Seasonal Variations in Heavy Metal Concentrations in Mussels (Mytilus chilensis) from Southern Chile: Health Risk Implications Associated with Their Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Study Area
2.3. Sample Collection
2.4. Determination of Total Arsenic (tAs), Lead (Pb) and Cadmium (Cd)
2.5. In Vitro Gastrointestinal Digestion
2.6. Calibration Curve and Sample Reading
Parameters | tAs | Pb | Cd |
---|---|---|---|
Wavelength spectrum (nm) | 193.698 | 220.353 | 226.502 |
Detection limit (μg/L) | 0.121 | 0.065 | 0.004 |
Detection | axial | ||
Line gas pressure (psi) | 6 | ||
Gas purity | Argon (99.99%) | ||
Gas flow (L/min) | 0.50 | ||
Wavelength spectrum (nm) | 6 | ||
Nebulizer | |||
Pressure (bar) | 3.20 | ||
Carrier gas flow (L/min) | 0.50 | ||
Pumping speed (mL/min) | 4.00 | ||
Integration period (s) | 65.00 | ||
Wash period between samples (s) | 20.00 | ||
Analytical parameters | |||
Accuracy (Recovery Percentage) | 114.7 | 103.6 | 116.8 |
Precision (Coefficient of variation) | 1.76 | 1.84 | 0.46 |
Instrument detection limit (IDL) (ng/mL) | 0.121 | 0.065 | 0.004 |
The method detection limit (MDL) (ng/mL) | 0.302 | 0.161 | 0.009 |
2.7. Human Health Risk Assessment
2.7.1. Estimated Daily Intake (EDI)
Non-Carcinogenic Risk: Target Hazard Quotient (THQ)
Carcinogenic Risk (CR)
2.8. Validation of Methodology
2.9. Statistical Analysis
3. Results and Discussion
3.1. General Comparison of the Metals Studied: Total Arsenic, Lead, and Cadmium in Specimens of M. chilensis
Location | Species | tAs (ng/g d.w.) | Pb (ng/g d.w.) | Cd (ng 7 g d.w.) | Reference |
---|---|---|---|---|---|
Chile | M. chilensis | 6421 ± 1937 | 1202 ± 588 | 1595 ± 807 | Present study |
Chile | M. chilensis | 540 | 330 | n.d | [65] |
Argentina | M. chilensis | n.d | 420 ± 360 | 750 ± 480 | [66] |
Chile | M. chilensis | 7480 ± 1720 | n.d | 1940 ± 300 | [22] |
Chile | M. chilensis | n.d | 5260 ± 550 | 2470 ± 180 | [63] |
Montenegro | M. galloprovincialis | 14,700 ± 2100 | 980 ± 230 | 840 ± 180 | [61] |
Algeria | M. galloprovincialis | n.d | 7490 | 660 | [67] |
Italy | M. galloprovincialis | 942 ± 100 | 513 ± 290 | 50 ± 0 | [13] |
Turkey | M. galloprovincialis | 9300 ± 3800 | 7900 ± 7720 | 1090 ± 880 | [62] |
Malaysia | Perna viridis | n.d | 470 ± 140 | 300 ± 60 | [68] |
South Africa | M. galloprovincialis | n.d | 7300 | 1990 | [69] |
Serbia | Mixture of mussels | 3970 ± 870 a 1560 ± 360 b | n.d | n.d | [59] |
Galicia, Chile and New Zeeland | Mixture of mussels | 3697 ± 433 a 4008 ± 59 b | 249 ± 65 a 177 ± 181 b | 281 ± 89 a 463 ± 306 b | [60] |
3.2. Total Arsenic (tAs) in Specimens of M. chilensis by Study Area
iAs/tAs Ratio (%) | EDI iAs (μg/kg bw/day) | THQ | CR |
---|---|---|---|
5 | 0.016 | 0.053 | 2.4 × 10−5 |
10 | 0.032 | 0.107 | 4.8 × 10−5 |
20 | 0.064 | 0.213 | 9.6 × 10−5 |
30 | 0.096 | 0.320 | 1.4 × 10−4 |
50 | 0.160 | 0.533 | 2.4 × 10−4 |
3.3. Lead (Pb) in Specimens of M. chilensis by Study Area
3.4. Cadmium (Cd) in Specimens of M. chilensis by Study Area
3.5. Environmental and Anthropogenic Factors
3.6. Bioaccessibility of Total Arsenic, Lead, and Cadmium in Specimens of M. chilensis
3.6.1. Bioaccessibility of Total Arsenic (tAs)
3.6.2. Bioaccessibility of Lead (Pb)
3.6.3. Bioaccessibility of Cadmium (Cd)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lagos, L.; Uriarte, I.; Yany, G. Evaluacion Del Potencial Reproductivo Del Chorito (Mytilus chilensis) de Dos Poblaciones Naturales Sometidas a Diferentes Temperaturas de Acondicionamiento. Lat. Am. J. Aquat. Res. 2012, 40, 389–397. [Google Scholar] [CrossRef]
- Flores, C.A.M.; Gomez, M.A.D.; Muñoz, C.B.A.; Pérez, L.E.C.; Arribas, S.L.M.; Opazo, M.P.A.; Huaquin, E.J.E.N. Spatial Distribution Pattern of Mytilus chilensis Beds in the Reloncaví Fjord: Hypothesis on Associated Processes. Rev. Chil. Hist. Nat. 2015, 88, 11. [Google Scholar] [CrossRef]
- Yevenes, M.A.; Lagos, N.A.; Farías, L.; Vargas, C.A. Greenhouse Gases, Nutrients and the Carbonate System in the Reloncaví Fjord (Northern Chilean Patagonia): Implications on Aquaculture of the Mussel, Mytilus chilensis, during an Episodic Volcanic Eruption. Sci. Total Environ. 2019, 669, 49–61. [Google Scholar] [CrossRef]
- Subpesca. Informe Sectorial de Pesca y Acuicultura; Subpesca: Valparaíso, Chile, 2021. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture; FAO Information Group, Ed.; FAO: Rome, Italy, 2000. [Google Scholar]
- Bastías, J.M.; Moreno, J.; Pia, C.; Reyes, J.; Quevedo, R.; Muñoz, O. Effect of Ohmic Heating on Texture, Microbial Load, and Cadmium and Lead Content of Chilean Blue Mussel (Mytilus chilensis). Innov. Food Sci. Emerg. Technol. 2015, 30, 98–102. [Google Scholar] [CrossRef]
- Santibáñez, P.; Romalde, J.; Maldonado, J.; Fuentes, D.; Figueroa, J. First Characterization of the Gut Microbiome Associated with Mytilus chilensis Collected at a Mussel Farm and from a Natural Environment in Chile. Aquaculture 2022, 548, 737644. [Google Scholar] [CrossRef]
- Hervé-Fernández, P.; Houlbrèque, F.; Boisson, F.; Mulsow, S.; Teyssié, J.-L.; Oberhaënsli, F.; Azemard, S.; Jeffree, R. Cadmium Bioaccumulation and Retention Kinetics in the Chilean Blue Mussel Mytilus chilensis: Seawater and Food Exposure Pathways. Aquat. Toxicol. 2010, 99, 448–456. [Google Scholar] [CrossRef]
- Silva dos Santos, F.; Neves, R.A.F.; Crapez, M.A.C.; Teixeira, V.L.; Krepsky, N. How Does the Brown Mussel Perna Perna Respond to Environmental Pollution? A Review on Pollution Biomarkers. J. Environ. Sci. 2022, 111, 412–428. [Google Scholar] [CrossRef]
- Fiori, C.d.S.; Rodrigues, A.P.d.C.; Vieira, T.C.; Sabadini-Santos, E.; Bidone, E.D. An Alternative Approach to Bioaccumulation Assessment of Methyl-Hg, Total-Hg, Cd, Pb, Zn in Bivalve Anomalocardia Brasiliana from Rio de Janeiro Bays. Mar. Pollut. Bull. 2018, 135, 418–426. [Google Scholar] [CrossRef]
- Ozkan, D.; Dagdeviren, M.; Katalay, S.; Guner, A.; Yavaşoğlu, N.Ü.K. Multi-Biomarker Responses After Exposure to Pollution in the Mediterranean Mussels (Mytilus galloprovincialis L.) in the Aegean Coast of Turkey. Bull. Environ. Contam. Toxicol. 2017, 98, 46–52. [Google Scholar] [CrossRef]
- Lozano, G.; Herraiz, E.; Hardisson, A.; Gutiérrez, A.J.; González-Weller, D.; Rubio, C. Heavy and Trace Metal Concentrations in Three Rockpool Shrimp Species (Palaemon elegans, Palaemon adspersus and Palaemon serratus) from Tenerife (Canary Islands). Environ. Monit. Assess. 2010, 168, 451–460. [Google Scholar] [CrossRef]
- Squadrone, S.; Brizio, P.; Stella, C.; Prearo, M.; Pastorino, P.; Serracca, L.; Ercolini, C.; Abete, M.C. Presence of Trace Metals in Aquaculture Marine Ecosystems of the Northwestern Mediterranean Sea (Italy). Environ. Pollut. 2016, 215, 77–83. [Google Scholar] [CrossRef]
- Figueira, E.; Lima, A.; Branco, D.; Quintino, V.; Rodrigues, A.M.; Freitas, R. Health Concerns of Consuming Cockles (Cerastoderma edule L.) from a Low Contaminated Coastal System. Environ. Int. 2011, 37, 965–972. [Google Scholar] [CrossRef]
- Hossen, F.; Hamdan, S.; Rahman, R. Review on the Risk Assessment of Heavy Metals in Malaysian Clams. Sci. World J. 2015, 2015, 905497. [Google Scholar] [CrossRef]
- Orisakwe, O.E.; Nduka, J.K.; Amadi, C.N.; Dike, D.O.; Bede, O. Heavy Metals Health Risk Assessment for Population via Consumption of Food Crops and Fruits in Owerri, South Eastern, Nigeria. Chem. Cent. J. 2012, 6, 77. [Google Scholar] [CrossRef]
- European Commission, E. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Min, H.-G.; Kim, M.-S.; Kim, J.-G. Effect of Soil Characteristics on Arsenic Accumulation in Phytolith of Gramineae (Phragmites japonica) and Fern (Thelypteris palustris) Near the Gilgok Gold Mine. Sustainability 2021, 13, 3421. [Google Scholar] [CrossRef]
- ATSDR. ATSDR Substance Priority List Available. Available online: https://www.atsdr.cdc.gov/programs/substance-priority-list.html?CDC_AAref_Val=https://www.atsdr.cdc.gov/spl/index.html (accessed on 4 December 2024).
- Turner, M.C.; Cogliano, V.; Guyton, K.; Madia, F.; Straif, K.; Ward, E.M.; Schubauer-Berigan, M.K. Research Recommendations for Selected IARC-Classified Agents: Impact and Lessons Learned. Environ. Health Perspect. 2023, 131, 105001. [Google Scholar] [CrossRef]
- González, L.; Muñoz-Fariña, O.; Fernández-Guerrero, Y.; Roman-Benn, A.; Bastias-Montes, J.M.; Quevedo-León, R.; Ravanal, M.C. Arsenic, Lead and Cadmium Concentration in Food and Estimated Daily Intake in the Cuban Population and the Health Risks Using a Total Diet Study. J. Environ. Sci. Health Part B 2024, 59, 112–122. [Google Scholar] [CrossRef]
- Muñoz, O.; Zamorano, P.; Garcia, O.; Bastías, J.M. Arsenic, Cadmium, Mercury, Sodium, and Potassium Concentrations in Common Foods and Estimated Daily Intake of the Population in Valdivia (Chile) Using a Total Diet Study. Food Chem. Toxicol. 2017, 109, 1125–1134. [Google Scholar] [CrossRef]
- WHO. Chapter 15 Arsenic; WHO: Geneva, Switzerland, 1996; pp. 303–327. [Google Scholar]
- Sloth, J.J.; Julshamn, K. Survey of Total and Inorganic Arsenic Content in Blue Mussels (Mytilus edulis L.) from Norwegian Fiords: Revelation of Unusual High Levels of Inorganic Arsenic. J. Agric. Food Chem. 2008, 56, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Vélez, D.; Montoro, R. Inorganic Arsenic in Foods: Current Overview and Future Challenges. Recent Res. Dev. Agric. Food Chem. 2001, 5, 55–71. [Google Scholar]
- Buchet, J.P.; Pauwels, J.; Lauwerys, R. Assessment of Exposure to Inorganic Arsenic Following Ingestion of Marine Organisms by Volunteers. Environ. Res. 1994, 66, 44–51. [Google Scholar] [CrossRef]
- Gomez-Delgado, A.I.; Tibon, J.; Silva, M.S.; Lundebye, A.-K.; Agüera, A.; Rasinger, J.D.; Strohmeier, T.; Sele, V. Seasonal Variations in Mercury, Cadmium, Lead and Arsenic Species in Norwegian Blue Mussels (Mytilus edulis L.)—Assessing the Influence of Biological and Environmental Factors. J. Trace Elem. Med. Biol. 2023, 76, 127110. [Google Scholar] [CrossRef]
- Kucuksezgin, F.; Gonul, L.T.; Tasel, D. Total and Inorganic Arsenic Levels in Some Marine Organisms from Izmir Bay (Eastern Aegean Sea): A Risk Assessment. Chemosphere 2014, 112, 311–316. [Google Scholar] [CrossRef]
- Ruangwises, S.; Ruangwises, N. Concentrations of Total and Inorganic Arsenic in Fresh Fish, Mollusks, and Crustaceans from the Gulf of Thailand. J. Food Prot. 2011, 74, 450–455. [Google Scholar] [CrossRef]
- Argese, E.; Bettiol, C.; Rigo, C.; Bertini, S.; Colomban, S.; Ghetti, P.F. Distribution of Arsenic Compounds in Mytilus galloprovincialis of the Venice Lagoon (Italy). Sci. Total Environ. 2005, 348, 267–277. [Google Scholar] [CrossRef]
- Muñoz, O.; Devesa, V.; Suñer, M.A.; Vélez, D.; Montoro, R.; Urieta, I.; Macho, M.L.; Jalón, M. Total and Inorganic Arsenic in Fresh and Processed Fish Products. J. Agric. Food Chem. 2000, 48, 4369–4376. [Google Scholar] [CrossRef]
- Gidlow, D.A. Lead Toxicity. Occup. Med. 2015, 65, 348–356. [Google Scholar] [CrossRef]
- Yabe, J.; Nakayama, S.M.M.; Ikenaka, Y.; Yohannes, Y.B.; Bortey-Sam, N.; Kabalo, A.N.; Ntapisha, J.; Mizukawa, H.; Umemura, T.; Ishizuka, M. Lead and Cadmium Excretion in Feces and Urine of Children from Polluted Townships near a Lead-Zinc Mine in Kabwe, Zambia. Chemosphere 2018, 202, 48–55. [Google Scholar] [CrossRef]
- Rahbar, N.; Nazari, Z. Level of Lead and Cadmium in Peanut. Feyz Med. Sci. J. 2004, 7, 71–77. [Google Scholar]
- Patrick, L. Lead Toxicity, A Review of the Literature. Part I: Exposure, Evaluation, and Treatment. Altern. Med. Rev. 2006, 11, 2. [Google Scholar]
- Domeneh, B.H.; Tavakoli, N.; Jafari, N. Blood Lead Level in Opium Dependents and Its Association with Anemia: A Cross-Sectional Study from the Capital of Iran. J. Res. Med. Sci. 2014, 19, 939–943. [Google Scholar] [PubMed]
- Maxwell, L. Absorption, Distribution, and Excretion in Complex Organisms. In An Introduction to Interdisciplinary Toxicology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–29. [Google Scholar]
- EFSA. Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- ATSDR. Lead Toxicity Case Studies in Environmental Medicine; ATSDR: Atlanta, GA, USA, 2021.
- Lin, G.; Chen, T.; Pan, Y.; Yang, Z.; Li, L.; Yong, K.; Wang, X.; Wang, J.; Chen, Y.; Jiang, W.; et al. Biodistribution and Acute Toxicity of Cadmium-Free Quantum Dots with Different Surface Functional Groups in Mice Following Intratracheal Inhalation. Nanotheranostics 2020, 4, 173–183. [Google Scholar] [CrossRef]
- Chen, J.; Kang, D.; Yan, Z.; Shen, Q.; Lou, Y.; Li, Y.; Kong, A.; Pan, B.; Huang, C. Tissue Distribution of Tetrabromobisphenol A and Cadmium in Mixture Inhalation Exposure. Toxicol. Ind. Health 2019, 35, 165–176. [Google Scholar] [CrossRef]
- EFSA. Cadmium Dietary Exposure in the European Population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- Amiard, J.-C.; Amiard-Triquet, C.; Charbonnier, L.; Mesnil, A.; Rainbow, P.S.; Wang, W.-X. Bioaccessibility of Essential and Non-Essential Metals in Commercial Shellfish from Western Europe and Asia. Food Chem. Toxicol. 2008, 46, 2010–2022. [Google Scholar] [CrossRef]
- Gedik, K. Bioaccessibility of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in Mediterranean Mussel (Mytilus galloprovincialis Lamarck, 1819) along the Southeastern Black Sea Coast. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 754–766. [Google Scholar] [CrossRef]
- He, M.; Wang, W.-X. Bioaccessibility of 12 Trace Elements in Marine Molluscs. Food Chem. Toxicol. 2013, 55, 627–636. [Google Scholar] [CrossRef]
- Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. In Vitro Digestion Models Suitable for Foods: Opportunities for New Fields of Application and Challenges. Food Res. Int. 2018, 107, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Versantvoort, C.H.M.; Oomen, A.G.; Van de Kamp, E.; Rompelberg, C.J.M.; Sips, A.J.A.M. Applicability of an in Vitro Digestion Model in Assessing the Bioaccessibility of Mycotoxins from Food. Food Chem. Toxicol. 2005, 43, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Duan, H.-Y.; Teng, J.-W. Assessment of Microwave Cooking on the Bioaccessibility of Cadmium from Various Food Matrices Using an In Vitro Digestion Model. Biol. Trace Elem. Res. 2014, 160, 276–284. [Google Scholar] [CrossRef]
- Wickham, M.; Faulks, R.; Mills, C. In Vitro Digestion Methods for Assessing the Effect of Food Structure on Allergen Breakdown. Mol. Nutr. Food Res. 2009, 53, 952–958. [Google Scholar] [CrossRef]
- Jones, D.; Caballero, S.; Davidov-Pardo, G. Bioavailability of Nanotechnology-Based Bioactives and Nutraceuticals. Adv. Food Nutr. Res. 2019, 88, 235–273. [Google Scholar] [PubMed]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in Food and the Human Body: A Review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef]
- Azizur Rahman, M.; Hasegawa, H.; Peter Lim, R. Bioaccumulation, Biotransformation and Trophic Transfer of Arsenic in the Aquatic Food Chain. Environ. Res. 2012, 116, 118–135. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis. Determination of Lead, Cadmium, and Minerals in Food by Atomic Absorption Spectrophotometry; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Ah-Hen, K.S.; Mathias-Rettig, K.; Gómez-Pérez, L.S.; Riquelme-Asenjo, G.; Lemus-Mondaca, R.; Muñoz-Fariña, O. Bioaccessibility of Bioactive Compounds and Antioxidant Activity in Murta (Ugni molinae T.) Berries Juices. J. Food Meas. Charact. 2018, 12, 602–615. [Google Scholar] [CrossRef]
- Lyu, R.; Gao, Z.; Li, D.; Yang, Z.; Zhang, T. Bioaccessibility of Arsenic from Gastropod along the Xiangjiang River: Assessing Human Health Risks Using an in Vitro Digestion Model. Ecotoxicol. Environ. Saf. 2020, 193, 110334. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Mollah, M.Z.I.; Alam, M.F.; Safiur Rahman, M. Seasonal Investigation of Heavy Metals in Marine Fishes Captured from the Bay of Bengal and the Implications for Human Health Risk Assessment. Food Control 2016, 70, 110–118. [Google Scholar] [CrossRef]
- Saha, N.; Zaman, M.R. Evaluation of Possible Health Risks of Heavy Metals by Consumption of Foodstuffs Available in the Central Market of Rajshahi City, Bangladesh. Environ. Monit. Assess. 2013, 185, 3867–3878. [Google Scholar] [CrossRef]
- USEPA. Risk-Based Concentration. Available online: https://archive.epa.gov/region9/superfund/web/html/index-23.html (accessed on 17 August 2024).
- Novakov, N.J.; Kartalović, B.D.; Mihaljev, Ž.A.; Mastanjević, K.M.; Stojanac, N.S.; Habschied, K.J. Heavy Metals and PAHs in Mussels on the Serbian Market and Consumer Exposure. Food Addit. Contam. Part B 2021, 14, 219–226. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, Á.; Zumbado, M.; Henríquez-Hernández, L.A.; Boada, L.D.; Luzardo, O.P. Dietary Intake of Essential, Toxic, and Potentially Toxic Elements from Mussels (Mytilus spp.) in the Spanish Population: A Nutritional Assessment. Nutrients 2019, 11, 864. [Google Scholar] [CrossRef] [PubMed]
- Joksimovic, D.; Stankovic, S. The Trace Metals Accumulation in Marine Organisms of the Southeastern Adriatic Coast, Montenegro. J. Serbian Chem. Soc. 2012, 77, 105–117. [Google Scholar] [CrossRef]
- Belivermiş, M.; Kılıç, Ö.; Çotuk, Y. Assessment of Metal Concentrations in Indigenous and Caged Mussels (Mytilus galloprovincialis) on Entire Turkish Coastline. Chemosphere 2016, 144, 1980–1987. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, O.; Cid, H.; Ah-Hen, K.; Bastías, J.M. Cambios En Los Contenidos de Metales Pesados (Arsénico, Cadmio y Mercurio) En Productos Pesqueros Durante Los Procesos de Cocción. Agro Sur 2014, 42, 47–55. [Google Scholar] [CrossRef]
- Klarić, S.; Pavičić-Hamer, D.; Lucu, Č. Seasonal Variations of Arsenic in Mussels Mytilus galloprovincialis. Helgol. Mar. Res. 2004, 58, 216–220. [Google Scholar] [CrossRef]
- Velazquez Hernández, D.M. Determinación de Metales Pesados en Biota (Mytilus chilensis) y Sedimentos de la Bahía de Corral, Provincia de Valdivia, X Región. Diploma Thesis, Universidad Austral de Chile, Valdivia, Chile, 2005. [Google Scholar]
- Conti, M.E.; Stripeikis, J.; Finoia, M.G.; Tudino, M.B. Baseline Trace Metals in Bivalve Molluscs from the Beagle Channel, Patagonia (Argentina). Ecotoxicology 2011, 20, 1341–1353. [Google Scholar] [CrossRef]
- Rouane-Hacene, O.; Boutiba, Z.; Belhaouari, B.; Guibbolini-Sabatier, M.E.; Francour, P.; Risso-de Faverney, C. Seasonal Assessment of Biological Indices, Bioaccumulation and Bioavailability of Heavy Metals in Mussels Mytilus galloprovincialis from Algerian West Coast, Applied to Environmental Monitoring. Oceanologia 2015, 57, 362–374. [Google Scholar] [CrossRef]
- Kamaruzzam, B.Y.; Zahir, M.S.M.; John, B.A.; Jalal, K.C.A.; Shahbudin, S.; Al-Barwani, S.M.; Goddard, J.S. Bioaccumulation of Some Metals by Green Mussel Perna Viridis (Linnaeus 1758) from Pekan, Pahang, Malaysia. Int. J. Biol. Chem. 2010, 5, 54–60. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Okoro, H.K.; Adekola, F.A.; Ximba, B.J.; Snyman, R.G. Bioaccumulation of Metals in Black Mussels (Mytilus galloprovincialis) in Cape Town Harbour, South Africa. Environmentalist 2012, 32, 48–57. [Google Scholar] [CrossRef]
- Lu, G.; Zhu, A.; Fang, H.; Dong, Y.; Wang, W.-X. Establishing Baseline Trace Metals in Marine Bivalves in China and Worldwide: Meta-Analysis and Modeling Approach. Sci. Total Environ. 2019, 669, 746–753. [Google Scholar] [CrossRef]
- Szefer, P.; Fowler, S.W.; Ikuta, K.; Osuna, F.P.; Ali, A.A.; Kim, B.-S.; Fernandes, H.M.; Belzunce, M.-J.; Guterstam, B.; Kunzendorf, H.; et al. A Comparative Assessment of Heavy Metal Accumulation in Soft Parts and Byssus of Mussels from Subarctic, Temperate, Subtropical and Tropical Marine Environments. Environ. Pollut. 2006, 139, 70–78. [Google Scholar] [CrossRef]
- Shulkin, V.M.; Presley, B.J.; Kavun, V. Metal Concentrations in Mussel Crenomytilus Grayanus and Oyster Crassostrea Gigas in Relation to Contamination of Ambient Sediments. Environ. Int. 2003, 29, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Boisson, F.; Cotret, O.; Fowler, S.W. Bioaccumulation and Retention of Lead in the Mussel Mytilus galloprovincialis Following Uptake from Seawater. Sci. Total Environ. 1998, 222, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Falcó, G.; Llobet, J.M.; Bocio, A.; Domingo, J.L. Daily Intake of Arsenic, Cadmium, Mercury, and Lead by Consumption of Edible Marine Species. J. Agric. Food Chem. 2006, 54, 6106–6112. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, D.; Notti, A.; Di Mento, R.; Cicero, A.M.; Gabellini, M.; Russo, A.; Regoli, F. Seasonal, Spatial and Inter-Annual Variations of Trace Metals in Mussels from the Adriatic Sea: A Regional Gradient for Arsenic and Implications for Monitoring the Impact of off-Shore Activities. Chemosphere 2008, 72, 1524–1533. [Google Scholar] [CrossRef]
- Esposito, G.; Mudadu, A.G.; Abete, M.C.; Pederiva, S.; Griglione, A.; Stella, C.; Ortu, S.; Bazzoni, A.M.; Meloni, D.; Squadrone, S. Seasonal Accumulation of Trace Elements in Native Mediterranean Mussels (Mytilus galloprovincialis Lamarck, 1819) Collected in the Calich Lagoon (Sardinia, Italy). Environ. Sci. Pollut. Res. 2021, 28, 25770–25781. [Google Scholar] [CrossRef]
- Devier, M.-H.; Augagneur, S.; Budzinski, H.; Le Menach, K.; Mora, P.; Narbonne, J.-F.; Garrigues, P. One-Year Monitoring Survey of Organic Compounds (PAHs, PCBs, TBT), Heavy Metals and Biomarkers in Blue Mussels from the Arcachon Bay, France. J. Environ. Monit. 2005, 7, 224. [Google Scholar] [CrossRef]
- Knopf, B.; Fliedner, A.; Radermacher, G.; Rüdel, H.; Paulus, M.; Pirntke, U.; Koschorreck, J. Seasonal Variability in Metal and Metalloid Burdens of Mussels: Using Data from the German Environmental Specimen Bank to Evaluate Implications for Long-Term Mussel Monitoring Programs. Environ. Sci. Eur. 2020, 32, 7. [Google Scholar] [CrossRef]
- Phillips, D.J.H. The Common Mussel Mytilus edulis as an Indicator of Pollution by Zinc, Cadmium, Lead and Copper. I. Effects of Environmental Variables on Uptake of Metals. Mar. Biol. 1976, 38, 59–69. [Google Scholar] [CrossRef]
- Vieira, K.S.; Delgado, J.F.; Lima, L.S.; Souza, P.F.; Crapez, M.A.C.; Correa, T.R.; Aguiar, V.M.C.; Baptista Neto, J.A.; Fonseca, E.M. Human Health Risk Assessment Associated with the Consumption of Mussels (Perna perna) and Oysters (Crassostrea rhizophorae) Contaminated with Metals and Arsenic in the Estuarine Channel of Vitória Bay (ES), Southeast Brazil. Mar. Pollut. Bull. 2021, 172, 112877. [Google Scholar] [CrossRef]
- Nekhoroshkov, P.S.; Bezuidenhout, J.; Frontasyeva, M.V.; Zinicovscaia, I.I.; Yushin, N.S.; Vergel, K.N.; Petrik, L. Trace Elements Risk Assessment for Consumption of Wild Mussels along South Africa Coastline. J. Food Compos. Anal. 2021, 98, 103825. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Y.; Shou, L. Concentration and Potential Health Risk of Heavy Metals in Seafoods Collected from Sanmen Bay and Its Adjacent Areas, China. Mar. Pollut. Bull. 2018, 131, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Cano-Sancho, G.; Perelló, G.; Maulvault, A.L.; Marques, A.; Nadal, M.; Domingo, J.L. Oral Bioaccessibility of Arsenic, Mercury and Methylmercury in Marine Species Commercialized in Catalonia (Spain) and Health Risks for the Consumers. Food Chem. Toxicol. 2015, 86, 34–40. [Google Scholar] [CrossRef]
- Putri, A.K.; Barokah, G.R.; Andarwulan, N. Human Health Risk Assessment of Heavy Metals Bioaccumulation In Fish and Mussels from Jakarta Bay. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2017, 12, 75. [Google Scholar] [CrossRef]
- Bogdanović, T.; Ujević, I.; Sedak, M.; Listeš, E.; Šimat, V.; Petričević, S.; Poljak, V. As, Cd, Hg and Pb in Four Edible Shellfish Species from Breeding and Harvesting Areas along the Eastern Adriatic Coast, Croatia. Food Chem. 2014, 146, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Gooddy, D.C.; Shand, P.; Kinniburgh, D.G.; Van Riemsdijk, W.H. Field-based Partition Coefficients for Trace Elements in Soil Solutions. Eur. J. Soil. Sci. 1995, 46, 265–285. [Google Scholar] [CrossRef]
- RSA. Reglamento Sanitario de Los Alimentos-Decreto 977/1996; ODEPA: Santiago, Chile, 2021.
- Mok, J.S.; Yoo, H.D.; Kim, P.H.; Yoon, H.D.; Park, Y.C.; Kim, J.H.; Kwon, J.Y.; Son, K.T.; Lee, H.J.; Ha, K.S.; et al. Bioaccumulation of Heavy Metals in the Mussel Mytilus galloprovincialis in the Changseon Area, Korea, and Assessment of Potential Risk to Human Health. Fish. Aquat. Sci. 2014, 17, 313–318. [Google Scholar] [CrossRef]
- Max Blanc, J.; Molinet, C.; Díaz, P.A.; Subiabre, R.; Salamanca, M.; Duemler, J. Drastic Difference in Cadmium Concentration in Mussels (Mytilus chilensis) Observed between Seasons in Natural Bed and Aquaculture Systems in Chile. Environ. Monit. Assess. 2019, 191, 53. [Google Scholar] [CrossRef]
- Buzzi, N.S.; Oliva, A.L.; Arias, A.H.; Marcovecchio, J.E. Assessment of Trace Metal Accumulation in Native Mussels (Brachidontes rodriguezii) from a South American Temperate Estuary. Environ. Sci. Pollut. Res. 2017, 24, 15781–15793. [Google Scholar] [CrossRef]
- Yap, C.K.; Cheng, W.H.; Karami, A.; Ismail, A. Health Risk Assessments of Heavy Metal Exposure via Consumption of Marine Mussels Collected from Anthropogenic Sites. Sci. Total Environ. 2016, 553, 285–296. [Google Scholar] [CrossRef]
- Silva, C.; Ferreira, J.G.; Bricker, S.B.; DelValls, T.A.; Martín-Díaz, M.L.; Yáñez, E. Site Selection for Shellfish Aquaculture by Means of GIS and Farm-Scale Models, with an Emphasis on Data-Poor Environments. Aquaculture 2011, 318, 444–457. [Google Scholar] [CrossRef]
- Castillo, M.I.; Cifuentes, U.; Pizarro, O.; Djurfeldt, L.; Caceres, M. Seasonal Hydrography and Surface Outflow in a Fjord with a Deep Sill: The Reloncaví Fjord, Chile. Ocean. Sci. 2016, 12, 533–544. [Google Scholar] [CrossRef]
- Beyer, J.; Green, N.W.; Brooks, S.; Allan, I.J.; Ruus, A.; Gomes, T.; Bråte, I.L.N.; Schøyen, M. Blue Mussels (Mytilus edulis spp.) as Sentinel Organisms in Coastal Pollution Monitoring: A Review. Mar. Environ. Res. 2017, 130, 338–365. [Google Scholar] [CrossRef] [PubMed]
- Luoma, S.N.; Rainbow, P.S. Why Is Metal Bioaccumulation So Variable? Biodynamics as a Unifying Concept. Environ. Sci. Technol. 2005, 39, 1921–1931. [Google Scholar] [CrossRef]
- Astorga España, M.S.; Peña Méndez, E.M.; Lecaros Palma, O.; García Montelongo, F.J. Heavy Metals in Mytilus chilensis from the Strait of Magallenes (Chile). Mar. Pollut. Bull. 1998, 36, 542–546. [Google Scholar] [CrossRef]
- Mubiana, V.K.; Blust, R. Effects of Temperature on Scope for Growth and Accumulation of Cd, Co, Cu and Pb by the Marine Bivalve Mytilus edulis. Mar. Environ. Res. 2007, 63, 219–235. [Google Scholar] [CrossRef]
- Montojo, U.M.; Baldoza, B.J.S.; Cambia, F.D.; Benitez, K.C.D.; Perelonia, K.B.S.; Rivera, A.T.F. Levels and Health Risk Assessment of Mercury, Cadmium, and Lead in Green Mussel (Perna viridis) and Oyster (Crassostrea iredalei) Harvested around Manila Bay, Philippines. Food Control 2021, 124, 107890. [Google Scholar] [CrossRef]
- Torres-Escribano, S.; Denis, S.; Blanquet-Diot, S.; Calatayud, M.; Barrios, L.; Vélez, D.; Alric, M.; Montoro, R. Comparison of a Static and a Dynamic in Vitro Model to Estimate the Bioaccessibility of As, Cd, Pb and Hg from Food Reference Materials Fucus sp. (IAEA-140/TM) and Lobster Hepatopancreas (TORT-2). Sci. Total Environ. 2011, 409, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, P.K.; Qurban, M.A.; Stiboller, M.; Nachman, K.E.; Joydas, T.V.; Manikandan, K.P.; Mushir, S.A.; Francesconi, K.A. Arsenic and Arsenic Species in Shellfish and Finfish from the Western Arabian Gulf and Consumer Health Risk Assessment. Sci. Total Environ. 2016, 566–567, 1235–1244. [Google Scholar] [CrossRef]
- Fu, Y.; Yin, N.; Cai, X.; Du, H.; Wang, P.; Sultana, M.S.; Sun, G.; Cui, Y. Arsenic Speciation and Bioaccessibility in Raw and Cooked Seafood: Influence of Seafood Species and Gut Microbiota. Environ. Pollut. 2021, 280, 116958. [Google Scholar] [CrossRef]
- Fattorini, D.; Alonso-Hernandez, C.M.; Diaz-Asencio, M.; Munoz-Caravaca, A.; Pannacciulli, F.G.; Tangherlini, M.; Regoli, F. Chemical Speciation of Arsenic in Different Marine Organisms: Importance in Monitoring Studies. Mar. Environ. Res. 2004, 58, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Leufroy, A.; Noël, L.; Beauchemin, D.; Guérin, T. Bioaccessibility of Total Arsenic and Arsenic Species in Seafood as Determined by a Continuous Online Leaching Method. Anal. Bioanal. Chem. 2012, 402, 2849–2859. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, M.; Xiong, C.; Du Laing, G.; Raber, G.; Francesconi, K.; van de Wiele, T. Salivary and Gut Microbiomes Play a Significant Role in in Vitro Oral Bioaccessibility, Biotransformation, and Intestinal Absorption of Arsenic from Food. Environ. Sci. Technol. 2018, 52, 14422–14435. [Google Scholar] [CrossRef] [PubMed]
- Goodman, B.E. Insights into Digestion and Absorption of Major Nutrients in Humans. Adv. Physiol. Educ. 2010, 34, 44–53. [Google Scholar] [CrossRef]
- Intawongse, M.; Sriraksa, S.; Dean, J.R.; Kongchana, P. Estimation of Bioaccessibility of Heavy Metals in Oysters Using the Physiologically Based Extraction Test. Instrum. Sci. Technol. 2012, 40, 372–383. [Google Scholar] [CrossRef]
- Marigómez, I.; Soto, M.; Cajaraville, M.P.; Angulo, E.; Giamberini, L. Cellular and Subcellular Distribution of Metals in Molluscs. Microsc. Res. Tech. 2002, 56, 358–392. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Fariña, O.; Roman-Benn, A.; Lopez-Joven, C.; González-Pérez de Medina, L.; Ravanal, M.C. Seasonal Variations in Heavy Metal Concentrations in Mussels (Mytilus chilensis) from Southern Chile: Health Risk Implications Associated with Their Consumption. Foods 2025, 14, 916. https://doi.org/10.3390/foods14060916
Muñoz-Fariña O, Roman-Benn A, Lopez-Joven C, González-Pérez de Medina L, Ravanal MC. Seasonal Variations in Heavy Metal Concentrations in Mussels (Mytilus chilensis) from Southern Chile: Health Risk Implications Associated with Their Consumption. Foods. 2025; 14(6):916. https://doi.org/10.3390/foods14060916
Chicago/Turabian StyleMuñoz-Fariña, Ociel, Analese Roman-Benn, Carmen Lopez-Joven, Luisbel González-Pérez de Medina, and María Cristina Ravanal. 2025. "Seasonal Variations in Heavy Metal Concentrations in Mussels (Mytilus chilensis) from Southern Chile: Health Risk Implications Associated with Their Consumption" Foods 14, no. 6: 916. https://doi.org/10.3390/foods14060916
APA StyleMuñoz-Fariña, O., Roman-Benn, A., Lopez-Joven, C., González-Pérez de Medina, L., & Ravanal, M. C. (2025). Seasonal Variations in Heavy Metal Concentrations in Mussels (Mytilus chilensis) from Southern Chile: Health Risk Implications Associated with Their Consumption. Foods, 14(6), 916. https://doi.org/10.3390/foods14060916