Chemical Characterisation of Inorganic Profile of Wine Obtained by Alternative Vinification in Comparison with Traditional One
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Reagents and Materials
2.3. Sample Mineralisation
2.4. ICP-MS Measurement Conditions
2.5. Statistical Analyses
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modesti, M.; Shmuleviz, R.; Macaluso, M.; Bianchi, A.; Venturi, F.; Brizzolara, S.; Zinnai, A.; Tonutti, P. Pre-Processing Cooling of Harvested Grapes Induces Changes in Berry Composition and Metabolism, and Affects Quality and Aroma Traits of the Resulting Wine. Front. Nutr. 2021, 8, 728510. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Porretti, M.; Albergamo, A.; Mucari, C.; Tropea, A.; Rando, R.; Nava, V.; Lo Turco, V.; Potortì, A.G. Valorization of Traditional Alcoholic Beverages: The Study of the Sicilian Amarena Wine during Bottle Aging. Foods 2022, 11, 2152. [Google Scholar] [CrossRef] [PubMed]
- Sirén, H.; Sirén, K.; Sirén, J. Evaluation of Organic and Inorganic Compounds Levels of Red Wines Processed from Pinot Noir Grapes. Anal. Chem. Res. 2015, 3, 26–36. [Google Scholar] [CrossRef]
- Ivić, I.; Kopjar, M.; Obhođaš, J.; Vinković, A.; Pichler, D.; Mesić, J.; Pichler, A. Concentration with Nanofiltration of Red Wine Cabernet Sauvignon Produced from Conventionally and Ecologically Grown Grapes: Effect on Volatile Compounds and Chemical Composition. Membranes 2021, 11, 320. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, F.; D’Archivio, A.A.; Foschi, M.; Maggi, M.A. Multivariate Optimization of an Analytical Method for the Analysis of Abruzzo White Wines by ICP OES. Anal. Methods 2020, 12, 2772–2778. [Google Scholar] [CrossRef]
- Biancolillo, A.; D’Archivio, A.A.; Pietrangeli, F.; Cesarone, G.; Ruggieri, F.; Foschi, M.; Reale, S.; Rossi, L.; Crucianelli, M. Varietal Discrimination of Trebbiano d’Abruzzo, Pecorino and Passerina White Wines Produced in Abruzzo (Italy) by Sensory Analysis and Multi-Block Classification Based on Volatiles, Organic Acids, Polyphenols, and Major Elements. Appl. Sci. 2022, 12, 9794. [Google Scholar] [CrossRef]
- Žero, S.; Memić, M.; Ramić, E. Determination, Estimation of Dietary Intake and Target Hazard Quotients of Heavy Metals in Wines from the Bosnia and Herzegovina Market. Kem. U Ind. 2024, 73, 457–466. [Google Scholar] [CrossRef]
- Wilschefski, S.; Baxter, M.; Pool, G. A Simple Equation to Correct for Gadolinium Interference on Plasma Selenium Measurement Using Inductively Coupled Plasma Mass Spectrometry. Ann. Clin. Biochem. Int. J. Lab. Med. 2020, 57, 234–241. [Google Scholar] [CrossRef]
- Guerrini, S.; Barbato, D.; Mangani, S.; Mari, E.; Buscioni, G.; Ganucci, D.; Galli, V.; Granchi, L. Utilization of the AIRMIXING M.I.TM System in Producing Red Wine without Added Sulphites. Fermentation 2023, 9, 812. [Google Scholar] [CrossRef]
- Nechita, C.; Iordache, A.M.; Voica, C.; Costinel, D.; Botoran, O.R.; Popescu, D.I.; Șuvar, N.S. Evaluating the Chemical Hazards in Wine Production Associated with Climate Change. Foods 2023, 12, 1526. [Google Scholar] [CrossRef]
- Mercanti, N.; Macaluso, M.; Pieracci, Y.; Flamini, G.; Scappaticci, G.; Marianelli, A.; Zinnai, A. Towards Sulphite-Free Winemaking: A New Horizon of Vinification and Maturation. Foods 2024, 13, 1108. [Google Scholar] [CrossRef] [PubMed]
- Moehring, M.J.; de Harrington, P.B. Analysis of Wine and Its Use in Tracing the Origin of Grape Cultivation. Crit. Rev. Anal. Chem. 2022, 52, 1901–1912. [Google Scholar] [CrossRef] [PubMed]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Tripathi, D.K.; Dubey, N.K.; Chauhan, D.K. Influence of High and Low Levels of Plant-Beneficial Heavy Metal Ions on Plant Growth and Development. Front. Environ. Sci. 2016, 4, 69. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The Essential Metals for Humans: A Brief Overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Hill, R. Aptitude or Adaptation: What Lies at the Root of Terroir? Geogr. J. 2020, 186, 346–350. [Google Scholar] [CrossRef]
- Hao, X.; Gao, F.; Wu, H.; Song, Y.; Zhang, L.; Li, H.; Wang, H. From Soil to Grape and Wine: Geographical Variations in Elemental Profiles in Different Chinese Regions. Foods 2021, 10, 3108. [Google Scholar] [CrossRef]
- Slavíková, Z.; Pořízka, J.; Diviš, P. Elemental analysis of czech wines including wines from organic production. J. Microbiol. Biotechnol. Food Sci. 2024, 13, e10219. [Google Scholar] [CrossRef]
- Yoldashkhan, A.; Samavat, S.; Zamanizadeh, H. In-vitro Antifungal Activity of Several Biorational Fungicides against Calonectria pseudonaviculata, the Causal Agent of Buxus hyrcana Blight. For. Pathol. 2018, 48, e12442. [Google Scholar] [CrossRef]
- Wei, X.; Shao, M.; Zhuang, J.; Horton, R. Soil Iron Fractionation and Availability at Selected Landscape Positions in a Loessial Gully Region of Northwestern China. Soil. Sci. Plant Nutr. 2010, 56, 617–626. [Google Scholar] [CrossRef]
- Obhod Aš, J.; Valković, V.; Vinković, A.; Sudac, D.; Čanad Lja, I.; Pensa, T.; Fiket, Ž.; Turyanskaya, A.; Bretschneider, T.; Wilhelmer, C.; et al. X-Ray Fluorescence Techniques for Element Abundance Analysis in Wine. ACS Omega 2021, 6, 22643–22654. [Google Scholar] [CrossRef]
- Mirlean, N.; Roisenberg, A.; Chies, J.O. Metal Contamination of Vineyard Soils in Wet Subtropics (Southern Brazil). Environ. Pollut. 2007, 149, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Bora, F.D.; Călugăr, A.; Bunea, C.I.; Filimon, V.R. Differentiation of Wines Obtained in the Region of Dealurile Moldovei Vineyard Using Multielement Composition—Comparison with Vineyard Soil. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic. 2021, 78, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhao, H.; Zhou, M.; Zhang, J.; An, T.; Fu, W.; Li, D.; Cao, X.; Liu, B. Retromer Complex and PI3K Complex II-Related Genes Mediate the Yeast (Saccharomyces Cerevisiae) Sodium Metabisulfite Resistance Response. Cells 2021, 10, 3512. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, J.; Wang, L.; Li, J.; Wang, M.; Wang, L.; Zhu, B.; Zhang, B. Evolution of Sensory Attributes and Physicochemical Indexes of Gouqi Fermented Wine under Different Aging Treatments and Their Correlations. J. Food Process. Preserv. 2019, 43, e13873. [Google Scholar] [CrossRef]
- Pittari, E.; Catarino, S.; Andrade, M.C.; Ricardo-da-Silva, J.M. Preliminary Results on Tartaric Stabilization of Red Wine by Adding Different Carboxymethylcelluloses. Ciênc. Tec. Vitivinic. 2018, 33, 47–57. [Google Scholar] [CrossRef]
- Bosso, A.; Motta, S.; Panero, L.; Lucini, S.; Guaita, M. Use of Potassium Polyaspartate for Stabilization of Potassium Bitartrate in Wines: Influence on Colloidal Stability and Interactions with Other Additives and Enological Practices. J. Food Sci. 2020, 85, 2406–2415. [Google Scholar] [CrossRef] [PubMed]
- Usmani, L.; Shakil, A.; Khan, I.; Alvi, T.; Singh, S.; Das, D. Brassinosteroids in Micronutrient Homeostasis: Mechanisms and Implications for Plant Nutrition and Stress Resilience. Plants 2025, 14, 598. [Google Scholar] [CrossRef]
- Monib, A.W.; Niazi, P.; Sediqi, S. Investigating Approaches for Optimizing Agricultural Yield: A Comprehensive Review of the Crucial Role of Micronutrients in Enhancing Plant Growth and Maximizing Production. J. Res. Appl. Sci. Biotechnol. 2023, 2, 168–180. [Google Scholar] [CrossRef]
- Morad, D.; Bernstein, N. Response of Medical Cannabis to Magnesium (Mg) Supply at the Vegetative Growth Phase. Plants 2023, 12, 2676. [Google Scholar] [CrossRef]
- Senbayram, M.; Gransee, A.; Wahle, V.; Thiel, H. Role of Magnesium Fertilisers in Agriculture: Plant–Soil Continuum. Crop Pasture Sci. 2015, 66, 1219. [Google Scholar] [CrossRef]
- Karbowiak, T.; Gougeon, R.D.; Alinc, J.-B.; Brachais, L.; Debeaufort, F.; Voilley, A.; Chassagne, D. Wine Oxidation and the Role of Cork. Crit. Rev. Food Sci. Nutr. 2009, 50, 20–52. [Google Scholar] [CrossRef]
- Mercanti, N.; Macaluso, M.; Pieracci, Y.; Brazzarola, F.; Palla, F.; Verdini, P.G.; Zinnai, A. Enhancing Wine Shelf-Life: Insights into Factors Influencing Oxidation and Preservation. Heliyon 2024, 10, e35688. [Google Scholar] [CrossRef]
- Cosme, F.; Filipe-Ribeiro, L.; Coixão, A.; Bezerra, M.; Nunes, F.M. Efficiency of Alginic Acid, Sodium Carboxymethylcellulose, and Potassium Polyaspartate as Calcium Tartrate Stabilizers in Wines. Foods 2024, 13, 1880. [Google Scholar] [CrossRef] [PubMed]
- Marchionni, S.; Buccianti, A.; Bollati, A.; Braschi, E.; Cifelli, F.; Molin, P.; Parotto, M.; Mattei, M.; Tommasini, S.; Conticelli, S. Conservation of 87 Sr/86 Sr Isotopic Ratios during the Winemaking Processes of ‘Red’ Wines to Validate Their Use as Geographic Tracer. Food Chem. 2016, 190, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Arregui, M.; Latour, F.; Gil, F.J.; Pérez, R.A.; Giner-Tarrida, L.; Delgado, L.M. Ion Release from Dental Implants, Prosthetic Abutments and Crowns under Physiological and Acidic Conditions. Coatings 2021, 11, 98. [Google Scholar] [CrossRef]
- Kaur, K.; Crimi, M. Release of Chromium from Soils with Persulfate Chemical Oxidation. Groundwater 2014, 52, 748–755. [Google Scholar] [CrossRef]
- Fransiska, A.; Yohana, N.; Oktafiani, M. Effect of Lactobacillus Casei Shirota Strain Probiotic Beverage on the Release of Chromium Ions in Stainless Steel Brackets. Padjadjaran J. Dent. 2023, 35, 134. [Google Scholar] [CrossRef]
- Bekker, M.Z.; Day, M.P.; Smith, P.A. Changes in Metal Ion Concentrations in a Chardonnay Wine Related to Oxygen Exposure during Vinification. Molecules 2019, 24, 1523. [Google Scholar] [CrossRef]
- Kim, J.-S. Optimization of Accelerated Solvent Extraction of Ginsenosides from Cultivated Wild Ginseng Using Response Surface Methodology. Prev. Nutr. Food Sci. 2022, 27, 315–322. [Google Scholar] [CrossRef]
- Ferreras, D.; Fernández, E.; Falqué, E. Note: Effects of Oak Wood on the Aromatic Composition of Vitis vinifera L. Var. Treixadura Wines. Food Sci. Technol. Int. 2002, 8, 343–349. [Google Scholar] [CrossRef]
- Wan, J.; Wang, R.; Wang, R.; Ju, Q.; Wang, Y.; Xu, J. Comparative Physiological and Transcriptomic Analyses Reveal the Toxic Effects of ZnO Nanoparticles on Plant Growth. Environ. Sci. Technol. 2019, 53, 4235–4244. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, L.; Ren, H.; Wang, X.; Mi, F. Zinc Toxicity Response in Ceratoides Arborescens and Identification of CaMTP, a Novel Zinc Transporter. Front. Plant Sci. 2022, 13, 976311. [Google Scholar] [CrossRef] [PubMed]
- Gur, L.; Cohen, Y.; Frenkel, O.; Schweitzer, R.; Shlisel, M.; Reuveni, M. Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites. Plants 2022, 11, 978. [Google Scholar] [CrossRef] [PubMed]
- Semla, M.; Schwarcz, P.; Mezey, J.; Binkowski, Ł.J.; Błaszczyk, M.; Formicki, G.; Greń, A.; Stawarz, R.; Massanyi, P. Biogenic and Risk Elements in Wines from the Slovak Market with the Estimation of Consumer Exposure. Biol. Trace Elem. Res. 2018, 184, 33–41. [Google Scholar] [CrossRef]
- Dumitriu (Gabur), G.-D.; Teodosiu, C.; Morosanu, I.; Jitar, O.; Cotea, V.V. Quantification of Toxic Metals during Different Winemaking Stages. BIO Web Conf. 2019, 15, 02024. [Google Scholar] [CrossRef]
- Master, O.; Patronage, O. Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2023; Volume 1–2. [Google Scholar]
Elements | Mode | Dwell Time | Resolution |
---|---|---|---|
Ni, Cu, Zn, Rb, Sr, Mo, Cd, Pb, Mn, Co | SQ-KED | 0.1 s | Normal |
V, As, Ba | TQ-O2 (mass-shift mode) | 0.1 s | Normal |
S, Ca, Cr | 0.01 s | High | |
Al, Li, B | TQ-O2 (on-mass mode) | 0.1 s | Normal |
Mg, Na | 0.01 s | High | |
K, Fe | 0.005 s | High |
Samples | Ca (mg/L) | Mg (mg/L) | K (g/L) | Na (mg/L) | S (mg/L) | Al (µg/L) | As (µg/L) | Ba (µg/L) | Br (mg/L) | Cd (µg/L) | Co (µg/L) | Cr (µg/L) | Cu (µg/L) |
Bioma aged in wood | 280 ± 151 A | 536 ± 273 A | 1.92 ± 0.09 A | 10.0 ± 0.2 B | 107 ± 4.67 A | 567 ± 41 BC | 12.1 ± 0.5 A | 78.1 ± 1.0 A | 10.7 ± 0.04 A | 0.3 ± 0.1 A | 5.7 ± 0.2 A | 20.5 ± 0.4 BC | 186 ± 1 B |
Traditional Wood | 407 ± 160 A | 474 ± 318 A | 1.98 ± 0.17 A | 7.2 ± 0.01 B | 209 ± 11 A | 721 ± 25 AB | 11.1 ± 0.1 B | 62.3 ± 0.8 BC | 10.1 ± 0.1 AB | 0.3 ± 0.1 A | 5.3 ± 0.2 B | 24.3 ± 0.8 A | 248 ± 4 A |
Traditional Steel | 367 ± 231 A | 454 ± 168 A | 1.87 ± 0.11 A | 6.12 ± 0.2 A | 180 ± 86 A | 649 ± 11 C | 11 ± 0.0 C | 58.5 ± 0.8 C | 10.0 ± 7 B | 0.2 ± 0.1 B | 4.9 ± 0.2 C | 28.0 ± 2.0 C | 255 ± 1.1 C |
Bioma Steel | 494 ± 235 A | 295 ± 164 A | 1.90 ± 0.20 A | 26.01 ± 0.8 B | 150 ± 55 A | 465 ± 17 A | 8.5 ± 0.1 AB | 52.6 ± 0.6 B | 7.02 ± 0.04 AB | 0.2 ± 0.1 B | 3.0 ± 0.2 AB | 12.5 ± 0.7 AB | 99 ± 3 AB |
Samples | Fe (mg/L) | Li (µg/L) | Mn (mg/L) | Mo (µg/L) | Ni (µg/L) | Pb (µg/L) | Rb (mg/L) | Sr (µg/L) | V (µg/L) | Zn (µg/L) | |||
Bioma aged in wood | 3.2 ± 0.1 BC | 10.8 ± 0.4 A | 1.86 ± 0.7 A | 2.2 ± 0.1 C | 34.3 ± 0.3 A | 5.8 ± 0.1 A | 9.90.58 A | 697 ± 6 A | 2.0 ± 0.1 B | 837 ± 9 A | |||
Traditional Wood | 4.6 ± 1.0 A | 11.0 ± 0.4 A | 1.78 ± 0.6 B | 2.4 ± 0.1 A | 35.7 ± 0.5 A | 5.9 ± 0.1 A | 9.2 ± 0.2 A | 670 ± 8 B | 2.6 ± 0.1 A | 630 ± 9 B | |||
Traditional Steel | 5 ± 0 C | 11.3 ± 0.3 A | 1.60 ± 0.6 C | 2.6 ± 0.1 A | 35.4 ± 0.1 B | 5.5 ± 0.1 B | 9.0 ± 0.0 B | 612 ± 6 C | 2.7 ± 0.1 B | 639 ± 10 B | |||
Bioma Steel | 2.6 ± 0 AB | 8.5 ± 0.4 B | 1.38 ± 0.6 A | 1.8 ± 0.1 B | 22.3 ± 0.3 A | 3.5 ± 0.1 A | 5.58 ± 0.01 A | 554.7 ± 11.6 A | 1.6 ± 0.1 A | 613 ± 3 B |
Element | Winemaking Protocol (WP) | Ageing Method (AG) | WP × AG |
---|---|---|---|
Ca (mg/L) | * | n.s. | * |
Mg (mg/L) | n.s. | n.s. | * |
K (g/L) | n.s | n.s. | n.s. |
Na (mg/L) | ** | ** | *** |
S (mg/L) | n.s. | n.s. | * |
Al (µg/L) | * | n.s. | *** |
As (µg/L) | *** | *** | ** |
Ba (µg/L)) | *** | *** | * |
Br (mg/L) | ** | n.s. | n.s. |
Cd (µg/L) | *** | ** | * |
Co (µg/L) | *** | *** | ** |
Cr (µg/L) | n.s. | ** | * |
Cu (µg/L) | n.s. | * | *** |
Fe (mg/L) | n.s. | * | *** |
Li (µg/L) | ** | n.s. | ** |
Mn (mg/L) | n.s. | * | n.s. |
Mo (µg/L) | *** | ** | * |
Ni (µg/L) | ** | ** | *** |
Pb (µg/L) | *** | ** | *** |
Rb (mg/L) | *** | *** | ** |
Sr (µg/L) | *** | *** | * |
V (µg/L) | n.s. | n.s. | *** |
Zn (µg/L) | *** | *** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercanti, N.; Pieracci, Y.; Macaluso, M.; Zinnai, A.; Donard, O.F.X.; Vacchina, V. Chemical Characterisation of Inorganic Profile of Wine Obtained by Alternative Vinification in Comparison with Traditional One. Foods 2025, 14, 1912. https://doi.org/10.3390/foods14111912
Mercanti N, Pieracci Y, Macaluso M, Zinnai A, Donard OFX, Vacchina V. Chemical Characterisation of Inorganic Profile of Wine Obtained by Alternative Vinification in Comparison with Traditional One. Foods. 2025; 14(11):1912. https://doi.org/10.3390/foods14111912
Chicago/Turabian StyleMercanti, Nicola, Ylenia Pieracci, Monica Macaluso, Angela Zinnai, Olivier F. X. Donard, and Véronique Vacchina. 2025. "Chemical Characterisation of Inorganic Profile of Wine Obtained by Alternative Vinification in Comparison with Traditional One" Foods 14, no. 11: 1912. https://doi.org/10.3390/foods14111912
APA StyleMercanti, N., Pieracci, Y., Macaluso, M., Zinnai, A., Donard, O. F. X., & Vacchina, V. (2025). Chemical Characterisation of Inorganic Profile of Wine Obtained by Alternative Vinification in Comparison with Traditional One. Foods, 14(11), 1912. https://doi.org/10.3390/foods14111912