Effects of Dietary Garlic Skin Based on Metabolomics Analysis in the Meat Quality of Black Goats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Methods for Basal Diet Composition and Nutritional Profiling
2.2. Slaughter and Meat Quality Indicators
2.3. Analysis of the Amino Acid Composition
2.4. Analysis of the Fatty Acid Composition
2.5. UPLC-MS/MS Metabolomic Analysis
2.6. Statistical Analysis
3. Results
3.1. Comparison of Slaughter Performance Indicators of Two Groups of Goats
3.2. Comparison of Meat Quality Indicators of Two Groups of Goats
3.3. Comparison of Amino Acid and Fatty Acid Indicators of Two Groups of Goats
3.4. Untargeted Metabolomics Profiling of Meat
3.4.1. Overview of Metabolomics Analysis
3.4.2. KEGG Enrichment Analysis
3.4.3. Analysis of the Correlation Between the Metabolites Related to the Differences in Meat Quality and Muscle
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, L.; He, X.Y.; Jiang, Y.T.; Lan, R.; Li, M.; Li, Z.M.; Yang, W.F.; Hong, Q.H.; Chu, M.X. Combined approaches to reveal genes associated with litter size in Yunshang black goats. Anim. Genet. 2020, 51, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Teixeira, A.; Guedes, C. Sheep and Goat Meat Processing and Quality. Foods 2023, 12, 2033. [Google Scholar] [CrossRef]
- Ding, W.; Lu, Y.; Xu, B.; Chen, P.; Li, A.; Jian, F.; Yu, G.; Huang, S. Meat of Sheep: Insights into Mutton Evaluation, Nutritive Value, Influential Factors, and Interventions. Agriculture 2024, 14, 1060. [Google Scholar] [CrossRef]
- Knapik, J.; Ropka-Molik, K.; Pieszka, M. Genetic and nutritional factors determining the production and quality of sheep meat—A review. Ann. Anim. Sci. 2016, 17, 23–40. [Google Scholar] [CrossRef]
- Prache, S.; Schreurs, N.; Guillier, L. Review: Factors affecting sheep carcass and meat quality attributes. Animal 2022, 16 (Suppl. S1), 100330. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, Y.I.; Oh, Y.K.; Ahmadi, F.; Kwak, W.S. Yield survey and nutritional evaluation of garlic stalk for ruminant feed. J. Anim. Sci. Technol. 2017, 59, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Su, Z.; Xu, W.; Sun, H.X.; Gao, J.F.; Tu, D.F.; Ren, C.H.; Zhang, Z.J.; Cao, H.G. Garlic skin induces shifts in the rumen microbiome and metabolome of fattening lambs. Animal 2021, 15, 100216. [Google Scholar] [CrossRef]
- Louis, X.L.; Murphy, R.; Thandapilly, S.J.; Yu, L.; Netticadan, T. Garlic extracts prevent oxidative stress, hypertrophy and apoptosis in cardiomyocytes: A role for nitric oxide and hydrogen sulfide. BMC Complement. Altern. Med. 2012, 12, 140. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, X.; Wu, L.; Yang, Y.; Han, Y.; Su, C. Effects of allicin on growth performance, slaughter performance, antioxidant, immune parameters and economic benefits of black goats. Anim. Feed. Sci. Technol. 2025, 324, 116310. [Google Scholar] [CrossRef]
- Chen, J.; Huang, G.; Xiong, H.; Qin, H.; Zhang, H.; Sun, Y.; Dong, X.; Lei, Y.; Zhao, Y.; Zhao, Z. Effects of Mixing Garlic Skin on Fermentation Quality, Microbial Community of High-Moisture Pennisetum hydridum Silage. Front. Microbiol. 2021, 12, 770591. [Google Scholar] [CrossRef]
- Babaoğlu, A.S.; Poçan, H.B.; Ainiwaer, T.; Özkan, H.; Mutlu, E.K.; Karakaya, M. Assessment of garlic and onion powder as natural antioxidant on the physico-chemical properties, lipid-protein oxidation and sensorial characteristics of beef and chicken patties during frozen storage. J. Food Saf. Food Qual. 2023, 74, 120–127. [Google Scholar] [CrossRef]
- Xu, Y.; Yi, M.; Sun, S.; Wang, L.; Zhang, Z.; Ling, Y.; Cao, H. The regulatory mechanism of garlic skin improving the growth performance of fattening sheep through metabolism and immunity. Front. Vet. Sci. 2024, 11, 111409518. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jia, W.; Zhang, B.; Sun, S.; Dou, X.; Wu, Q.; Wang, Y.; Li, Y.; Ma, W.; Ren, G.; et al. Effects of Diet Xylooligosaccharide Supplementation on Growth Performance, Carcass Characteristics, and Meat Quality of Hu Lambs. Foods 2025, 14, 656. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Song, J.; Li, D.; Liu, Z.; Wang, C.; Li, T.; Ma, Y. Insights into the differences in meat quality among different sheep breeds in the Qilian Mountains from the perspective of metabolomics and transcriptomics. Food Biosci. 2025, 63, 105693. [Google Scholar] [CrossRef]
- He, P.; Lei, Y.; Zhang, K.; Zhang, R.; Bai, Y.; Li, Z.; Jia, L.; Shi, J.; Cheng, Q.; Ma, Y.; et al. Dietary oregano essential oil supplementation alters meat quality, oxidative stability, and fatty acid profiles of beef cattle. Meat Sci. 2023, 205, 109317. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Xu, R.; Tian, J.; Li, T.; Chen, S. Comparative Analysis of the Nutrient Composition of Caulerpa lentillifera from Various Cultivation Sites. Foods 2025, 14, 474. [Google Scholar] [CrossRef]
- Lin, H.; Yu, X.; Fang, J.; Lu, Y.; Liu, P.; Xing, Y.; Wang, Q.; Che, Z.; He, Q. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules 2018, 23, 1299. [Google Scholar] [CrossRef]
- Honicky, M.; Cardoso, S.M.; de Lima, L.R.A.; Ozcariz, S.G.I.; Vieira, F.G.K.; de Carlos Back, I.; Moreno, Y.M.F. Added sugar and trans fatty acid intake and sedentary behavior were associated with excess total-body and central adiposity in children and adolescents with congenital heart disease. Pediatr. Obes. 2020, 15, e12623. [Google Scholar] [CrossRef]
- Sims, E.D.; Jennings, W.J.; Empringham, B.; Fleming, A.; Portwine, C.; Johnston, D.L.; Zelcer, S.M.; Rassekh, S.R.; Burrow, S.; Thabane, L.; et al. Circulating leptin levels are associated with adiposity in survivors of childhood brain tumors. Sci. Rep. 2020, 10, 4711. [Google Scholar] [CrossRef]
- Sinclair, E.; Trivedi, D.K.; Sarkar, D.; Walton-Doyle, C.; Milne, J.; Kunath, T.; Rijs, A.M.; de Bie, R.M.A.; Goodacre, R.; Silverdale, M.; et al. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat. Commun. 2021, 12, 1592. [Google Scholar] [CrossRef] [PubMed]
- Arndt, D.; Wachsmuth, C.; Buchholz, C.; Bentley, M. A complex matrix characterization approach, applied to cigarette smoke, that integrates multiple analytical methods and compound identification strategies for non-targeted liquid chromatography with high-resolution mass spectrometry. Rapid Commun. Mass. Spectrom. 2020, 34, e8571. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, B.; Li, J.; Xiong, F.; Zhou, G. Multivariate Statistical Analysis of Metabolites in Anisodus tanguticus (Maxim.) Pascher to Determine Geographical Origins and Network Pharmacology. Front. Plant Sci. 2022, 13, 927336. [Google Scholar] [CrossRef] [PubMed]
- Bampidis, V.A.; Christodoulou, V.; Christaki, E.; Florou-Paneri, P.; Spais, A.B. Effect of dietary garlic bulb and garlic husk supplementation on performance and carcass characteristics of growing lambs. Anim. Feed Sci. Technol. 2005, 121, 273–283. [Google Scholar] [CrossRef]
- Yang, W.Z.; Ametaj, B.N.; Benchaar, C.; He, M.L.; Beauchemin, K.A. Cinnamaldehyde in feedlot cattle diets: Intake, growth performance, carcass characteristics, and blood metabolites. J. Anim. Sci. 2010, 88, 1082–1092. [Google Scholar] [CrossRef]
- Savairam, V.D.; Patil, N.A.; Borate, S.R.; Ghaisas, M.M.; Shete, R.V. Allicin: A review of its important pharmacological activities. Pharmacol. Res. 2023, 8, 100283. [Google Scholar] [CrossRef]
- Li, N.; Chen, K.; Dong, H.; Yang, J.; Yoshizawa, M.; Kagami, H.; Li, X. Alliin inhibits adipocyte differentiation by downregulating Akt expression: Implications for metabolic disease. Exp. Ther. Med. 2021, 21, 563. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef]
- Focke, M.; Feld, A.; Lichtenthaler, K. Allicin, a naturally occurring antibiotic from garlic, specifically inhibits acetyl-CoA synthetase. FEBS Lett. 1990, 261, 106–108. [Google Scholar] [CrossRef]
- Cao, Y.; Han, S.; Lu, H.; Luo, Y.; Guo, T.; Wu, Q.; Luo, F. Targeting mTOR Signaling by Dietary Polyphenols in Obesity Prevention. Nutrients 2022, 14, 5171. [Google Scholar] [CrossRef]
- Pan, S.; Wang, D.; Lin, Y.; Cheng, M.; Zhu, F.; Guo, Y. Effects of Ginger Straw Silage with Enzymes on Growth Performance, Digestion and Metabolism, Meat Quality and Rumen Microflora Diversity of Laiwu Black Goat. Animals 2024, 14, 2040. [Google Scholar] [CrossRef]
- Kiyimba, F.; Hartson, S.D.; Mafi, G.G.; Ramanathan, R. Glycogen Supplementation in Vitro Promotes pH Decline in Dark-Cutting Beef by Reverting Muscle’s Metabolome toward a Normal Postmortem Muscle State. J. Agric. Food Chem. 2024, 72, 25275–25285. [Google Scholar] [CrossRef] [PubMed]
- Niu, N.; Guo, L.; Luo, D.; Wang, Z.; Sha, R.; Han, H.; Zhang, L.; Dai, J.; Mao, J. Comparison and Analysis of the Quality of Fermented Garlic Liquid with Different Strains. Sci. Technol. Food Ind. 2022, 43, 104–111. [Google Scholar] [CrossRef]
- Chauhan, S.S.; England, E.M. Postmortem glycolysis and glycogenolysis: Insights from species comparisons. Meat Sci. 2018, 144, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Liao, L.; Huang, P.; Wang, Y.; Zhu, S.; Wang, X.; Lv, T.; Li, Y.; Fan, Z.; Liu, T.; et al. Effects of Different Levels of Garlic Straw Powder on Growth Performance, Meat Quality, Antioxidant and Intestinal Mucosal Morphology of Yellow-Feathered Broilers. Front. Physiol. 2022, 13, 902995. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.Y.; Ambigaipalan, P.; Shahidi, F. Preparation of Quercetin Esters and Their Antioxidant Activity. J. Agric. Food Chem. 2019, 67, 10653–10659. [Google Scholar] [CrossRef]
- Kang, J.S.; Kim, S.O.; Kim, G.; Hwang, H.J.; Kim, B.W.; Chang, Y.; Kim, W.; Kim, C.M.; Yoo, Y.H.; Choi, Y.H. An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts. Int. J. Mol. Med. 2016, 37, 149–156. [Google Scholar] [CrossRef]
- Torequl Islam, M.; Shimul Bhuia, M.; Paulo Martins de Lima, J.; Paulo Araujo Maia, F.; Beatriz Herminia Ducati, A.; Douglas Melo Coutinho, H. Phytanic acid, an inconclusive phytol metabolite: A review. Curr. Res. Toxicol. 2023, 5, 100120. [Google Scholar] [CrossRef]
- Horenkamp, F.A.; Valverde, D.P.; Nunnari, J.; Reinisch, K.M. Molecular basis for sterol transport by StART-like lipid transfer domains. EMBO J. 2018, 37, e98002. [Google Scholar] [CrossRef]
- Aichler, M.; Borgmann, D.; Krumsiek, J.; Buck, A.; MacDonald, P.E.; Fox, J.E.M.; Lyon, J.; Light, P.E.; Keipert, S.; Jastroch, M.; et al. N-acyl Taurines and Acylcarnitines Cause an Imbalance in Insulin Synthesis and Secretion Provoking β Cell Dysfunction in Type 2 Diabetes. Cell Metab. 2017, 25, 1334–1347.e4. [Google Scholar] [CrossRef]
- Perna, A.; Simonetti, A.; Grassi, G.; Gambacorta, E. Effect of a cauliflower (Brassica oleraceae var. Botrytis) leaf powder-enriched diet on performance, carcass and meat characteristics of growing rabbit. Meat Sci. 2019, 149, 134–140. [Google Scholar] [CrossRef]
- Ding, G.; Zhao, J.; Jiang, D. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells. Exp. Ther. Med. 2016, 11, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, M.; Yang, Y.; He, Y.; Qian, H. Structural basis for catalysis of human choline/ethanolamine phosphotransferase 1. Nat. Commun. 2023, 14, 2529. [Google Scholar] [CrossRef] [PubMed]
- Kurhaluk, N.; Tkaczenko, H. L-Arginine and Nitric Oxide in Vascular Regulation-Experimental Findings in the Context of Blood Donation. Nutrients 2025, 17, 665. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xu, P.; Li, S.; Zhu, X.; Chen, C.; Zhou, C. Effects of L-lysine/L-arginine on the Physicochemical Properties and Quality of Sodium-Reduced and Phosphate-Free Pork Sausage. Int. J. Nutr. Food Sci. 2017, 6, 12–18. [Google Scholar] [CrossRef]
- Duan, Y.; Li, F.; Li, Y.; Tang, Y.; Kong, X.; Feng, Z.; Anthony, T.G.; Watford, M.; Hou, Y.; Wu, G.; et al. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2016, 48, 41–51. [Google Scholar] [CrossRef]
- An, J.; Zhao, X.; Song, Y.; He, H.; Wang, Z.; Lan, X.; Ge, Y.; Liu, L.; Cheng, A.; Shen, W.; et al. Corrigendum to “High leucine bioavailability improves beef quality by altering serum metabolism in beef cattle” [Meat Science volume 220 (2025) 109693]. Meat Sci. 2025, 222, 109753. [Google Scholar] [CrossRef]
- Leaf, A.; Albert, C.M.; Josephson, M.; Steinhaus, D.; Kluger, J.; Kang, J.X.; Cox, B.; Zhang, H.; Schoenfeld, D.; Fatty Acid Antiarrhythmia Trial Investigators. Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circulation 2005, 112, 2762–2768. [Google Scholar] [CrossRef]
- Raymond, J.; Morin, A.; Poitras, M.; Plamondon, H. Short-Term Fish Oil Supplementation During Adolescence Supports Sex-Specific Impact on Adulthood Visuospatial Memory and Cognitive Flexibility. Nutrients 2022, 14, 3513. [Google Scholar] [CrossRef]
- Sanders, T.A.; Hinds, A.; Pereira, C.C. Influence of n-3 fatty acids on blood lipids in normal subjects. J. Intern. Med. Suppl. 1989, 731, 99–104. [Google Scholar] [CrossRef]
- Rahbari, S.; Salehi, A.; Sharifi, S.D.; Honarbakhsh, S. Dietary omega-3 fatty acids affect the growth performance of broiler chickens reared at high stocking density. Poult. Sci. 2025, 104, 104468. [Google Scholar] [CrossRef] [PubMed]
- Whittle, R.H.; Kiarie, E.G.; Widowski, T.M. The effect of feeding flaxseed as a source of omega-3 fatty acids to broiler and layer breeders during rearing and lay on body weight, reproductive performance, and hatchability performance indices. Can. J. Anim. Sci. 2024, 104, 313–323. [Google Scholar] [CrossRef]
- Bossie, M.A.; Martin, C.E. Nutritional regulation of yeast delta-9 fatty acid desaturase activity. J. Bacteriol. 1989, 171, 6409–6413. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sun, Q.; Tian, C.; Tang, X.; Ren, Y.; Chen, W. Assessment of the Nutrient Value and In Vitro Rumen Fermentation Characteristics of Garlic Peel, Sweet Potato Vine, and Cotton Straw. Fermentation 2024, 10, 464. [Google Scholar] [CrossRef]
- Zhu, Z.; Mao, S.; Zhu, W. Effects of ruminal infusion of garlic oil on fermentation dynamics, Fatty Acid profile and abundance of bacteria involved in biohydrogenation in rumen of goats. Asian-Australas. J. Anim. Sci. 2012, 25, 962–970. [Google Scholar] [CrossRef]
- Pan, C.; Pan, J.R.; Song, T.Z.; Zhao, W.S. Multi-omics Reveals That Short-Chain Fatty Acids Regulate Lipid Metabolism by Activating PPAR-γ Transcription Factors Through the Rumen-Muscle Axis: A New Perspective on Meat Quality. In Proceedings of the 2024 Academic Annual Meeting of the Chinese Association of Animal Science and Veterinary Medicine & the 10th National Academic Symposium for Young Scientists and Technologists in Animal Husbandry and Veterinary Medicine, Jiaxing, China, 25 October 2024. [Google Scholar]
- Xu, L.; Ma, X.; Verma, N.K.; Wang, D.; Gavrilova, O.; Proia, R.L.; Finkel, T.; Mueller, E. Ablation of PPARγ in subcutaneous fat exacerbates age-associated obesity and metabolic decline. Aging Cell 2018, 17, e12721. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J. Parenter. Enter. Nutr. 2015, 39 (Suppl. S1), 18S–32S. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, Y.; Zhang, B.; Li, D.; Yan, J.; Yang, J.; Sun, J.; Cao, H.; Wang, Y.; Zhang, F. Effects of different n-6/n-3 polyunsaturated fatty acids ratios on lipid metabolism in patients with hyperlipidemia: A randomized controlled clinical trial. Front. Nutr. 2023, 10, 1166702. [Google Scholar] [CrossRef]
- Yuan, Y.; Lu, L.; Bo, N.; Chaoyue, Y.; Haiyang, Y. Allicin Ameliorates Intestinal Barrier Damage via Microbiota-Regulated Short-Chain Fatty Acids-TLR4/MyD88/NF-κB Cascade Response in Acrylamide-Induced Rats. J. Agric. Food Chem. 2021, 69, 12837–12852. [Google Scholar] [CrossRef]
- Zhou, J.; Duan, M.; Wang, X.; Zhang, F.; Zhou, H.; Ma, T.; Yin, Q.; Zhang, J.; Tian, F.; Wang, G.; et al. A feedback loop engaging propionate catabolism intermediates controls mitochondrial morphology. Nat. Cell Biol. 2022, 24, 526–537. [Google Scholar] [CrossRef]
- Pang, R.; Xiao, X.; Mao, T.; Yu, J.; Huang, L.; Xu, W.; Li, Y.; Zhu, W. The molecular mechanism of propionate-regulating gluconeogenesis in bovine hepatocytes. Anim. Biosci. 2023, 36, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.T.; Stover, P.J. Folate-mediated one-carbon metabolism. Vitam. Horm. 2008, 79, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Okagu, I.U.; Akerele, O.A.; Fillier, T.; Pham, T.H.; Thomas, R.; Wilson, K.A.; Cheema, S.K. Maternal omega-3 polyunsaturated fatty acids improved levels of DHA-enriched phosphatidylethanolamines and enriched lipid clustering in the neuronal membranes of C57BL/6 mice fetal brains during gestation. J. Nutr. Biochem. 2025, 140, 109891. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.H.; Liu, D.; Liu, X.T.; Qi, Y. Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer. Int. J. Mol. Sci. 2021, 22, 13184. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Rothenberger, E.; Zhao, T.; Fan, W.; Kelly, A.; Attaya, A.; Fan, D.; Panigrahy, D.; Deng, J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol. Ther. 2023, 248, 108455. [Google Scholar] [CrossRef]
- Valenzuela, R.; Metherel, A.H.; Cisbani, G.; Smith, M.E.; Chouinard-Watkins, R.; Klievik, B.J.; Farias, C.; Videla, L.A.; Bazinet, R.P. Specific activity of mouse liver desaturases and elongases: Time course effects using n-3 and n-6 PUFA substrates and inhibitory responses of delta-6 desaturase. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2025, 1870, 159594. [Google Scholar] [CrossRef]
Items | FR | NR |
---|---|---|
Corn straw (%) | 25 | 8 |
Peanut straw (%) | 32 | 32 |
Garlic skin (%) | - | 16 |
Soybean meal (%) | 15 | 15 |
Corn (%) | 24 | 24 |
Sodium chloride (%) | 0.5 | 0.5 |
Limestone (%) | 0.4 | 1 |
Dicalcium phosphate (%) | 0.7 | 0.7 |
Urea phosphate (%) | 0.4 | 0.8 |
Premix 1 | 2 | 2 |
100 | 100 | |
Nutrient levels 2 | ||
Dry matter (fresh) | 33.25 | 33.31 |
Organic matter (%) | 88.17 | 87.91 |
Ash (%) | 8.65 | 8.46 |
Gross energy (MJ/kg) | 15.12 | 15.20 |
Metabolizable energy (MJ/kg) | 9.16 | 9.15 |
Total digestible nutrients (%) | 49.78 | 49.73 |
Crude protein (%) | 14.26 | 14.3 |
Neutral detergent fiber (%) | 42.62 | 42.69 |
Acid detergent fiber (%) | 21.20 | 21.22 |
Ether extract (%) | 3.11 | 2.98 |
Non-fiber carbohydrates (%) | 31.36 | 31.57 |
Calcium (%) | 0.94 | 0.95 |
Total phosphorus (%) | 0.55 | 0.56 |
FR | NR | t | p | |
---|---|---|---|---|
Initial weight (kg) | 15.57 ± 0.67 | 15.17 ± 0.43 | −1.242 | 0.242 |
Fasted live weight (kg) | 22.15 ± 3.75 | 22.56 ± 1.41 | 0.250 | 0.808 |
TWG (kg) | 6.57 ± 3.28 | 7.39 ± 1.30 | 0.566 | 0.584 |
ADG (g/d) | 109.56 ± 54.59 | 123.14 ± 21.69 | 0.566 | 0.584 |
Carcass weight (kg) | 10.04 ± 2.11 | 9.66 ± 1.80 | −0.339 | 0.742 |
Dressing percentage (%) | 45.22 ± 3.85 | 42.58 ± 5.75 | −0.935 | 0.372 |
Eye muscle area (cm2) | 8.02 ± 1.15 * | 9.45 ± 0.71 | 2.593 | 0.027 |
GR (mm) | 2.84 ± 0.34 | 3.07 ± 0.28 | 1.313 | 0.219 |
Backfat thickness (mm) | 3.14 ± 0.70 * | 2.18 ± 0.54 | −2.641 | 0.025 |
FR | NR | t | p | |
---|---|---|---|---|
pH0h | 5.56 ± 0.24 * | 5.93 ± 0.29 | −2.38 | 0.039 |
pH24h | 4.83 ± 0.17 | 4.85 ± 0.12 | −0.14 | 0.895 |
L*0h | 39.49 ± 2.62 | 41.11 ± 1.45 | 1.32 | 0.224 |
a*0h | 14.50 ± 0.52 | 14.57 ± 0.86 | 0.19 | 0.855 |
b*0h | 8.82 ± 1.30 | 8.20 ± 0.74 | −1.00 | 0.342 |
L*24h | 44.60 ± 3.51 * | 48.94 ± 3.10 | 2.27 | 0.046 |
a*24h | 16.16 ± 1.27 * | 18.77 ± 1.97 | 2.73 | 0.021 |
b*24h | 10.25 ± 0.84 | 11.37 ± 1.97 | 1.28 | 0.243 |
Drip loss (%) | 4.19 ± 2.00 | 4.12 ± 1.50 | −0.58 | 0.956 |
Cooking loss (%) | 38.26 ± 3.67 ** | 30.39 ± 4.73 | −3.22 | 0.009 |
Freezing loss (%) | 6.50 ± 2.53 | 4.41 ± 3.59 | −1.17 | 0.269 |
AA (g/100 g) | FR | NR | t | p |
---|---|---|---|---|
Asp | 1.78 ± 0.07 * | 1.87 ± 0.03 | 2.59 | 0.032 |
Ser | 0.73 ± 0.03 * | 0.78 ± 0.02 | 3.311 | 0.011 |
Glu | 2.94 ± 0.13 * | 3.13 ± 0.04 | 3.029 | 0.016 |
Gly | 0.90 ± 0.04 | 0.97 ± 0.08 | 1.827 | 0.105 |
Ala | 1.11 ± 0.05 | 1.14 ± 0.07 | 0.849 | 0.416 |
Val | 1.05 ± 0.05 | 1.04 ± 0.06 | −0.272 | 0.791 |
Met | 0.23 ± 0.08 | 0.27 ± 0.05 | 1.159 | 0.273 |
IIe | 0.93 ± 0.04 | 0.96 ± 0.01 | 1.608 | 0.146 |
Leu | 1.57 ± 0.06 * | 1.68 ± 0.04 | 3.128 | 0.02 |
Lys | 1.75 ± 0.07 * | 1.85 ± 0.04 | 2.665 | 0.029 |
His | 0.61 ± 0.08 | 0.67 ± 0.01 | 1.655 | 0.172 |
Arg | 1.24 ± 0.05 ** | 1.35 ± 0.02 | 4.663 | 0.003 |
EAAs | 1.04 ± 0.05 | 1.06 ± 0.06 | 0.549 | 0.595 |
TAAs | 1.08 ± 0.05 | 1.11 ± 0.06 | 0.922 | 0.378 |
FA (mg/kg) | FR | NR | t | p |
---|---|---|---|---|
C4:0 | 0.60 ± 0.14 * | 0.86 ± 0.22 | 2.455 | 0.034 |
C6:0 | 0.15 ± 0.04 | 0.19 ± 0.06 | 1.343 | 0.209 |
C8:0 | 0.52 ± 0.13 * | 0.74 ± 0.19 | 2.256 | 0.048 |
C10:0 | 5.11 ± 2.09 | 4.49 ± 0.26 | −0.457 | 0.657 |
C12:0 | 2.90 ± 1.39 | 4.26 ± 4.36 | 0.728 | 0.483 |
C18:1n9c | 5869.83 ± 1933.81 | 3972.88 ± 1428.89 | −1.932 | 0.082 |
C18:2n6c | 648.65 ± 179.40 | 615.08 ± 132.36 | −0.369 | 0.72 |
C20:0 | 8.97 ± 1.87 ** | 14.02 ± 2.34 | 4.139 | 0.002 |
C18:3n6 | 4.60 ± 0.81 ** | 2.96 ± 0.92 | −3.292 | 0.008 |
C18:3n3 | 19.17 ± 8.74 *** | 114.37 ± 19.21 | 11.05 | <0.001 |
C20:1 | 12.34 ± 3.16 *** | 29.52 ± 5.82 | 6.355 | <0.001 |
C20:3n6 | 25.12 ± 4.34 | 25.41 ± 13.09 | 0.051 | 0.96 |
C20:3n3 | 4.69 ± 0.56 ** | 6.84 ± 1.33 | 3.644 | 0.005 |
C22:1n9 | 7.01 ± 2.71 | 8.65 ± 2.41 | 1.111 | 0.293 |
C20:4n6 | 322.15 ± 46.43 | 296.27 ± 142.60 | −0.423 | 0.681 |
C23:0 | 13.89 ± 2.86 ** | 22.31 ± 5.76 | 3.206 | 0.009 |
C20:5n3 | 13.79 ± 3.94 ** | 127.45 ± 66.48 | 4.181 | 0.009 |
C24:0 | 16.47 ± 2.98 * | 13.79 ± 9.34 | 2.466 | 0.033 |
C24:1 | 13.05 ± 3.45 | 13.89 ± 7.02 | 0.263 | 0.798 |
C22:6n3 | 7.96 ± 2.28 ** | 40.38 ± 15.30 | 5.136 | 0.003 |
SFA | 327.46 ± 95.16 | 309.18 ± 84.94 | −0.351 | 0.733 |
MUFA | 677.22 ± 223.13 | 460.77 ± 164.31 | −1.913 | 0.085 |
PUFA | 95.70 ± 20.69 | 112.32 ± 32.83 | 1.049 | 0.319 |
N3 | 11.40 ± 1.93 ** | 72.26 ± 22.30 | 6.659 | 0.001 |
N6 | 200.11 ± 43.95 | 187.94 ± 54.41 | −0.426 | 0.679 |
N6/N3 | 17.54 ± 2.07 *** | 2.62 ± 0.20 | −17.58 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, W.; Shen, X. Effects of Dietary Garlic Skin Based on Metabolomics Analysis in the Meat Quality of Black Goats. Foods 2025, 14, 1911. https://doi.org/10.3390/foods14111911
Zeng W, Shen X. Effects of Dietary Garlic Skin Based on Metabolomics Analysis in the Meat Quality of Black Goats. Foods. 2025; 14(11):1911. https://doi.org/10.3390/foods14111911
Chicago/Turabian StyleZeng, Wanyi, and Xiaoyun Shen. 2025. "Effects of Dietary Garlic Skin Based on Metabolomics Analysis in the Meat Quality of Black Goats" Foods 14, no. 11: 1911. https://doi.org/10.3390/foods14111911
APA StyleZeng, W., & Shen, X. (2025). Effects of Dietary Garlic Skin Based on Metabolomics Analysis in the Meat Quality of Black Goats. Foods, 14(11), 1911. https://doi.org/10.3390/foods14111911