Comparative Evaluation of Traditional and Controlled Drying Methods of Chestnuts (Castanea sativa Mill.): Impact on the Chemical Composition, Aromatic, and Sensory Profile of Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Production Process
- M1t0: Fresh chestnuts
- M2t0: Fresh chestnuts
- FM1: Traditional flour obtained in metato 1 from M1t0 chestnuts
- FM2: Traditional flour obtained in metato 2 from M2t0 chestnuts
- FL: Laboratory-processed flour from M2t0 chestnuts
- − M1: 44.05939° N, 10.354385° E; approximately 800 m above sea level.
- − M2: 44.066249° N, 10.371313° E; approximately 900 m above sea level.
2.2. Chemical Analysis
2.2.1. Determination of Dry Matter and Water Activity
2.2.2. Determination of Total Lipids
2.2.3. Determination of Free Fatty Acidity
2.2.4. Total Starch Sugars and Ascorbic Acid
2.2.5. Bioactive Compounds and Antioxidant Activity Analysis
2.3. Color Determination
2.4. Volatile Organic Compound (VOC) Analysis
2.5. Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Characterization
3.2. Bioactive Compounds and Antioxidant Activity
3.3. Color Evaluation
3.4. Volatile Organic Compound (VOC) Profile
3.5. Sensory Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aglietti, C.; Cappelli, A.; Andreani, A. From Chestnut Tree (Castanea sativa) to Flour and Foods: A Systematic Review of the Main Criticalities and Control Strategies towards the Relaunch of Chestnut Production Chain. Sustainability 2022, 14, 12181. [Google Scholar] [CrossRef]
- De Vasconcelos, M.C.B.M.; Bennett, R.N.; Rosa, E.A.S.; Ferreira-Cardoso, J. V Composition of European chestnut (Castanea sativa Mill.) and association with health effects: Fresh and processed products. J. Sci. Food Agric. 2010, 90, 1578–1589. [Google Scholar] [CrossRef]
- De Vasconcelos, M.d.C.B.M.; Nunes, F.; Viguera, C.G.; Bennett, R.N.; Rosa, E.A.S.; Ferreira-Cardoso, J.V. Industrial processing effects on chestnut fruits (Castanea sativa Mill.) 3. Minerals, free sugars, carotenoids and antioxidant vitamins. Int. J. Food Sci. Technol. 2010, 45, 496–505. [Google Scholar] [CrossRef]
- Rutter, P.A.; Miller, G.; Payne, J.A. Chestnuts (Castanea). In Acta Horticulturae; International Society for Horticultural Science (ISHS): Leuven, Belgium, 1991; pp. 761–790. [Google Scholar]
- Pezzi, G.; Gambini, S.; Buldrini, F.; Ferretti, F.; Muzzi, E.; Maresi, G.; Nascimbene, J. Contrasting patterns of tree features, lichen, and plant diversity in managed and abandoned old-growth chestnut orchards of the northern Apennines (Italy). For. Ecol. Manag. 2020, 470–471, 118207. [Google Scholar] [CrossRef]
- Piccolo, E.L.; Landi, M.; Ceccanti, C.; Mininni, A.N.; Marchetti, L.; Massai, R.; Guidi, L.; Remorini, D. Nutritional and nutraceutical properties of raw and traditionally obtained flour from chestnut fruit grown in Tuscany. Eur. Food Res. Technol. 2020, 246, 1867–1876. [Google Scholar] [CrossRef]
- Santos, M.J.; Pinto, T.; Vilela, A. Sweet Chestnut (Castanea sativa Mill.) Nutritional and Phenolic Composition Interactions with Chestnut Flavor Physiology. Foods 2022, 11, 4052. [Google Scholar] [CrossRef]
- Massantini, R.; Moscetti, R.; Frangipane, M.T. Evaluating progress of chestnut quality: A review of recent developments. Trends Food Sci. Technol. 2021, 113, 245–254. [Google Scholar] [CrossRef]
- Li, R.; Sharma, A.K.; Zhu, J.; Zheng, B.; Xiao, G.; Chen, L. Nutritional biology of chestnuts: A perspective review. Food Chem. 2022, 395, 133575. [Google Scholar] [CrossRef]
- Sacchetti, G.; Neri, L.; Dimitri, G.; Mastrocola, D. Chemical composition and functional properties of three sweet chestnut (Castanea sativa Mill.) Ecotypes from Italy. In Acta Horticulturae; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2009; pp. 41–46. [Google Scholar]
- Neri, L.; Dimitri, G.; Sacchetti, G. Chemical composition and antioxidant activity of cured chestnuts from three sweet chestnut (Castanea sativa Mill.) ecotypes from Italy. J. Food Compos. Anal. 2010, 23, 23–29. [Google Scholar] [CrossRef]
- Attanasio, G.; Cinquanta, L.; Albanese, D.; Matteo, M. Di Effects of drying temperatures on physico-chemical properties of dried and rehydrated chestnuts (Castanea sativa). Food Chem. 2004, 88, 583–590. [Google Scholar] [CrossRef]
- Demirkesen, I.; Mert, B.; Sumnu, G.; Sahin, S. Utilization of chestnut flour in gluten-free bread formulations. J. Food Eng. 2010, 101, 329–336. [Google Scholar] [CrossRef]
- Melo, B.G.d.; Tagliapietra, B.L.; Clerici, M.T.P.S. Evolution of the technological, sensory, and nutritional quality of gluten-free cookies: A critical review. Food Sci. Technol. 2023, 43, e75822. [Google Scholar] [CrossRef]
- Dall’Asta, C.; Cirlini, M.; Morini, E.; Rinaldi, M.; Ganino, T.; Chiavaro, E. Effect of chestnut flour supplementation on physico-chemical properties and volatiles in bread making. LWT-Food Sci. Technol. 2013, 53, 233–239. [Google Scholar] [CrossRef]
- Frati, A.; Landi, D.; Marinelli, C.; Gianni, G.; Fontana, L.; Migliorini, M.; Pierucci, F.; Garcia-Gil, M.; Meacci, E. Nutraceutical properties of chestnut flours: Beneficial effects on skeletal muscle atrophy. Food Funct. 2014, 5, 2870–2882. [Google Scholar] [CrossRef]
- Mete, M.; Altiner, L. Chestnut Flour and Applications of Utilization. Int. J. Food Eng. Res. 2017, 2017, 9–16. [Google Scholar]
- Bellini, E. The Chestnut And Its Resources: Images And Considerations. In Acta Horticulturae; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2005; pp. 85–96. [Google Scholar]
- Cantini, C.; Salusti, P.; Poggioni, L.; Romi, M. Analisi del profilo aromatico delle farine di castagna e relazioni con le proprietà sensoriali. In Proceedings of the VII Convegno Nazionale sul Castagno, ACTA Italus Hortus 25: Pergine Valsugana, Trento, Italy, 11–14 June 2019; pp. 1–3. [Google Scholar]
- Cirlini, M.; Dall’Asta, C.; Silvanini, A.; Beghè, D.; Fabbri, A.; Galaverna, G.; Ganino, T. Volatile fingerprinting of chestnut flours from traditional Emilia Romagna (Italy) cultivars. Food Chem. 2012, 134, 662–668. [Google Scholar] [CrossRef]
- Krist, S.; Unterweger, H.; Bandion, F.; Buchbauer, G. Volatile compound analysis of SPME headspace and extract samples from roasted Italian chestnuts (Castanea sativa Mill.) using GC-MS. Eur. Food Res. Technol. 2004, 219, 470–473. [Google Scholar] [CrossRef]
- Conti, V.; Salusti, P.; Romi, M.; Cantini, C. Effects of Drying Methods and Temperatures on the Quality of Chestnut Flours. Foods 2022, 11, 1364. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Attar, H. Effect of drying method on rheological, thermal, and structural properties of chestnut flour doughs. Food Hydrocoll. 2015, 51, 76–87. [Google Scholar] [CrossRef]
- Moreira, R.; Chenlo, F.; Torres, M.D.; Rama, B.; Arufe, S. Air drying of chopped chestnuts at several conditions: Effect on colour and chemical characteristics of chestnut flour. Int. Food Res. J. 2015, 22, 407–413. [Google Scholar]
- Zhang, L.; Wang, Z.; Shi, G.; Yang, H.; Wang, X.; Zhao, H.; Zhao, S. Effects of drying methods on the nutritional aspects, flavor, and processing properties of Chinese chestnuts. J. Food Sci. Technol. 2018, 55, 3391–3398. [Google Scholar] [CrossRef] [PubMed]
- Conidi, C.; Donato, L.; Algieri, C.; Cassano, A. Valorization of chestnut processing by-products: A membrane-assisted green strategy for purifying valuable compounds from shells. J. Clean. Prod. 2022, 378, 134564. [Google Scholar] [CrossRef]
- Salgueiro, L.; Martins, A.P.; Correia, H. Raw materials: The importance of quality and safety. A review. Flavour. Fragr. J. 2010, 25, 253–271. [Google Scholar] [CrossRef]
- Monacci, E.; Sanmartin, C.; Bianchi, A.; Pettinelli, S.; Najar, B.; Mencarelli, F.; Taglieri, I. Chemical Quality and Characterization of Essential Oils in Postharvest Hop cv. Cascade: Ventilated Room Temperature as a Sustainable Alternative to Hot-Stove and Freeze-Drying Processes. Beverages 2025, 11, 54. [Google Scholar] [CrossRef]
- Bianchi, A.; Taglieri, I.; Zinnai, A.; Macaluso, M.; Sanmartin, C.; Venturi, F. Effect of Argon as Filling Gas of the Storage Atmosphere on the Shelf-Life of Sourdough Bread—Case Study on PDO Tuscan Bread. Foods 2022, 11, 3470. [Google Scholar] [CrossRef]
- Borges, O.; Gonçalves, B.; de Carvalho, J.L.S.; Correia, P.; Silva, A.P. Nutritional quality of chestnut (Castanea sativa Mill.) cultivars from Portugal. Food Chem. 2008, 106, 976–984. [Google Scholar] [CrossRef]
- Bianchi, A.; Capparelli, S.; Taglieri, I.; Sanmartin, C.; Pistelli, L.; Venturi, F. Salty Biscuits Enriched with Fresh and Dried Bee Pollen: Chemical, Technological, and Sensory Characterization. Foods 2025, 14, 527. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A.; Sanmartin, C.; Taglieri, I.; Macaluso, M.; Venturi, F.; Napoli, M.; Mancini, M.; Fabbri, C.; Zinnai, A. Effect of Fertilization Regime of Common Wheat (Triticum aestivum) on Flour Quality and Shelf-Life of PDO Tuscan Bread. Foods 2023, 12, 2672. [Google Scholar] [CrossRef]
- Monacci, E.; Sanmartin, C.; Bianchi, A.; Pettinelli, S.; Taglieri, I.; Mencarelli, F. Plastic film packaging for the postharvest quality of fresh hop inflorescence (Humulus lupulus) cv. Cascade. Postharvest Biol. Technol. 2023, 206, 112575. [Google Scholar] [CrossRef]
- Bate-Smith, E.C. Tannins of herbaceous leguminosae. Phytochemistry 1973, 12, 1809–1812. [Google Scholar] [CrossRef]
- Bianchi, A.; Venturi, F.; Zinnai, A.; Taglieri, I.; Najar, B.; Macaluso, M.; Merlani, G.; Angelini, L.G.; Tavarini, S.; Clemente, C.; et al. Valorization of an Old Variety of Triticum aestivum: A Study of Its Suitability for Breadmaking Focusing on Sensory and Nutritional Quality. Foods 2023, 12, 1351. [Google Scholar] [CrossRef]
- Pieracci, Y.; Vento, M.; Pistelli, L.; Lombardi, T.; Pistelli, L. Halophyte Artemisia caerulescens L.: Metabolites from In Vitro Shoots and Wild Plants. Plants 2022, 11, 1081. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Pub. Corp.: Carol Stream, IL, USA, 2007; ISBN 0-931710-42-1. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; Halsted Press (Division of John Wiley & Sons): New York, NY, USA, 1976; Volume 14. [Google Scholar]
- FLAVORNET. Available online: https://www.flavornet.org/index.html (accessed on 1 May 2025).
- The Good Scents Company Information System. Available online: https://www.thegoodscentscompany.com/index.html (accessed on 1 May 2025).
- Bianchi, A.; Venturi, F.; Palermo, C.; Taglieri, I.; Angelini, G.L.; Tavarini, S.; Sanmartin, C. Primary and secondary shelf-life of bread as a function of formulation and MAP conditions: Focus on physical-chemical and sensory markers. Food Packag. Shelf Life 2024, 41, 101241. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Zhu, F. Properties and Food Uses of Chestnut Flour and Starch. Food Bioprocess. Technol. 2017, 10, 1173–1191. [Google Scholar] [CrossRef]
- Delgado, T.; Pereira, J.A.; Ramalhosa, E.; Casal, S. Effect of hot air convective drying on sugar composition of chestnut (Castanea sativa Mill.) slices. J. Food Process. Preserv. 2018, 42, e13567. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Pereira, J.A.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Sugars Profiles of Different Chestnut (Castanea sativa Mill.) and Almond (Prunus dulcis) Cultivars by HPLC-RI. Plant Foods Hum. Nutr. 2010, 65, 38–43. [Google Scholar] [CrossRef]
- Correia, P.; Leitão, A.; Beirão-da-Costa, M.L. The effect of drying temperatures on morphological and chemical properties of dried chestnuts flours. J. Food Eng. 2009, 90, 325–332. [Google Scholar] [CrossRef]
- Ertan, E.; Erdal, E.; Alkan, G.; Algül, B.E. Effects of Different Postharvest Storage Methods on the Quality Parameters of Chestnuts (Castanea sativa Mill.). HortScience Horts 2015, 50, 577–581. [Google Scholar] [CrossRef]
- Chenlo, F.; Moreira, R.; Chaguri, L.; Torres, M.D. Effects of storage conditions on sugars and moisture content of whole chestnut fruits. J. Food Process. Preserv. 2010, 34, 609–620. [Google Scholar] [CrossRef]
- Correia, P.; Cruz-Lopes, L.; Beirão-da-Costa, L. Morphology and structure of chestnut starch isolated by alkali and enzymatic methods. Food Hydrocoll. 2012, 28, 313–319. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Wang, S. Drying methods used in starch isolation change properties of C-type chestnut (Castanea mollissima) starches. LWT 2016, 73, 663–669. [Google Scholar] [CrossRef]
- Buléon, A.; Véronèse, G.; Putaux, J.-L. Self-Association and Crystallization of Amylose. Aust. J. Chem. 2007, 60, 706–718. [Google Scholar] [CrossRef]
- Fedorková, S.; Musilová, J.; Ňorbová, M.; Vollmannová, A.; Čeryová, N.; Lidiková, J. Impact of Heat Treatments on The Antioxidant Activity and Total Phenolic Content of Sweet Chestnuts (Castanea sativa Mill.). Sci. Bull. Ser. F. Biotechnol. 2024, XXVIII, 31–36. [Google Scholar]
- Nguyen, M.P. Ascorbic Acid and Total Phenolic Contents of Dried Roasted Chestnut (Castanea sativa) Affected by Drying, Roasting and Preservation. Biosci. Biotechnol. Res. Commun. 2020, 13, 1–9. [Google Scholar] [CrossRef]
- Barros, A.I.R.N.A.; Nunes, F.M.; Gonçalves, B.; Bennett, R.N.; Silva, A.P. Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chem. 2011, 128, 165–172. [Google Scholar] [CrossRef]
- Mladenović Drinić, S.D.; Vukadinović, J.Z.; Srdić, J.; Milašinović Šeremešić, M.S.; Anđelković, V.B. Effect of Cooking on the Content of Carotenoids and Tocopherols in Sweet Corn. Food Feed Res. 2021, 48, 119–129. [Google Scholar] [CrossRef]
- Boon, C.S.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors Influencing the Chemical Stability of Carotenoids in Foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. [Google Scholar] [CrossRef]
- Martínez, J.A.; Melgosa, M.; Pérez, M.M.; Hita, E.; Negueruela, A.I. Note. Visual and Instrumental Color Evaluation in Red Wines. Food Sci. Technol. Int. 2001, 7, 439–444. [Google Scholar] [CrossRef]
- Pasqualone, A.; Paradiso, V.M.; Summo, C.; Caponio, F.; Gomes, T. Influence of Drying Conditions on Volatile Compounds of Pasta. Food Bioprocess. Technol. 2014, 7, 719–731. [Google Scholar] [CrossRef]
- Romano, P.; Suzzi, G.; Brandolini, V.; Menziani, E.; Domizio, P. Determination of 2,3-butanediol in high and low acetoin producers of Saccharomyces cerevisiae wine yeasts by automated multiple development (AMD). Lett. Appl. Microbiol. 1996, 22, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.K.; Jain, A. Fermentative production of 2,3-butanediol: A review. Bioresour. Technol. 1995, 51, 103–109. [Google Scholar] [CrossRef]
- Gong, X.; Huang, J.; Xu, Y.; Li, Z.; Li, L.; Li, D.; Belwal, T.; Jeandet, P.; Luo, Z.; Xu, Y. Deterioration of plant volatile organic compounds in food: Consequence, mechanism, detection, and control. Trends Food Sci. Technol. 2023, 131, 61–76. [Google Scholar] [CrossRef]
- Martins, S.I.F.S.; Jongen, W.M.F.; van Boekel, M.A.J.S. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 2000, 11, 364–373. [Google Scholar] [CrossRef]
Parameter | Units | p-Value 1 | FL | FM1 | FM2 | M1t0 | M2t0 |
---|---|---|---|---|---|---|---|
Dry matter (dm) | % | *** | 89.10 ± 0.09 b | 91.72 ± 0.07 a | 91.40 ± 0.05 a | 53.56 ± 0.20 c | 49.56 ± 0.13 d |
aw | ns | 0.50 ± 0.07 | 0.41 ± 0.01 | 0.43 ± 0.02 | n.d. | n.d. | |
TL | g/100 g dm | *** | 4.14 ± 0.01 a | 2.13 ± 0.01 b | 4.50 ± 0.01 a | 1.30 ± 0.01 c | 1.58 ± 0.01 bc |
FFA | g oleic acid/100 g dm | *** | 0.13 ± 0.01 a | 0.14 ± 0.01 a | 0.14 ± 0.01 a | 0.07 ± 0.01 b | 0.10 ± 0.01 b |
Parameters | Units | p-Value 1 | FL | FM1 | FM2 | M1t0 | M2t0 |
---|---|---|---|---|---|---|---|
Sucrose | g/100 g dm | *** | 19.04 ± 2.14 a | 21.57 ± 0.51 a | 15.93 ± 0.69 b | 9.88 ± 1.26 c | 9.31 ± 0.33 c |
D-Glucose | g/100 g dm | *** | 0.70 ± 0.04 c | 1.70 ± 0.11 a | 0.61 ± 0.06 c | 0.91 ± 0.09 b | 0.75 ± 0.06 bc |
D-Fructose | g/100 g dm | *** | 0.58 ± 0.03 b | 1.44 ± 0.04 a | 0.48 ± 0.03 c | 0.44 ± 0.03 c | 0.40 ± 0.04 c |
Parameter | p-Value 1 | FL | FM1 | FM2 | M1t0 | M2t0 |
---|---|---|---|---|---|---|
L* | *** | 88.43 ± 0.84 a | 84.14 ± 1.23 b | 87.14 ± 0.97 a | 68.66 ± 0.81 c | 71.19 ± 0.84 c |
a* | *** | 0.25 ± 0.03 d | 1.26 ± 0.05 a | 0.67 ± 0.03 c | 0.98 ± 0.06 b | 0.98 ± 0.06 b |
b* | *** | 11.86 ± 0.72 c | 14.13 ± 0.52 b | 12.80 ± 0.11 bc | 22.32 ± 0.79 a | 22.32 ± 0.79 a |
C* | *** | 11.86 ± 0.73 c | 12.56 ± 1.91 b | 13.41 ± 1.52 bc | 22.34 ± 0.79 a | 22.34 ± 0.79 a |
h* | *** | 1.55 ± 0.01 a | 1.48 ± 0.01 c | 1.51 ± 0.04 b | 1.53 ± 0.01 b | 1.53 ± 0.01 b |
WI | *** | 83.41 ± 0.40 a | 78.72 ± 1.20 b | 79.86 ± 2.87 a | 61.51 ± 0.56 d | 63.54 ± 0.58 c |
YI | *** | 19.16 ± 1.03 c | 24.01 ± 1.18 b | 22.54 ± 3.14 bc | 46.44 ± 1.67 a | 44.79 ± 1.61 a |
ΔE*ab | FL | FM1 | FM2 |
---|---|---|---|
FL | 2.32 | 3.83 | |
FM1 | 1.55 | ||
FM2 |
Compound | l.r.i 2 | Odor | p-Value 1 | Relative Abundance (%) | ||||
---|---|---|---|---|---|---|---|---|
FL | FM1 | FM2 | M1t0 | M2t0 | ||||
Monoterpene hydrocarbons | ||||||||
α-Pinene | 941 | Balsamic | *** | 0.8 ± 0.02 a | - 3,b | - b | - b | - b |
Sabinene | 977 | Woody | *** | 1.6 ± 0.03 a | - b | - b | - b | - b |
β-Pinene | 982 | Herbal | *** | 3.2 ± 0.06 a | - b | - b | - b | - b |
Myrcene | 993 | Spicy | *** | 13.6 ± 0.53 a | - b | - b | - b | - b |
δ-3-Carene | 1012 | Citrus | *** | 2.8 ± 0.34 a | - b | - b | - b | - b |
p-Cymene | 1028 | Citrus | *** | 3.2 ± 0.06 a | - b | - b | - b | - b |
Limonene | 1032 | Citrus | *** | - c | 2.0 ± 0.06 a | - c | - c | 0.1 ± 0 b |
γ-Terpinene | 1062 | Woody | *** | 20.4 ± 0.81 a | - b | - b | - b | - b |
Terpinolene | 1090 | Herbal | *** | 1.6 ± 0.03 a | - b | - b | - b | - b |
Alcohols | ||||||||
Isobutyl alcohol | 627 | Musty | * | - b | - b | - b | 1.2 ± 0.05 ab | 2.3 ± 1.92 a |
1-Butanol | 657 | Fusel | *** | - b | - b | - b | 0.2 ± 0.01 a | - b |
Isopentyl alcohol | 736 | Musty | *** | - c | - c | - c | 13 ± 0.45 a | 6.5 ± 2.47 b |
2-Methylbutanol | 737 | Fusel | *** | - b | - b | - b | 6.3 ± 0.39 a | 5.3 ± 2.32 a |
1-Pentanol | 766 | Balsamic | *** | - c | 0.9 ± 0.01 a | 0.4 ± 0.2 b | - c | - c |
1,3-Butanediol | 788 | *** | 5.6 ± 0.11 bc | 7.7 ± 0.1 b | 2.7 ± 0.06 c | 5.6 ± 2.74 bc | 22.9 ± 1.1 a | |
2,3-Butanediol | 789 | *** | 4.8 ± 0.1 bc | 9.9 ± 0.27 b | 4 ± 0.01 c | 8.9 ± 3.64 bc | 33.8 ± 2.38 a | |
Furfuryl alcohol | 858 | Burning | *** | - b | - b | 1 ± 0.02 a | - b | - b |
1-Hexanol | 871 | Herbal | *** | 2.8 ± 0.34 b | 2.2 ± 0.19 b | 1.1 ± 0.08 cd | 5.6 ± 0.93 a | 0.2 ± 0 d |
1-Heptanol | 970 | Herbal | *** | - b | - b | - b | 0.4 ± 0.13 a | 0.1 ± 0 b |
1-Octen-3-ol | 982 | Musty | *** | - b | 1 ± 0.11 a | 1.1 ± 0.08 a | - b | - b |
3-Ethyl-1-hexanol | 1031 | Floral | *** | - b | - b | 8.8 ± 0.41 a | - b | - b |
1-Octanol | 1071 | Herbal | *** | - c | 0.7 ± 0.06 a | - c | 0.2 ± 0.01 b | - c |
Phenylethyl alcohol | 1111 | Floral | *** | 2 ± 0.36 b | 2.1 ± 0.09 b | 0.7 ± 0.09 c | 3.7 ± 0.39 a | 2.7 ± 0.3 b |
Ethers | ||||||||
2-Acetylfuran | 913 | Fruity | *** | - b | - b | 0.6 ± 0.01 a | - b | - b |
2-Pentyl furan | 992 | Fruity | *** | - b | 3.5 ± 0.69 a | - b | - b | - b |
γ-Caprolactone | 1056 | Herbal | *** | - b | 0.8 ± 0.01 a | - b | - b | - b |
2,3-Dihydrobenzofuran | 1221 | Harsh | *** | - b | - b | - b | - b | 0.3 ± 0.05 a |
Phenols | ||||||||
Phenol | 983 | *** | - d | 1.6 ± 0.01 b | 4.5 ± 0.1 a | 0.5 ± 0.25 c | 0.1 ± 0 d | |
o-Cresol | 1057 | Musty | *** | - c | - c | 3.9 ± 0.3 a | 0.9 ± 0.27 b | - c |
p-Cresol | 1078 | Floral | *** | - c | - c | 1.3 ± 0.13 a | 0.4 ± 0.13 b | - c |
o-Guaiacol | 1091 | Smoky | *** | - d | 2.6 ± 0.07 b | 14.0 ± 0.02 a | 1.6 ± 0.76 c | 0.1 ± 0 d |
Veratrole | 1149 | Musty | *** | - b | 0.7 ± 0.01 a | - b | - b | - b |
Creosol | 1193 | Smoky | *** | - c | 1.2 ± 0.15 b | 4.9 ± 0.09 a | - c | - c |
3-Phenylpropanol | 1232 | Spicy, floral | *** | - b | - b | - b | 20.2 ± 3.41 a | - b |
p-Ethylguaiacol | 1280 | Smoky | ** | - b | - b | - b | 4.6 ± 1.92 a | - b |
p-Vinylguaiacol | 1314 | Spicy | - b | - b | - b | - b | 1.1 ± 0.1 a | |
Esters | ||||||||
Ethyl acetate | 611 | Fruity | ** | - b | 1 ± 0.06 b | 0.7 ± 0.12 b | 0.6 ± 0.09 b | 4.5 ± 1.98 a |
Isopentyl acetate | 876 | Fruity | *** | - b | - b | - b | - b | 0.7 ± 0.05 a |
Butyrolactone | 914 | *** | 4.8 ± 0.1 a | 2.8 ± 0.12 b | 1.4 ± 0.03 c | - d | - d | |
Ethyl hexanoate | 998 | Fruity | *** | - b | - b | - b | - b | 0.1 ± 0.00 a |
Ethyl 2-phenylacetate | 1246 | Fruity, honey | *** | - b | - b | - b | - b | 0.1 ± 0.00 a |
2-Phenylethyl acetate | 1259 | Fruity, floral | *** | - b | - b | - b | - b | 0.1 ± 0.00 a |
Aldehydes | ||||||||
Hexanal | 802 | Herbal | *** | 3.6 ± 0.33 c | 10.6 ± 0.09 a | 8.8 ± 0.61 b | - d | - d |
Furfural | 839 | Baked | *** | - c | 2.6 ± 0.04 a | 1.8 ± 0.16 b | - c | - c |
Heptanal | 901 | Herbal | *** | - c | 0.8 ± 0.01 a | 0.5 ± 0.09 b | - c | - c |
Octanal | 1001 | *** | 2.4 ± 0.05 b | 3 ± 0.19 a | 1.4 ± 0.03 c | - d | - d | |
5-Ethylcyclopent-1-enecarboxaldehyde | 1035 | *** | - b | 0.4 ± 0 a | - b | - b | - b | |
(E)-2-Octenal | 1063 | Fruity | *** | - b | 0.6 ± 0 a | 0.7 ± 0.12 a | - b | - b |
Nonanal | 1102 | Fruity | *** | 4.8 ± 0.1 a | 4.9 ± 0.29 a | 2.9 ± 0.34 b | - c | - c |
Decanal | 1204 | Fruity | *** | 1.2 ± 0.38 a | - b | - b | - b | - b |
(E,E)-2,4-Nonadienal | 1215 | Herbal | *** | 0.8 ± 0.02 a | - b | - b | - b | - b |
Ketones | ||||||||
2-Pentanone | 696 | Fruity | *** | - b | - b | - b | 2.8 ± 0.12 a | - b |
Acetoin | 709 | Buttery | *** | - c | - c | - c | 17.8 ± 3.36 a | 8.1 ± 3.17 b |
2-Heptanone | 894 | Fruity/herbal | *** | - c | 0.6 ± 0 b | 0.5 ± 0.09 b | 2.7 ± 0.23 b | - c |
6-Methyl-5-hepten-2-one | 987 | Herbal | *** | - b | - b | - b | 0.5 ± 0.02 a | - b |
3-Octen-2-one 4 | 1042 | Spicy, herbal | *** | - c | 0.9 ± 0.05 a | 0.6 ± 0.01 b | - c | - c |
2-Nonanone | 1093 | Herbal | *** | - b | - b | - b | 1.5 ± 0.18 a | - b |
Acids | ||||||||
Acetic acid | 599 | Acidic | *** | 18.8 ± 0.78 b | 32.0 ± 0.99 a | 21.2 ± 1.35 b | - d | 9.3 ± 3.96 c |
Other non-terpene derivatives | ||||||||
Styrene | 896 | Balsamic/plastic | * | - b | - b | - b | - b | 1.2 ± 0.91 a |
n-Undecane | 1100 | *** | - b | - b | 0.4 ± 0.01 a | - b | - b | |
Naphthalene | 1181 | Pungent | *** | - c | 2.5 ± 0.02 b | 4 ± 0.01 a | - c | - c |
n-Dodecane | 1200 | *** | 0.8 ± 0.02 a | - b | 0.8 ± 0.02 a | - b | - b | |
Chemical classes | ||||||||
Terpenes | ||||||||
Monoterpene hydrocarbons | *** | 47.2 ± 0.15 a | 2.00 ± 0.06 b | - c | - c | 0.1 ± 0 c | ||
Non-terpene derivatives | ||||||||
Alcohols/ethers/phenols | *** | 15.2 ± 0.49 d | 34.9 ± 0.89 c | 49.1 ± 0.53 b | 73.3 ± 2.74 a | 75.3 ± 3.68 a | ||
Esters | ** | 4.8 ± 0.1 a | 3.8 ± 0.18 ab | 2.2 ± 0.15 bc | 0.6 ± 0.09 c | 5.5 ± 2.03 a | ||
Aldehydes/ketones | *** | 12.8 ± 0.54 bc | 24.5 ± 0.06 a | 17.3 ± 0.10 b | 25.2 ± 2.81 a | 8.1 ± 3.17 c | ||
Acids | *** | 18.8 ± 0.78 b | 32.0 ± 0.99 a | 21.2 ± 1.35 b | - d | 9.3 ± 3.96 c | ||
Others | ** | 0.8 ± 0.02 c | 2.5 ± 0.02 b | 5.2 ± 0.02 a | - d | 1.2 ± 0.91 c | ||
Total identified | 99.6 ± 0.01 | 99.7 ± 0.1 | 95 ± 0.55 | 99 ± 0.16 | 99.6 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panzani, S.; Venturi, F.; Bianchi, A.; Díaz-Guerrero, P.; Pieracci, Y.; Flamini, G.; Taglieri, I.; Sanmartin, C. Comparative Evaluation of Traditional and Controlled Drying Methods of Chestnuts (Castanea sativa Mill.): Impact on the Chemical Composition, Aromatic, and Sensory Profile of Flour. Foods 2025, 14, 1931. https://doi.org/10.3390/foods14111931
Panzani S, Venturi F, Bianchi A, Díaz-Guerrero P, Pieracci Y, Flamini G, Taglieri I, Sanmartin C. Comparative Evaluation of Traditional and Controlled Drying Methods of Chestnuts (Castanea sativa Mill.): Impact on the Chemical Composition, Aromatic, and Sensory Profile of Flour. Foods. 2025; 14(11):1931. https://doi.org/10.3390/foods14111931
Chicago/Turabian StylePanzani, Sofia, Francesca Venturi, Alessandro Bianchi, Pierina Díaz-Guerrero, Ylenia Pieracci, Guido Flamini, Isabella Taglieri, and Chiara Sanmartin. 2025. "Comparative Evaluation of Traditional and Controlled Drying Methods of Chestnuts (Castanea sativa Mill.): Impact on the Chemical Composition, Aromatic, and Sensory Profile of Flour" Foods 14, no. 11: 1931. https://doi.org/10.3390/foods14111931
APA StylePanzani, S., Venturi, F., Bianchi, A., Díaz-Guerrero, P., Pieracci, Y., Flamini, G., Taglieri, I., & Sanmartin, C. (2025). Comparative Evaluation of Traditional and Controlled Drying Methods of Chestnuts (Castanea sativa Mill.): Impact on the Chemical Composition, Aromatic, and Sensory Profile of Flour. Foods, 14(11), 1931. https://doi.org/10.3390/foods14111931