. Food Agric. 2021, 101, 4154–4160. [Google Scholar] [CrossRef]
- Kutzli, I.; Weiss, J.; Gibis, M. Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application. Foods 2021, 10, 376. [Google Scholar] [CrossRef]
- Gao, K.; Chang, L.; Xu, Y.; Rao, J.; Chen, B. Water-soluble fraction of pea protein isolate is critical for the functionality of protein-glucose conjugates obtained via wet-heating Maillard reaction. Food Res. Int. 2023, 174 Pt 1, 113503. [Google Scholar] [CrossRef]
- Gao, K.; Xu, Y.; Rao, J.; Chen, B. Maillard reaction between high-intensity ultrasound pre-treated pea protein isolate and glucose: Impact of reaction time and pH on the conjugation process and the properties of conjugates. Food Chem. 2024, 434, 137486. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, F.S. Effects of Pretreatment on Stability of Peanut Oil Bodies and Functional Characteristics of Proteins Extracted by Aqueous Enzymatic Method. J. Oleo Sci. 2024, 73, 201–213. [Google Scholar] [CrossRef]
- Naik, R.R.; Wang, Y.; Selomulya, C. Spray-drying to improve the functionality of amaranth protein via ultrasonic-assisted Maillard conjugation with red seaweed polysaccharide. J. Cereal Sci. 2022, 108, 103578. [Google Scholar] [CrossRef]
- Zhang, H.J.; Xu, R.Z.; Yuan, Y.S.; Zhu, X.X.; Li, W.H.; Ge, X.Z.; Shen, H.S. Structural, Physicochemical and Functional Properties of Protein Extracted from De-Oiled Field Muskmelon (Cucumis melo L. var. agrestis Naud.) Seed Cake. Foods 2022, 11, 1684. [Google Scholar] [CrossRef]
- Shen, Y.T.; Tang, X.; Li, Y.H. Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chem. 2021, 339, 127823. [Google Scholar] [CrossRef]
- Gul, O.; Sahin, M.S.; Akgun, A.; Gul, L.B. Modulating the structural, thermal and techno-functional properties of sesame protein isolate using nonthermal techniques. Food Sci. Nutr. 2025, 13, e70144. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Rafe, A.; Hesarinejad, M.A.; Lorenzo, J.M. Impact of ph on the physicochemical, structural, and techno-functional properties of sesame protein isolate. Food Sci. Nutr. 2025, 13, e4760. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, X.; Luo, S.; Chen, T.; Ye, J.; Liu, C. Complex bio-nanoparticles assembled by a pH-driven method: Environmental stress stability and oil-water interfacial behavior. J. Sci. Food Agric. 2024, 104, 1971–1983. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, X.; Hao, J.; Xu, D. Stability mechanism of Monascus pigment-soy protein isolate-maltodextrin complex. J. Sci. Food Agric. 2024, 104, 7173–7181. [Google Scholar] [CrossRef]
- Gao, K.; Rao, J.; Chen, B. Plant protein solubility: A challenge or insurmountable obstacle. Adv. Colloid Interface Sci. 2024, 324, 103074. [Google Scholar] [CrossRef]
- Queirós, R.P.N.; Pinto, C.A.C.; Lopes-da-Silva, J.A.; Saraiva, J.M.A. Effects of high-pressure and transglutaminase, individually and simultaneously applied, on pea and soy protein isolates. Sustain. Food Technol. 2023, 1, 696–708. [Google Scholar] [CrossRef]
- Jain, B.M.; Badve, M.P. A novel process for synthesis of soybean protein hydrolysates and study of its effectiveness as a biostimulant and emulsifier. Chem. Eng. Process. Process Intensif. 2022, 174, 108880. [Google Scholar] [CrossRef]
- Li, W.W.; Zhao, H.B.; He, Z.Y.; Zeng, M.M.; Qin, F.; Chen, J. Modification of soy protein hydrolysates by Maillard reaction: Effects of carbohydrate chain length on structural and interfacial properties. Colloids Surf. B Biointerfaces 2016, 138, 70–77. [Google Scholar] [CrossRef]
- Millqvist-Fureby, A.; Elofsson, U.; Bergenståhl, B. Surface composition of spray-dried milk protein-stabilised emulsions in relation to pre-heat treatment of proteins. Colloids Surf. B Biointerfaces 2001, 21, 47–58. [Google Scholar] [CrossRef]
- Khan, S.H.; Butt, M.S.; Sharif, M.K.; Sameen, A.; Mumtaz, S.; Sultan, M.T. Functional Properties of Protein Isolates Extracted from Stabilized Rice Bran by Microwave, Dry Heat, and Parboiling. J. Agric. Food Chem. 2011, 59, 2416–2420. [Google Scholar] [CrossRef]
- Baier, A.K.; Knorr, D. Influence of high isostatic pressure on structural and functional characteristics of potato protein. Food Res. Int. 2015, 77, 753–761. [Google Scholar] [CrossRef]
- Wang, X.X.; Xu, M.Y.; Lin, C.; Huang, Q.; An, F.P. Enhancing foamability of ovalbumin by glycosylation under wet-heating condition. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2017, 46, 595–600. [Google Scholar] [CrossRef]
- San, Y.; Xing, Y.J.; Li, B.L.; Zheng, L. Effect of transglutaminase cross-linking on the structure and emulsification performance of heated black bean protein isolate. J. Sci. Food Agric. 2025, 105, 2382–2389. [Google Scholar] [CrossRef]
- Dong, X.H.; Zhao, M.M.; Yang, B.; Yang, X.Q.; Shi, J.; Jiang, Y.M. Effect of High-Pressure Homogenization on the Functional Property of Peanut Protein. J. Food Process Eng. 2010, 34, 2191–2204. [Google Scholar] [CrossRef]
- Shen, Y.T.; Li, Y.H. Acylation modification and/or guar gum conjugation enhanced functional properties of pea protein isolate. Food Hydrocoll. 2021, 117, 106686. [Google Scholar] [CrossRef]
- Zhang, S.B.; Wang, X.H.; Li, X.; Yan, D.Q. Effects of Tween 20 and Transglutaminase Modifications on the Functional Properties of Peanut Proteins. J. Am. Oil Chem. Soc. 2020, 97, 93–103. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, H.; Wang, Q. Characterization of β-glucan-peanut protein isolate/soy protein isolate conjugates and their application on low-fat sausage. Molecules 2022, 27, 3037. [Google Scholar] [CrossRef]
- Yan, S.; Xu, J.; Zhang, S.; Li, Y. Effects of flexibility and surface hydrophobicity on emulsifying properties: Ultrasound-treated soybean protein isolate. LWT 2021, 142, 110881. [Google Scholar] [CrossRef]
- Hu, X.; Amakye, W.K.; He, P.; Wang, M.; Ren, J. Effects of microfluidization and transglutaminase cross-linking on the conformations and functional properties of arachin and conarachin in peanut. LWT 2021, 146, 111438. [Google Scholar] [CrossRef]
- Han, X.; Zhao, Y.; Mao, S.; Hu, N.; Sun, D.; Yang, Q.; Chu, Z.; Zheng, Q.; Xiu, L.; Liu, J. Effects of different amounts of corn silk polysaccharide on the structure and function of peanut protein isolate glycosylation products. Foods 2022, 11, 2214. [Google Scholar] [CrossRef]
- Du, Y.; Shi, S.; Jiang, Y.; Xiong, H.; Woo, M.W.; Zhao, Q.; Bai, C.; Zhou, Q.; Sun, W. Physicochemical properties and emulsion stabilization of rice dreg glutelin conjugated with κ-carrageenan through Maillard reaction. J. Sci. Food Agric. 2012, 93, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Vaskoska, R.; Vénien, A.; Ha, M.; White, J.D.; Unnithan, R.R.; Astruc, T.; Warner, R.D. Thermal denaturation of proteins in the muscle fibre and connective tissue from bovine muscles composed of type I (masseter) or type II (cutaneous trunci) fibres: DSC and FTIR microspectroscopy study. Food Chem. 2021, 343, 128544. [Google Scholar] [CrossRef] [PubMed]
- Monica, V.; Anbarasan, R.; Mahendran, R. Cold Plasma-Induced Changes in the Structural and Techno-functional Properties of Sprouted Foxtail Millet Protein Concentrate. Food Bioprocess Technol. 2025, 18, 850–867. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhu, T.; Chen, F.; Guo, X.; Yang, C.; Chen, Y.; Zhang, L. Assessing the Functional and Structural Properties of Peanut Meals Modified by Transglutaminase-Coupled Glycation. Foods 2025, 14, 1999. https://doi.org/10.3390/foods14111999
Liu Y, Zhu T, Chen F, Guo X, Yang C, Chen Y, Zhang L. Assessing the Functional and Structural Properties of Peanut Meals Modified by Transglutaminase-Coupled Glycation. Foods. 2025; 14(11):1999. https://doi.org/10.3390/foods14111999
Chicago/Turabian StyleLiu, Yan, Tingwei Zhu, Fusheng Chen, Xingfeng Guo, Chenxian Yang, Yu Chen, and Lifen Zhang. 2025. "Assessing the Functional and Structural Properties of Peanut Meals Modified by Transglutaminase-Coupled Glycation" Foods 14, no. 11: 1999. https://doi.org/10.3390/foods14111999
APA StyleLiu, Y., Zhu, T., Chen, F., Guo, X., Yang, C., Chen, Y., & Zhang, L. (2025). Assessing the Functional and Structural Properties of Peanut Meals Modified by Transglutaminase-Coupled Glycation. Foods, 14(11), 1999. https://doi.org/10.3390/foods14111999