Insights into the Structural and Nutritional Variations in Soluble Dietary Fibers in Fruits and Vegetables Influenced by Food Processing Techniques
Abstract
:1. Introduction
2. Structural and Nutritional Properties of Soluble Dietary Fibers in Fruits and Vegetables
2.1. Structural Features of Soluble Dietary Fibers
2.2. Nutritional Characteristics of Soluble Dietary Fiber
2.3. Relationship Between Structural and Nutritional Properties of Soluble Dietary Fibers
- (1)
- The chemical composition of SDF affects the prevention of obesity. The main soluble dietary fibers in fruits and vegetables are pectin and inulin, which are highly viscous and strongly absorbent and can increase satiety and reduce energy intake. In addition, there are findings that indicate that soluble dietary fiber improves energy homeostasis and prevents obesity by increasing the diversity of the gut microbiota and the colonization of beneficial bacteria [29].
- (2)
- The molecular weight of SDF affects the absorption of harmful substances. SDFs with different molecular weights exhibit different functions. Studies have found that plantago polysaccharides with medium molecular weight show the strongest immune regulatory activity. In type 2 diabetic rats, the effects of medium-molecular-weight (252~757 kDa) konjac glucomannan on reducing fasting blood glucose, total cholesterol, and low-density lipoprotein cholesterol levels are superior to those of higher- or lower-molecular-weight konjac glucomannan. In addition, dietary polysaccharides with relatively low molecular weight often have good hydration properties, which allow SDF to form a gel-like substance in the intestine, helping to increase fecal volume and soften stool.
- (3)
- The monosaccharide composition of SDF affects the gut microbiota. Common monosaccharides in SDF include Glc, Xyl, Ara, Rha, Gal, and Man, which are mainly linked by β-1,4-glycosidic bonds and α-1,4-glycosidic bonds [30]. Studies have found that different monosaccharide compositions affect the fermentability of fiber. Some dietary fibers containing fructan structures (e.g., fructo-oligosaccharides and inulin) are highly susceptible to fermentation via beneficial gut microbiota. Additionally, the composition and ratio of different monosaccharides can affect the species of microbes in the gut; for example, galactose and lactose may be more favorable for the growth of specific beneficial bacteria. The growth of these probiotic bacteria can improve the balance of gut microbiota, enhance gut barrier function, and reduce the risk of intestinal diseases.
- (4)
- The surface properties of SDF affect blood sugar and blood lipid levels. The surface properties of SDF (such as hydrophilicity and hydrophobicity) affect its interactions with water and other nutrients. Research has found that hydrophilic fibers can better absorb water, increasing the volume of intestinal contents. In addition, the particle size, surface area, and average particle size of SDF particles all have a certain impact on the water retention capacity (WRC), water holding capacity (WHC), oil holding capacity (OHC), and swelling capacity (SC) of SDF. However, excessively small particle sizes are detrimental to improving the performance of WHC and OHC. A smaller average particle size of DF leads to higher viscosity values. Smaller fiber particle sizes provide a larger specific surface area and packing density, imparting the fluid structure and a larger amount of fiber with flow resistance. Compared to non-viscous fiber, high-viscosity fiber can increase intestinal viscosity, delay gastric emptying, and reduce the rate of glucose absorption, thereby weakening postprandial glucose and insulin responses [31].
3. Effects of Drying Processing Methods on Soluble Dietary Fiber in Fruits and Vegetables
Ingredients | Drying Condition | Effect on the Properties of SDF | References |
---|---|---|---|
Orange peel | Hot air drying, microwave drying | Water retention capacity and color were not affected, the rehydration performance of the fiber was changed, and the swelling capacity was increased. | [33] |
Peach | Microwave drying | A lower drying temperature led to higher hydraulic capacity, oil capacity, expansion force, and specific volume. | [34] |
Orange peel | Freeze drying, hot air drying | Freeze drying increased the viscosity of SDF and led to a higher glucose adsorption capacity and glucose dialysis block index. Hot air drying reduced the molecular weight of SDF. | [35] |
Carrot | Hot air drying | Water retention, total phenolic content, and antioxidant activity markedly decreased. | [36] |
Cabbage | Vacuum drying | Vacuum drying temperature had no effect on the total phenolic content or antioxidant capacity of SDF. | [37] |
3.1. Hot Air Drying
3.2. Freeze Drying
3.3. Microwave Drying
4. Effects of Heating Processing Methods on Soluble Dietary Fiber in Fruits and Vegetables
4.1. Blanching Treatment
4.2. Sterilization Treatment
4.3. Expansion Processing Treatment
4.3.1. Extrusion Puffing
4.3.2. Steam Explosion
4.3.3. Pressure Difference Expansion
5. Effects of Powder Processing Methods on Soluble Dietary Fiber in Fruits and Vegetables
6. Effects of Fermenting Processing Methods on Soluble Dietary Fiber in Fruits and Vegetables
7. Other Processing Methods
7.1. Ultra-High-Pressure Technology
7.2. High-Pressure Homogenization Technology
8. Comparison of Processing-Induced Structural and Nutritional Variations in Soluble Dietary Fiber in Fruits and Vegetables
8.1. Physical Processing Methods
8.2. Physicochemical Processing Methods
8.3. Biological Processing Methods
9. Guidance in Terms of Soluble Dietary Fiber Application in Food Industry
10. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santhakumar, A.B.; Battino, M.; Alvarez-Suarez, J.M. Dietary polyphenols: Structures, bioavailability and protective effects against atherosclerosis. Food. Chem. Toxicol. 2018, 113, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Lian, Y.; Zhao, C.; Du, H.; Han, Y.; Gao, W.; Xiao, H.; Zheng, J. Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Compr. Rev. Food. Sci. Food Saf. 2019, 18, 1514–1532. [Google Scholar] [CrossRef] [PubMed]
- Norton, V.; Lovegrove, J.A.; Tindall, M.; Garcia, J.R.; Lignou, S. Fibre4life: Investigating older adults dietary fibre preferences and the role of targeted educational materials on modulating future dietary fibre intake. Appetite 2023, 192, 107109. [Google Scholar] [CrossRef]
- Lingxiao, G.; Feiyue, L.; Jie, L.; Jing, W. Dietary fiber (oligosaccharide and non-starch polysaccharide) in preventing and treating functional gastrointestinal disorders—Challenges and controversies: A review. Int. J. Biol. Macromol. 2024, 258, 128835. [Google Scholar]
- CorinaBianca, I.; Khaled, Z.; Magdalena, M.; Eliza, O.; Marius, N.S.; Elena, M.; DenisaElena, D.; Cosmin, R.A.; Doina, D.; Carolina, N. Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review. Nutrients 2022, 14, 2641. [Google Scholar] [CrossRef]
- Brouns, F. WHO Guideline: “Sugars intake for adults and children” raises some question marks. Agro Food Ind. Hi-Tech 2015, 26, 34–36. [Google Scholar]
- Shelley, M.U.S. Department of Agriculture and U.S. Department of Health and Human Services, Dietary Guidelines for Americans, 2010. 7th Edition, Washington, DC: U.S. Government Printing Office, January 2011. Adv. Nutr. 2011, 2, 293–294. [Google Scholar]
- Murray, T.K. Canada adopts dietary guidelines. Nutr. Bull. 1978, 4, 331–334. [Google Scholar] [CrossRef]
- Yang, M.; Wu, L.; Cao, C.; Wang, S.; Zhang, D. Improved function of bamboo shoot fibre by high-speed shear dispersing combined with enzyme treatment. Int. J. Food Sci. Technol. 2019, 54, 844–853. [Google Scholar] [CrossRef]
- Maina, N.H.; Rieder, A.; De Bondt, Y.; Mäkelä-Salmi, N.; Sahlstrøm, S.; Mattila, O.; Lamothe, L.M.; Nyström, L.; Courtin, C.M.; Katina, K.; et al. Process-Induced Changes in the Quantity and Characteristics of Grain Dietary Fiber. Foods 2021, 10, 2566. [Google Scholar] [CrossRef]
- Pérez, S.; Mazeau, K.; du Penhoat, C.H. The three-dimensional structures of the pectic polysaccharides. Plant Physiol. Biochem. 2000, 38, 37–55. [Google Scholar]
- Wang, X.; Zhang, Z.; Yao, Z.; Zhao, M.; Qi, H. Sulfation, anticoagulant and antioxidant activities of polysaccharide from green algae Enteromorpha linza. Int. J. Biol. Macromol. 2013, 58, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, H.; Yuan, F.; Pan, Q.; Fan, R.; Gao, Y. Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotechnol. 2015, 4, 250–258. [Google Scholar] [CrossRef]
- Muhammad, K.; Zahari, N.I.M.; Gannasin, S.P.; Adzahan, N.M.; Bakar, J. High methoxyl pectin from dragon fruit (Hylocereus polyrhizus) peel. Food Hydrocoll. 2014, 42, 289–297. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, W.; Lan, X.; Gong, S.; Wu, J.; Wang, Z. Physicochemical properties and structural characteristics of soluble dietary fibers from yellow and purple fleshed potatoes by-product. Int. J. Food Prop. 2018, 20, 2939–2949. [Google Scholar] [CrossRef]
- Khodaei, N.; Karboune, S. Extraction and structural characterisation of rhamnogalacturonan I-type pectic polysaccharides from potato cell wall. Food Chem. 2013, 139, 617–623. [Google Scholar] [CrossRef]
- Fracasso, A.F.; Perussello, C.A.; Carpiné, D.; de Oliveira Petkowicz, C.L.; Haminiuk, C.W.I. Chemical modification of citrus pectin: Structural, physical and rheologial implications. Int. J. Biol. Macromol. 2018, 109, 784–792. [Google Scholar] [CrossRef]
- Shi, X.; Yin, J.; Zhang, L.; Li, O.; Huang, X.; Nie, S. Studies on polysaccharides from leaf skin of Aloe barbadensis Miller: Part II. Structural characteristics and molecular properties of two lower molecular weight fractions. Food Hydrocoll. 2018, 86, 50–61. [Google Scholar] [CrossRef]
- Yao, H.-Y.; Wang, J.-Q.; Yin, J.-Y.; Nie, S.-P.; Xie, M.-Y. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res. Int. 2021, 143, 110290. [Google Scholar] [CrossRef]
- Mei, X.; Mu, T.-H.; Han, J.-J. Composition and physicochemical properties of dietary fiber extracted from residues of 10 varieties of sweet potato by a sieving method. J. Agric. Food Chem. 2010, 58, 7305–7310. [Google Scholar] [CrossRef]
- Jao, W.-C.; Wu, S.-J. Influence of high hydrostatic pressure treatment on the soluble dietary fiber content and physicochemical characteristics of edamame. LWT-Food Sci. Technol. 2024, 202, 116294. [Google Scholar] [CrossRef]
- Baky, M.H.; Salah, M.; Ezzelarab, N.; Shao, P.; Elshahed, M.S.; Farag, M.A. Insoluble dietary fibers: Structure, metabolism, interactions with human microbiome, and role in gut homeostasis. Crit. Rev. Food. Sci. Nutr. 2022, 64, 11–15. [Google Scholar] [CrossRef]
- Chutkan, R.; Fahey, G.; Wright, W.L.; McRorie, J. Viscous versus nonviscous soluble fiber supplements: Mechanisms and evidence for fiber-specific health benefits. J. Am. Acad. Nurse Pract. 2012, 24, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zu, Q.; Zhang, J.; Liu, S.; Zhang, G.; Chang, X.; Li, X. Soluble Dietary Fiber of Hawthorn Relieves Constipation Induced by Loperamide Hydrochloride by Improving Intestinal Flora and Inflammation, Thereby Regulating the Aquaporin Ion Pathway in Mice. Foods 2024, 13, 2220. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, D.; Ding, Y.; Zhang, J.; Ding, Y.; Lyu, F. Effect and mechanism of insoluble dietary fiber on postprandial blood sugar regulation. Trends Food Sci. Technol. 2024, 146, 104354. [Google Scholar] [CrossRef]
- Han, X.; Ma, Y.; Ding, S.; Fang, J.; Liu, G. Regulation of dietary fiber on intestinal microorganisms and its effects on animal health. Anim. Nutr. 2023, 14, 356–369. [Google Scholar] [CrossRef]
- Yu, P.; Pan, X.; Chen, M.; Ma, J.; Xu, B.; Zhao, Y. Lipid Lowering with Soluble Dietary Fiber. Curr. Atheroscler. Rep. 2016, 18, 75. [Google Scholar]
- Masoumeh, A. The role of dietary fibers in regulating appetite, an overview of mechanisms and weight consequences. Crit. Rev. Food Sci. Nutr. 2022, 64, 11–12. [Google Scholar]
- Wang, H.; Hong, T.; Li, N.; Zang, B.; Wu, X. Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota. Biochem. Biophys. Res. Commun. 2018, 498, 146–151. [Google Scholar] [CrossRef]
- Tang, W.; Lin, X.; Walayat, N.; Liu, J.; Zhao, P. Dietary fiber modification: Structure, physicochemical properties, bioactivities, and application—A review. Crit. Rev. Food. Sci. Nutr. 2023, 21, 7895–7915. [Google Scholar] [CrossRef]
- Slavin, J.L. Dietary fiber and body weight. Nutrition 2005, 21, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Bai, X.; Zhang, Z. Extrusion process improves the functionality of soluble dietary fiber in oat bran. J. Cereal Sci. 2011, 54, 98–103. [Google Scholar] [CrossRef]
- Talens, C.; Arboleya, J.C.; Castro-Giraldez, M.; Fito, P.J. Effect of microwave power coupled with hot air drying on process efficiency and physico-chemical properties of a new dietary fibre ingredient obtained from orange peel. LWT-Food Sci. Technol. 2017, 77, 110–118. [Google Scholar] [CrossRef]
- Jader, M.; Coralia, O.; Eduardo, O.L. Effect of temperature and particle size on physicochemical and techno-functional properties of peach palm peel flour (Bactris gasipaes, red and yellow ecotypes). Food Sci. Technol. Int. 2021, 28, 10820132211025133. [Google Scholar]
- Liu, Y.; Fan, C.; Tian, M.; Yang, Z.; Liu, F.; Pan, S. Effect of drying methods on physicochemical properties and in vitro hypoglycemic effects of orange peel dietary fiber. J. Food Process. Preserv. 2017, 41, e13292. [Google Scholar] [CrossRef]
- Chantaro, P.; Devahastin, S.; Chiewchan, N. Production of antioxidant high dietary fiber powder from carrot peels. LWT-Food Sci. Technol. 2007, 41, 1987–1994. [Google Scholar] [CrossRef]
- Jongaroontaprangsee, S.; Tritrong, W.; Chokanaporn, W.; Methacanon, P.; Devahastin, S.; Chiewchan, N. Effects of Drying Temperature and Particle Size on Hydration Properties of Dietary Fiber Powder from Lime and Cabbage By-Products. Int. J. Food Prop. 2007, 10, 887–897. [Google Scholar] [CrossRef]
- Sui, W.; Mu, T.; Sun, H.; Yang, H. Effects of different drying methods on nutritional composition, physicochemical and functional properties of sweet potato leaves. J. Food Process. Preserv. 2019, 43, e13884. [Google Scholar] [CrossRef]
- Heras, R.M.-L.; Landines, E.F.; Heredia, A.; Castelló, M.L.; Andrés, A. Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. J. Food Sci. Technol. 2017, 54, 2902–2912. [Google Scholar] [CrossRef]
- Egas-Astudillo, L.A.; Martínez-Navarrete, N.; Camacho, M.M. Impact of biopolymers added to a grapefruit puree and freeze-drying shelf temperature on process time reduction and product quality. Food Bioprod. Process. 2020, 120, 143–150. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, X.; Zhang, Q.; Giovanni, V.; Meng, X. Key composition optimization of meat processed protein source by vacuum freeze-drying technology. Saudi J. Biol. Sci. 2017, 25, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Pellicer, J.A.; Fortea, M.I.; Trabal, J.; Rodríguez-López, M.I.; Gabaldón, J.A.; Núñez-Delicado, E. Stability of microencapsulated strawberry flavour by spray drying, freeze drying and fluid bed. Powder Technol. 2019, 347, 179–185. [Google Scholar] [CrossRef]
- Carbonera, A.F.A.; Atienza, L.M.; Estacio, M.A.C.; Duque, S.M.M.; Lizardo-Agustin, R.C.M.; Flandez, L.E.L.; Castillo-Israel, K.A.T. Effects of various processing methods on the dietary fiber and antioxidant properties of Bignay (Antidesma bunius L. Spreng) fruit. Food Chem. Adv. 2023, 3, 100561. [Google Scholar] [CrossRef]
- Silva, N.C.; Santana, R.C.; Duarte, C.R.; Barrozo, M.A.S. Impact of freeze-drying on bioactive compounds of yellow passion fruit residues. J. Food Process Eng. 2017, 40, e12511–e12514. [Google Scholar] [CrossRef]
- Luis, G.; Mario, P.; Gipsy, T.; Erick, J.; Rodrigo, D.; Roberto, L. Advances in vacuum microwave drying (VMD) systems for food products. Trends Food Sci. Technol. 2021, 116, 626–638. [Google Scholar]
- Bianca, S.D.C.; Oliván, G.M.; Soldevilla, M.G.; Maria-Jose, M. A comparative evaluation of the phenol and lycopene content of tomato by-products subjected to different drying methods. LWT-Food Sci. Technol. 2023, 179, 114644. [Google Scholar]
- Sette, P.; Calvache, J.E.N.; Soria, M.; de Escalada Pla, M.; Gerschenson, L.N. Impact of different factors on the yield and properties of fractions enriched in dietary fiberisolated from peach (Prunus persica L.) residues. Open Agric. 2016, 1, 45–54. [Google Scholar] [CrossRef]
- Hu, X.; Xing, X.; Ren, C. The effects of steaming and roasting treatments on beta-glucan, lipid and starch in the kernels of naked oat (Avena nuda). J. Sci. Food Agric. 2010, 90, 690–695. [Google Scholar] [CrossRef]
- Ovando-Martínez, M.; Whitney, K.; Reuhs, B.L.; Doehlert, D.C.; Simsek, S. Effect of hydrothermal treatment on physicochemical and digestibility properties of oat starch. Food Res. Int. 2013, 52, 17–25. [Google Scholar] [CrossRef]
- Runyon, J.R.; Sunilkumar, B.A.; Nilsson, L.; Rascon, A.; Bergenståhl, B. The effect of heat treatment on the soluble protein content of oats. J. Cereal Sci. 2015, 65, 119–124. [Google Scholar] [CrossRef]
- Whent, M.M.; Childs, H.D.; Cheang, S.E.; Jiang, J.; Luthria, D.L.; Bukowski, M.R.; Lebrilla, C.B.; Yu, L.; Pehrsson, P.R.; Wu, X. Effects of Blanching, Freezing and Canning on the Carbohydrates in Sweet Corn. Foods 2023, 12, 3885. [Google Scholar] [CrossRef] [PubMed]
- Namiko, N.; Yasumasa, A. Improvement of Mechanical Properties of Frozen Japanese Radish by Combination of Low- and High-temperature Blanching Pretreatment. Food Bioprocess Technol. 2023, 16, 2789–2799. [Google Scholar]
- Tun Norbrillinda, M.; Hasri, H.; Syahida, M.; Norra, I.; Hadijah, H. Effect of pretreatment on nutrient content and antioxidant properties of Mangifera odorata L. peel and seed kernel powder. Food Res. 2022, 6, 32–42. [Google Scholar]
- Zhang, J.; Cheng, J.; Li, Z.; Weng, M.; Zhang, X.; Tang, X.; Pan, Y. Effects of ultra-high pressure, thermal pasteurization, and ultra-high temperature sterilization on color and nutritional components of freshly-squeezed lettuce juice. Food Chem. 2024, 435, 137524. [Google Scholar] [CrossRef]
- Rodríguez-Garayar, M.; Martín-Cabrejas, M.A.; Esteban, R.M. High Hydrostatic Pressure in Astringent and Non-Astringent Persimmons to Obtain Fiber-Enriched Ingredients with Improved Functionality. Food Bioprocess Technol. 2017, 10, 854–865. [Google Scholar] [CrossRef]
- Chou, C.H.; Wang, C.Y.; Shyu, Y.T.; Wu, S.J. The effect of high-pressure processing on reducing the glycaemic index of atemoya puree. J. Sci. Food. Agric. 2020, 101, 1546–1553. [Google Scholar] [CrossRef]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Esteban, R.M. Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chem. 2011, 127, 501–507. [Google Scholar] [CrossRef]
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Crit. Rev. Food. Sci. Nutr. 2016, 56, 445–475. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, W.; Wu, B.; Wu, P.; Duan, Y.; Yang, Q.; Ma, H. Modification of garlic skin dietary fiber with twin-screw extrusion process and in vivo evaluation of Pb binding. Food Chem. 2018, 268, 550–557. [Google Scholar] [CrossRef]
- Xue, Z.; Ma, Q.; Guo, Q.; Santhanam, R.K.; Gao, X.; Chen, Z.; Wang, C.; Chen, H. Physicochemical and functional properties of extruded dietary fiber from mushroom Lentinula edodes residues. Food Biosci. 2019, 32, 100452. [Google Scholar] [CrossRef]
- Redgwell, R.J.; Curti, D.; Robin, F.; Donato, L.; Pineau, N. Extrusion-induced changes to the chemical profile and viscosity generating properties of citrus fiber. J. New Mat. Electrochem. Syst. 2011, 59, 8272–8279. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ma, Y.; Tsai, Y.; Chang, S.K.C. In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion. Int. J. Biol. Macromol. 2019, 124, 796–801. [Google Scholar] [CrossRef]
- Sui, W.; Chen, H. Multi-stage energy analysis of steam explosion process. Chem. Eng. Sci. 2014, 116, 254–262. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2009, 101, 4851–4861. [Google Scholar] [CrossRef]
- Cui, W.; Wang, Y.; Sun, Z.; Cui, C.; Li, H.; Luo, K.; Cheng, A. Effects of steam explosion on phenolic compounds and dietary fiber of grape pomace. LWT-Food Sci. Technol. 2023, 173, 114350. [Google Scholar] [CrossRef]
- Wang, C.; Lin, M.; Li, Y. Improvement of soluble dietary fiber quality in Tremella fuciformis stem by steam explosion technology: An evaluation of structure and function. Food Chem. 2023, 437, 137867. [Google Scholar] [CrossRef]
- Yue, Z.; Kangmei, Y.; Xue, T.; Wenjie, S.; Tao, W.; Shuai, W.; Yan, J.; Qiaomei, Z.; Jing, M.; Min, Z. Combined Modification of Soluble Dietary Fibers from Apple Pomace by Steam Explosion and Enzymatic Hydrolysis to Improve its Structural, Physicochemical and Functional Properties. Waste Biomass Valor. 2022, 13, 4869–4879. [Google Scholar]
- Li, B.; Yang, W.; Nie, Y.; Kang, F.; Goff, H.D.; Cui, S.W. Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocoll. 2019, 94, 48–56. [Google Scholar] [CrossRef]
- Xi, H.; Wang, A.; Qin, W.; Nie, M.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Huang, Y.; Wang, F.; et al. The structural and functional properties of dietary fibre extracts obtained from highland barley bran through different steam explosion-assisted treatments. Food Chem. 2022, 406, 135025. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Sun, Y.-Y.; Jia, Y.-Q.; Geng, X.-Q.; Pan, L.-C.; Jiang, W.; Xie, B.-Y.; Zhu, Z.-Y. Effect of steam explosion pretreatment on the structure and bioactivity of Ampelopsis grossedentata polysaccharides. Int. J. Biol. Macromol. 2021, 185, 194–205. [Google Scholar] [CrossRef]
- Jaramillo-Carmona, S.; Rodríguez-Arcos, R.; Guillén-Bejarano, R.; Jiménez-Araujo, A. Hydrothermal treatments enhance the solubility and antioxidant characteristics of dietary fiber from asparagus by-products. Food Bioprod. Process. 2019, 114, 175–184. [Google Scholar] [CrossRef]
- Qin, X.; Dong, X.; Tang, J.; Chen, Y.; Xie, J.; Cheng, Y.; Zheng, B.; Hu, X.; Yu, Q. Comparative analysis of dietary fibers from grapefruit peel prepared by ultrafine grinding: Structural properties, adsorption capacities, in vitro prebiotic activities. Food Biosci. 2023, 56, 103163. [Google Scholar] [CrossRef]
- Wang, M.; Chen, X.; Dong, L.; Nan, X.; Ji, W.; Wang, S.; Sun, W.; Zhou, Q. Modification of pea dietary fiber by ultrafine grinding and hypoglycemic effect in diabetes mellitus mice. J. Food Sci. 2021, 86, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Liu, R.; Shi, L.; Wang, Y.; Meng, X.; Shen, Y. Superfine grinding improves the physicochemical, sensory and functional characteristics of Hanfu apple pomace. Int. J. Food Sci. Technol. 2022, 58, 2077–2084. [Google Scholar] [CrossRef]
- Yan, L.; Li, T.; Liu, C.; Zheng, L. Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/functional properties of pear pomace and chemical composition of its soluble dietary fibre. LWT-Food Sci. Technol. 2019, 107, 171–177. [Google Scholar] [CrossRef]
- Chau, C.-F.; Wang, Y.-T.; Wen, Y.-L. Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chem. 2007, 100, 1402–1408. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Li, R.; Li, J. Effect of micronization technology on physicochemical and antioxidant properties of dietary fiber from buckwheat hulls. Biocatal. Agric. Biotechnol. 2014, 3, 30–34. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, Z.; Gai, G.; Yang, Y. Effect of superfine grinding on properties of ginger powder. J. Food Eng. 2008, 91, 217–222. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, H.; Peng, Z.; Luo, Q.; Ming, J.; Zhao, G. Characterization of stipe and cap powders of mushroom (Lentinus edodes) prepared by different grinding methods. J. Food Eng. 2012, 109, 406–413. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, H.; Li, S. Effects of micronization on properties of Chaenomeles sinensis (Thouin) Koehne fruit powder. Innov. Food Sci. Emerg. Technol. 2009, 10, 633–637. [Google Scholar] [CrossRef]
- Zhu, Y.; Dong, Y.; Qian, X.; Cui, F.; Guo, Q.; Zhou, X.; Wang, Y.; Zhang, Y.; Xiong, Z. Effect of Superfine Grinding on Antidiabetic Activity of Bitter Melon Powder. Int. J. Mol. Sci. 2012, 13, 14203–14218. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Liang, Y.; Lin, H.; Chen, Y.; Xie, J.; Ai, F.; Yan, Z.; Hu, X.; Yu, Q. Fermentation of grapefruit peel by an efficient cellulose-degrading strain, (Penicillium YZ-1): Modification, structure and functional properties of soluble dietary fiber. Food Chem. 2023, 420, 136123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Q.; Wang, J.-D.; Cai, Z.-H.; Huang, H.; Zhang, S.; Fu, L.-N.; Zhao, P.-Q.; Yan, X.-Y.; Fu, Y.-J. Improved physicochemical and functional properties of dietary fiber from Rosa roxburghii pomace fermented by Bacillus natto. Food Biosci. 2022, 50, 102030. [Google Scholar]
- Yang, C.; Yao, J.; Zhang, T.; Yang, K.; Guo, J.; Pan, S. Mixed fermentation of navel orange peel by Trichoderma viride and Aspergillus niger: Effects on the structural and functional properties of soluble dietary fiber. Food Biosci. 2024, 57, 103545. [Google Scholar] [CrossRef]
- Cui, J.; Gu, X.; Zhang, Q.; Ou, Y.; Wang, J. Production and anti-diabetic activity of soluble dietary fiber from apricot pulp by Trichoderma viride fermentation. Food Funct. 2015, 6, 1635–1642. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Fan, S.-T.; Huang, D.-F.; Yu, Q.; Liu, X.-Z.; Li, C.; Wang, S.; Xiong, T.; Nie, S.-P.; Xie, M.-Y. Effect of Lactobacillus plantarum NCU116 Fermentation on Asparagus officinalis Polysaccharide: Characterization, Antioxidative, and Immunoregulatory Activities. J. Agric. Food Chem. 2018, 66, 10703–10711. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, X.; Liu, S.; Ren, F.; Wang, J. Effects of high hydrostatic pressure on nutritional composition and cooking quality of whole grains and legumes. Innov. Food Sci. Emerg. Technol. 2023, 83, 103239. [Google Scholar] [CrossRef]
- Ouyang, H.; Guo, B.; Hu, Y.; Li, L.; Jiang, Z.; Li, Q.; Ni, H.; Li, Z.; Zheng, M. Effect of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets. Food Biosci. 2023, 52, 102436. [Google Scholar] [CrossRef]
- De la Peña-Armada, R.; Villanueva-Suárez, M.J.; Molina-García, A.D.; Rupérez, P.; Mateos-Aparicio, I. Novel rich-in-soluble dietary fiber apple ingredient obtained from the synergistic effect of high hydrostatic pressure aided by Celluclast®. LWT-Food Sci. Technol. 2021, 146, 111421. [Google Scholar] [CrossRef]
- Sang, J.; Li, L.; Wen, J.; Liu, H.; Wu, J.; Yu, Y.; Xu, Y.; Gu, Q.; Fu, M.; Lin, X. Chemical composition, structural and functional properties of insoluble dietary fiber obtained from the Shatian pomelo peel sponge layer using different modification methods. LWT-Food Sci. Technol. 2022, 165, 113737. [Google Scholar] [CrossRef]
- Zamora, A.; Guamis, B. Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the Food Industry. Food Eng. Rev. 2015, 7, 130–142. [Google Scholar] [CrossRef]
- Van Buggenhout, S.; Wallecan, J.; Christiaens, S.; Debon, S.J.J.; Desmet, C.; Van Loey, A.; Hendrickx, M.; Mazoyer, J. Influence of high-pressure homogenization on functional properties of orange pulp. Innov. Food Sci. Emerg. Technol. 2015, 30, 51–60. [Google Scholar] [CrossRef]
- Xie, F.; Li, M.; Lan, X.; Zhang, W.; Gong, S.; Wu, J.; Wang, Z. Modification of dietary fibers from purple-fleshed potatoes (Heimeiren) with high hydrostatic pressure and high pressure homogenization processing: A comparative study. Innov. Food Sci. Emerg. Technol. 2017, 42, 157–164. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Li, Y.; Li, B.; Liu, S. Water-insoluble dietary-fibers from Flammulina velutiper used as edible stabilizers for oil-in-water Pickering emulsions. Food Hydrocoll. 2020, 101, 105519. [Google Scholar] [CrossRef]
- Su, D.; Zhu, X.; Wang, Y.; Li, D.; Wang, L. Effects of high-pressure homogenization on physical and thermal properties of citrus fiber. LWT-Food Sci. Technol. 2019, 116, 108573. [Google Scholar] [CrossRef]
- Yang, X.; Mao, K.; Sang, Y.; Tian, G.; Liu, X.; Mao, N.; Huo, M.; Yan, S. Citrus derived Pickering emulsion stabilized by insoluble citrus dietary fiber modified by ultra-high pressure. LWT-Food Sci. Technol. 2023, 184, 115112. [Google Scholar] [CrossRef]
- Gan, J.; Xie, L.; Peng, G.; Xie, J.; Chen, Y.; Yu, Q. Systematic review on modification methods of dietary fiber. Food Hydrocoll. 2021, 119, 106872. [Google Scholar] [CrossRef]
- Garau, M.C.; Simal, S.; Rosselló, C.; Femenia, A. Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem. 2007, 104, 1014–1024. [Google Scholar] [CrossRef]
- Pérez-López, E.; Cela, D.; Costabile, A.; Mateos-Aparicio, I.; Rupérez, P. In vitro fermentability and prebiotic potential of soyabean Okara by human faecal microbiota. Br. J. Nutr. 2016, 116, 1116–1124. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Fang, D.; Zhuang, W.; Chen, C.; Jiang, W.; Zheng, Y. Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties. Int. J. Biol. Macromol. 2018, 120, 1461–1467. [Google Scholar] [CrossRef]
- Schmid, V.; Steck, J.; Mayer-Miebach, E.; Behsnilian, D.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Extrusion Processing of Pure Chokeberry (Aronia melanocarpa) Pomace: Impact on Dietary Fiber Profile and Bioactive Compounds. Foods 2021, 10, 518. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Shao, H.; Zheng, X.; Liu, J.; Liu, J.; Huang, J.; Zhang, C.; Liu, Z.; Wang, J.; Guan, W. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion. Food Chem. 2021, 335, 127522. [Google Scholar] [CrossRef]
- Lan, G.; Chen, H.; Chen, S.; Tian, J. Chemical composition and physicochemical properties of dietary fiber from Polygonatum odoratum as affected by different processing methods. Food Res. Int. 2012, 49, 406–410. [Google Scholar] [CrossRef]
- Yu, G.; Bei, J.; Zhao, J.; Li, Q.; Cheng, C. Modification of carrot (Daucus carota Linn. var. Sativa Hoffm) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chem. 2018, 257, 333–340. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, C.; Li, J.; Hussain, S.; Yan, S.; Wang, Q. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT - Food Sci. Technol. 2018, 93, 204–211. [Google Scholar] [CrossRef]
- Bustos, F.M.; Contreras, R.V.; García, T.G.; Nabeshima, E.H.; Guzmán, I.V. Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch. Food Sci. Technol. 2011, 31, 870–878. [Google Scholar] [CrossRef]
- Gan, J.; Huang, Z.; Yu, Q.; Peng, G.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocoll. 2020, 101, 105549. [Google Scholar] [CrossRef]
- Shehzad, H.; Minaxi, S.; Rajeev, B. Valorisation of Sea Buckthorn Pomace by Optimization of Ultrasonic-Assisted Extraction of Soluble Dietary Fibre Using Response Surface Methodology. Foods 2021, 10, 1330. [Google Scholar] [CrossRef]
- Raghavendra, S.N.; Swamy, S.R.R.; Rastogi, N.K.; Raghavarao, K.S.M.S.; Kumar, S.; Tharanathan, R.N. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. J. Food Eng. 2004, 72, 281–286. [Google Scholar] [CrossRef]
- Chen, J.; Huang, H.; Chen, Y.; Xie, J.; Song, Y.; Chang, X.; Liu, S.; Wang, Z.; Hu, X.; Yu, Q. Effects of fermentation on the structural characteristics and in vitro binding capacity of soluble dietary fiber from tea residues. LWT-Food Sci. Technol. 2020, 131, 109818. [Google Scholar] [CrossRef]
- Hong, C.-J.; Chen, S.-Y.; Hsu, Y.-H.; Yen, G.-C. Protective effect of fermented okara on the regulation of inflammation, the gut microbiota, and SCFA production in rats with TNBS-induced colitis. Food Res. Int. 2022, 157, 111390. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ding, X.; Zhao, Y.; Li, Y.; Ma, H. Modification of insoluble dietary fiber from garlic straw with ultrasonic treatment. J. Food Process. Preserv. 2018, 42, e13399. [Google Scholar] [CrossRef]
- Au-aff, A.A.A. Characterisation of physicochemical and functional properties of soluble dietary fibre from potato pulp obtained by enzyme-assisted extraction. Int. J. Biol. Macromol. 2017, 101, 1004–1011. [Google Scholar]
- Fang, L.; Li, J.; Chen, X.; Xu, X. How lignocellulose degradation can promote the quality and function of dietary fiber from bamboo shoot residue by Inonotus obliquus fermentation. Food Chem. 2024, 451, 139479. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chem. 2018, 257, 135–142. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Zhang, X.; Li, T.; Ren, D.; Lu, J. Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace. J. Food Sci. Technol. 2020, 57, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, H.; Yuan, F.; Fan, R.; Gao, Y. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chem. 2015, 185, 90–98. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, G.; Pan, Y.; Chen, W.; Huang, W.; Chen, H.; Li, Y. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction. Carbohydr. Polym. 2017, 172, 102–112. [Google Scholar] [CrossRef]
- Yang, B.; Wu, Q.; Song, X.; Yang, Q.; Kan, J. Physicochemical properties and bioactive function of Japanese grape (Hovenia dulcis) pomace insoluble dietary fibre modified by ball milling and complex enzyme treatment. Int. J. Food Sci. Technol. 2019, 54, 2363–2373. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, J.; Qi, J. Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment. LWT-Food Sci. Technol. 2020, 128, 109397. [Google Scholar] [CrossRef]
- Ma, M.; Mu, T. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure. Carbohydr. Polym. 2016, 136, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Fang, Z.; Wahlqvist, M.L.; Hodgson, J.M.; Johnson, S.K. Extrusion cooking increases soluble dietary fibre of lupin seed coat. LWT-Food Sci. Technol. 2018, 99, 547–554. [Google Scholar] [CrossRef]
- Qiao, C.-C.; Zeng, F.-K.; Wu, N.-N.; Tan, B. Functional, physicochemical and structural properties of soluble dietary fiber from rice bran with extrusion cooking treatment. Food Hydrocoll. 2021, 121, 107057. [Google Scholar] [CrossRef]
- Ma, R.; Chen, J.-N.; Zhou, X.-J.; Lin, H.; Gao, Q.; Peng, X.; Tanokura, M.; Xue, Y.-L. Effect of chemical and enzymatic modifications on the structural and physicochemical properties of dietary fiber from purple turnip (Brassica rapa L.). LWT-Food Sci. Technol. 2021, 145, 111313. [Google Scholar] [CrossRef]
- Liu, T.; Lei, H.; Zhen, X.; Liu, J.; Xie, W.; Tang, Q.; Gou, D.; Zhao, J. Advancements in modifying insoluble dietary fiber: Exploring the microstructure, physicochemical properties, biological activity, and applications in food industry—A review. Food Chem. 2024, 458, 140154. [Google Scholar] [CrossRef]
- Huang, S.; Tsai, Y.; Chen, C. Effects of wheat fiber, oat fiber, and inulin on sensory and physico-chemical properties of Chinese-style sausages. Asian Australas. J. Anim. Sci. 2011, 24, 875–880. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Y.; Deng, L.; Dai, T.; Liu, C.; Chen, J. High energy media mill modified pea dietary fiber: Physicochemical property and its mechanism in stabilizing pea protein beverage. Food Hydrocoll. 2024, 147, 109392. [Google Scholar] [CrossRef]
- Xu, T.; Wu, X.; Liu, J.; Sun, J.; Wang, X.; Fan, G.; Meng, X.; Zhang, J.; Zhang, Y. The regulatory roles of dietary fibers on host health via gut microbiota-derived short chain fatty acids. Curr. Opin. Pharmacol. 2022, 62, 36–42. [Google Scholar] [CrossRef]
Sources | Method | Technological Treatment | Structural Characteristic | Hydration Characteristic | Biological Activity | References |
---|---|---|---|---|---|---|
Enoki mushroom | HPH | 0, 10, 30, and 50 cycles at 700 bar | Molecular weight ↓; particle size ↓; void structure ↑; rhamnose, xylose, galactose, and galacturonic acid content ↑ | Swelling capacity ↑ | Glucose adsorption capacity ↑, cholesterol adsorption capacity ↑ | [103] |
Bamboo shoot shell | DHPM | 100 MPa for 5 passes | Particle size ↓, void structure ↑, crystallinity ↑, thermal stability ↑ | Water holding capacity ↑, oil holding capacity ↑ | Glucose adsorption capacity ↑, cholesterol adsorption capacity ↑, nitrite adsorption capacity ↑ | [100] |
Garlic straw | Ultrasound | 45 °C, 535 W, 41 min | Molecular weight ↓, particle size ↓, thermal stability ↑ | Water retention capacity ↑, oil retention capacity ↑, swelling capacity ↑ | Glucose adsorption capacity ↑ | [59] |
Carrot pomace | UC | Room temperature, standard particle size 40.05 μm | Void structure ↑ | Swelling capacity ↑, water retention capacity ↓, oil retention capacity ↓ | Cation exchange capacity ↑, glucose adsorption capacity ↑, DPPH radical scavenging capacity ↑, cholesterol adsorption capacity ↑, antioxidant abilities ↑ | [104] |
Nodes of lotus root | Extrusion | Screw speed 12.56 rad/s, 100 °C | Mannose and xylose content ↑, cellulose and hemicellulose content ↓ | Water solubility ↑, water holding capacity ↑, emulsifying activity ↑ | - | [105] |
Sugarcane bagasse | Extrusion | Constant at 60 °C and 90 °C; 38 rpm | SDF ↑, IDF ↓ | Water holding capacity ↑, swelling capacity ↓ | - | [106] |
Grapefruit peel | Microwave | 500 W, 80 °C for 40 min | Molecular weight ↑, crystallinity ↑, thermal stability ↑ | Water holding capacity ↑, oil holding capacity ↑ | Glucose adsorption capacity ↑, cholesterol adsorption capacity ↑, nitrite adsorption capacity ↑ | [107] |
Sea buckthorn pomace | Ultrasonic-assisted extraction | 70 °C, 105 W, 50 min | SDF ↑ | Swelling capacity ↑, water holding capacity ↑, oil holding capacity ↑ | - | [108] |
Ipomoea batatas Lam. residues | Twin-screw extrusion | Screw speed 180 rpm, feed rate 17 Hz, feed moisture 40%, and extrusion temperature 150 °C | SDF ↑, molecular weight ↓, particle size ↓, thermal stability ↑ | Swelling capacity ↑, water retention capacity ↑, oil retention capacity ↑ | Cholesterol adsorption capacity ↑, glucose adsorption capacity ↑, sodium cholate adsorption capacity ↑ | [102] |
Coconut residue | Grinding | (1.127–550 μm) | Particle size ↓, void structure ↑ | Swelling capacity ↑, water holding capacity ↑, oil holding capacity ↑ | Cholesterol adsorption capacity ↓ | [109] |
Sources | Method | Technological Treatment | Structural Characteristic | Hydration Characteristic | Biological Activity | References |
---|---|---|---|---|---|---|
Ginger residue | Cellulase | 0.3% cellulase for 60 min at 40 °C | Void structure ↑, IDF ↑ | Swelling capacity ↑, water retention capacity ↑, oil binding capacity ↑ | Cation exchange capacity ↑, soluble capacity for binding cholesterol↑, soluble nitrite binding capacity ↑ | [112] |
Potato pulp | Xylanase | pH 5.0, 50 °C, 120 min | SDF ↑, | - | Sodium cholate adsorption capacity ↑, hydroxyl radical scavenging activity ↑ | [113] |
Bamboo shoot residue | Inonotus obliquus fermentation | 2 mL of seed culture, for 7 days at 26 °C | SDF ↑ | Water holding capacity ↑, oil holding capacity ↑ | In vitro cholesterol ↑, sodium cholate adsorption capacity ↑, nitrite adsorption ↑ | [114] |
Coconut | Cellulase | pH 5.0, 50 °C for 1 h | SDF ↑, cellulase hydrolysis enhanced soluble carbohydrate content↑ | Swelling capacity ↑, water holding capacity ↑ | α-amino acid interaction ratio ↑, glycemic dietary reference intake ↑, cation exchange capacity ↑ | [115] |
Sources | Method | Technological Treatment | Structural Characteristic | Hydration Characteristic | Biological Activity | References |
---|---|---|---|---|---|---|
Bamboo shoot | Extrusion and cellulase | 60-mesh screen, 20 U/g for 240 min at pH 4.5 and 50 °C | Molecular weight ↑, crystallinity ↑, thermal stability ↑ | Water holding capacity ↑, oil holding capacity ↑ | Nitrite adsorption capacity ↑, glucose adsorption capacity ↑, cholesterol adsorption capacity ↑ | [107] |
Rose pomace | Ultrasound, cellulase, and xylanase | 150 W for 30 min, hydrolyze 2 h | SDF ↑ | Swelling capacity ↑, oil holding capacity ↑ | Cholesterol adsorption capacity ↑, cation exchange capacity ↑, glucose adsorption capacity ↓ | [116] |
Orange peel | Steam explosion and dilute acid | 0.8 MPa for 7 min, combined with 0.8% dilute acid | SDF ↑, molecular weight ↓ | Water solubility ↑; water holding capacity ↑; oil holding capacity ↑; swelling capacity ↑; emulsifying activity, emulsion stability, and foam stability ↑ | Cation exchange capacity ↑ | [117] |
Papaya peel | Ultrasound and alkaline | 170 W, 30 min, 50 °C combined with 1.0% NaOH concentration | SDF ↑, crystallinity ↓, total amino acid content ↓, essential amino acid content ↑, thermal stability ↑ | Water holding capacity ↑, oil holding capacity ↑, swelling capacity ↑ | - | [118] |
Hovenia dulcis pomace | Cellulase, xylanase, and UC | Ball mill at 50 r/min for 6 h, then cellulose (10,000 U/mg) and xylanase (100,000 U/mg) incubated at pH 5.0, 50 °C for 120 min | SDF ↑, particle size ↓, zeta potential ↓, disrupted the intermolecular hydrogen bonds and crystalline structure | Water solubility index ↑, apparent viscosity ↑ | α-amino acid interaction ratio ↓, α-glucosidase ↓ | [119] |
Citrus peel | NaOH and HPH | 0.5 M NaOH, pH 9.0, for 50 °C, 1 h, and homogenize at 7000 r/min for 25 °C, 25 min | SDF ↑, void structure ↑, crystallinity ↓ | Water holding capacity ↑, swelling capacity ↑ | - | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, W.; Wang, S.; Chen, Y.; Li, X.; Zhuang, X.; Yan, X.; Song, Y. Insights into the Structural and Nutritional Variations in Soluble Dietary Fibers in Fruits and Vegetables Influenced by Food Processing Techniques. Foods 2025, 14, 1861. https://doi.org/10.3390/foods14111861
Sui W, Wang S, Chen Y, Li X, Zhuang X, Yan X, Song Y. Insights into the Structural and Nutritional Variations in Soluble Dietary Fibers in Fruits and Vegetables Influenced by Food Processing Techniques. Foods. 2025; 14(11):1861. https://doi.org/10.3390/foods14111861
Chicago/Turabian StyleSui, Wenjie, Shuiqing Wang, Yue Chen, Xiaoxuan Li, Xin Zhuang, Xinhuan Yan, and Ye Song. 2025. "Insights into the Structural and Nutritional Variations in Soluble Dietary Fibers in Fruits and Vegetables Influenced by Food Processing Techniques" Foods 14, no. 11: 1861. https://doi.org/10.3390/foods14111861
APA StyleSui, W., Wang, S., Chen, Y., Li, X., Zhuang, X., Yan, X., & Song, Y. (2025). Insights into the Structural and Nutritional Variations in Soluble Dietary Fibers in Fruits and Vegetables Influenced by Food Processing Techniques. Foods, 14(11), 1861. https://doi.org/10.3390/foods14111861