Impact of Drying-Induced Structural Modifications on Flavor Release of Star Anise During Boiling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Drying and Boiling Processing
2.2.1. Hot Air Drying
2.2.2. Hot Pump Drying
2.2.3. Far-Infrared Drying
2.2.4. Microwave Vacuum Drying
2.3. Moisture Ratio Determination
2.4. Low-Field Nuclear Magnetic Resonance
2.5. Color Measurement
2.6. Fracture Rate and Rehydration Ratio
2.7. Scanning Electron Microscope Analysis
2.8. Volatile Oil Content Determination
2.9. Aroma Profile Determination
2.9.1. E-Nose Analysis
2.9.2. HS-SPME-GC-MS Analysis
2.10. Taste Profile Determination
2.11. Statistical Analysis
3. Results and Discussion
3.1. Moisture Ratio and Rehydration Ratio
3.1.1. Moisture Ratio
3.1.2. Rehydration Ratio
3.2. Visual Appearance of Star Anises Dried by Different Technologies
3.2.1. Color
3.2.2. Fracture Rates
3.3. Volatile Oil Content of Star Anises Dried by Different Technologies
3.4. Flavor Release of Dried Star Anise During Boiling
3.4.1. Aroma Release
3.4.2. Taste Release
3.5. Water States of Star Anise Dried Using Different Technologies
3.6. Possible Mechanism on Flavor Release of Dried Star Anise During Boiling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patra, J.K.; Das, G.; Bose, S.; Banerjee, S.; Vishnuprasad, C.N.; del Pilar Rodriguez-Torres, M.; Shin, H.S. Star anise (Illicium verum): Chemical compounds, antiviral properties, and clinical relevance. Phytother. Res. 2020, 34, 1248–1267. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Huang, Y.; Zhang, W.; Lu, C.; Yuan, J. A Comprehensive Review of the Pharmacology, Chemistry, Traditional Uses and Quality Control of Star Anise (Illicium verumHook. F.): An Aromatic Medicinal Plant. Molecules 2023, 28, 7378. [Google Scholar] [CrossRef]
- Tu, D.; Wu, F.; Lei, Y.; Xu, J.; Zhuang, W.; Zhao, Y.; Tian, Y. Analysis of differences in flavor attributes of soups: A case study on shiitake mushrooms dried from different drying techniques. J. Food Compos. Anal. 2024, 131, 106228. [Google Scholar] [CrossRef]
- Feng, Y.B.; Suo, K.; Chen, L.Q. Improving the hot air drying of garlic slices by perforation synergistic alcohol pretreatment. Dry. Technol. 2023, 41, 2077–2087. [Google Scholar] [CrossRef]
- Song, J.; Chen, Q.; Bi, J.; Meng, X.; Wu, X.; Qiao, Y.; Lyu, Y. GC/MS coupled with MOS e-nose and flash GC e-nose for volatile characterization of Chinese jujubes as affected by different drying methods. Food Chem. 2020, 331, 127201. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, G.; Chen, K.; Chen, X.; Hong, Q.; Kan, J. Assessment of fresh star anise (Illicium verum Hook. f.) drying methods for influencing drying characteristics, color, flavor, volatile oil and shikimic acid. Food Chem. 2021, 342, 128359. [Google Scholar] [CrossRef]
- Hu, S.; Feng, X.; Huang, W.; Ibrahim, S.A.; Liu, Y. Effects of drying methods on non-volatile taste components of mushrooms. LWT 2020, 127, 109428. [Google Scholar] [CrossRef]
- Hou, H.; Chen, Q.; Bi, J.; Wu, X.; Jin, X.; Li, X.; Qiao, Y.; Lyu, Y. Understanding appearance quality improvement of jujube slices during heat pump drying via water state and glass transition. J. Food Eng. 2020, 272, 109874. [Google Scholar] [CrossRef]
- Shen, C.; Chen, W.; Aziz, T.; Khojah, E.; Al-Asmari, F.; Alamri, A.S.; Alhomrani, M.; Cui, H.; Lin, L. Drying kinetics and moisture migration mechanism of yam slices by cold plasma pretreatment combined with far-infrared drying. Innov. Food Sci. Emerg. Technol. 2024, 95, 103730. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, R.; Zhuang, W.; Xiao, J.; Zheng, B.; Tian, Y. Combined single-stage tempering and microwave vacuum drying of the edible mushroom Agrocybe chaxingu: Effects on drying characteristics and physical-chemical qualities. LWT 2020, 128, 109372. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Kong, X.F.; Zhang, J.H.; Guo, C.; Qu, Z.; Jin, L.; Wang, H.Q. Composition Changes in Fruit Dried by Different Methods. Front. Nutr. 2021, 8, 737521. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.-Z.; Yang, X.-H.; Mujumdar, A.; Zhao, J.-H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.-J.; Xiao, H.-W. Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Dry. Technol. 2018, 36, 893–907. [Google Scholar] [CrossRef]
- Bai, R.; Sun, J.; Qiao, X.; Zheng, Z.; Li, M.; Zhang, B. Hot air convective drying of ginger slices: Drying behaviour, quality characteristics, optimisation of parameters, and volatile fingerprints analysis. Foods 2023, 12, 1283. [Google Scholar] [CrossRef]
- Hu, L.; Bi, J.; Jin, X.; Qiu, Y.; van der Sman, R.G.M. Study on the rehydration quality improvement of shiitake mushroom by combined drying methods. Foods 2021, 10, 769. [Google Scholar] [CrossRef]
- Chai, J.; Xu, J.; He, M.; Shi, J.; Chu, J.; Cui, Q.; Shi, Q. Green recovery of nuciferine from lotus leaf via star anise oil based two-phase solvent extraction integrated with back-extraction. Sustain. Chem. Pharm. 2024, 42, 101848. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, C.; Devahastin, S.; Jiang, L.; Du, M.; Yi, J. Non-destructive determination of volatile compounds and prediction of amino acid nitrogen during sufu fermentation via electronic nose in combination with machine learning approaches. LWT 2024, 207, 116648. [Google Scholar] [CrossRef]
- Ye, Z.; Shang, Z.; Li, M.; Zhang, X.; Ren, H.; Hu, X.; Yi, J. Effect of ripening and variety on the physiochemical quality and flavor of fermented Chinese chili pepper (Paojiao). Food Chem. 2022, 368, 130797. [Google Scholar] [CrossRef]
- Yin, X.Q.; Zhang, M.; Wang, S.S.; Wang, Z.R.; Wen, H.Y.; Sun, Z.W.; Zhang, Y.H. Characterization and discrimination of the taste and aroma of Tibetan Qingke baijiu using electronic tongue, electronic nose and gas chromatography-mass spectrometry. Food Chem. X 2024, 22, 101443. [Google Scholar] [CrossRef]
- Macedo, L.L.; Vimercati, W.C.; da Silva Araújo, C.; Saraiva, S.H.; Teixeira, L. Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. J. Food Process Eng. 2020, 43, e13451. [Google Scholar] [CrossRef]
- Nowacka, M.; Wiktor, A.; Anuszewska, A.; Dadan, M.; Rybak, K.; Witrowa-Rajchert, D. The application of unconventional technologies as pulsed electric field, ultrasound and microwave-vacuum drying in the production of dried cranberry snacks. Ultrason.-Sonochemistry 2019, 56, 1–13. [Google Scholar] [CrossRef]
- Qu, F.; Zhu, X.; Ai, Z.; Ai, Y.; Qiu, F.; Ni, D. Effect of different drying methods on the sensory quality and chemical components of black tea. LWT 2019, 99, 112–118. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, C.; Li, D. Effect of Different Drying Methods on Quality of Lotus Seeds. Food Sci. 2016, 37, 98–104. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, X.; Zhang, L.; AYagoub, A.E.; Tang, Y.; Wahia, H.; Zhou, C. Effects of vacuum ultrasonic infiltration and combined drying on rehydration quality of ginger (Zingiber officinale Roscoe). Ind. Crops Prod. 2022, 187, 115381. [Google Scholar] [CrossRef]
- Ozcan-Sinir, G.; Ozkan-Karabacak, A.; Tamer, C.E.; Copur, O.U. The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of Kumquat (Citrus japonica). Food Sci. Technol. 2019, 39, 475–484. [Google Scholar] [CrossRef]
- Polat, A.; Izli, N. Determination of drying kinetics and quality parameters for drying apricot cubes with electrohydrodynamic, hot air and combined electrohydrodynamic-hot air drying methods. Dry. Technol. 2022, 40, 527–542. [Google Scholar] [CrossRef]
- Xu, Y.; Qi, J.; Yu, M.; Zhang, R.; Lin, H.; Yan, H.; Li, C.; Jia, J.; Hu, Y. Insight into the mechanism of water-insoluble dietary fiber from star anise (Illicium verum Hook. f.) on water-holding capacity of myofibrillar protein gels. Food Chem. 2023, 423, 136348. [Google Scholar] [CrossRef]
- Yu, J.; Huang, D.; Ling, X.; Xun, C.; Huang, W.; Zheng, J.; Zhang, L. Drying kinetics of camellia oleifera seeds under hot air drying with ultrasonic pretreatment. Ind. Crops Prod. 2024, 222, 119467. [Google Scholar] [CrossRef]
- Seremet, L.; Botez, E.; Nistor, O.-V.; Andronoiu, D.G.; Mocanu, G.-D. Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chem. 2016, 195, 104–109. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Li, X.; Zhu, J.; Wang, X.; Ma, L. Drying characteristics, quality changes, parameters optimization and flavor analysis for microwave vacuum drying of garlic (Allium sativum L.) slices. LWT 2023, 173, 114372. [Google Scholar] [CrossRef]
- Shang, J.; Zhang, Q.; Wang, T.; Xu, Y.; Zang, Z.; Wan, F.; Yue, Y.; Huang, X. Effect of Ultrasonic Pretreatment on the Far-Infrared Drying Process and Quality Characteristics of Licorice. Foods 2023, 12, 2414. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, J.; Wang, T. Star anise essential oil: Chemical compounds, antifungal and antioxidant activities: A review. J. Essent. Oil Res. 2021, 33, 1–22. [Google Scholar] [CrossRef]
- Xin, Y.W.; Yun, L.C.; Sheng, B.L.; Zheng, R.; Qi, P. Effect of infrared radiation-hot air (IR-HA) drying on kinetics and quality changes of star anise. Dry. Technol. 2021, 39, 90–103. [Google Scholar] [CrossRef]
- Cai, M.; Guo, X.; Liang, H.; Sun, P. Microwave-assisted extraction and antioxidant activity of star anise oil. Int. J. Food Sci. Technol. 2013, 48, 2324–2330. [Google Scholar] [CrossRef]
- Bozkir, H.; Tekgül, Y.; Erten, E.S. Effects of tray drying, vacuum infrared drying, and vacuum microwave drying techniques on quality characteristics and aroma profile of orange peels. J. Food Process Eng. 2021, 44, e13611. [Google Scholar] [CrossRef]
- Pei, F.; Yang, W.; Ma, N.; Fang, Y.; Zhao, L.; An, X.; Xin, Z.; Hu, Q. Effect of the two drying approaches on the volatile profiles of button mushroom (Agaricus bisporus) by headspace GC–MS and electronic nose. LWT 2016, 72, 343–350. [Google Scholar] [CrossRef]
- Chai, X.; Huang, X.; Zhang, T.; Wu, K.; Duan, X.; Yu, H.; Liu, X. Comparative study of e-nose, gc-ms, and gc-ims to distinguish star anise essential oil extracted using different extraction methods. Separations 2023, 10, 256. [Google Scholar] [CrossRef]
- Peng, Q.; Luo, X.; Su, J.; Bi, Y.; Kong, F.; Wang, Z.; Tan, S.; Zhang, J. Microencapsulation of star anise essential oil: Preparation, characterization, in vitro digestion, and biological activity. Colloids Surf. A Physicochem. Eng. Asp. 2024, 696, 134358. [Google Scholar] [CrossRef]
- Singh, S.; Verma, R. Comprehensive review on pharmacological potential of Illicium verum, Chinese herb. Pharmacol. Res.-Mod. Chin. Med. 2024, 10, 100411. [Google Scholar] [CrossRef]
- Li, K.; Zou, Y.; Wang, Y.; Zhou, M.; Li, J.; Tan, R.; Zhang, S.; Li, W.; Zheng, J. 2-Naphthalenemethanol participates in metabolic activation of 2-methylnaphthalene. Xenobiotica 2022, 52, 360–369. [Google Scholar] [CrossRef]
- Dong, W.; Hu, R.; Long, Y.; Li, H.; Zhang, Y.; Zhu, K.; Chu, Z. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chem. 2019, 272, 723–731. [Google Scholar] [CrossRef]
- Fan, X.; Zhong, M.; Feng, L.; Huo, Y.; Pan, L. Evaluation of flavor characteristics in tartary buckwheat (Fagopyrum tataricum) by E-nose, GC-IMS, and HS-SPME-GC-MS: Influence of different roasting temperatures. LWT 2024, 191, 115672. [Google Scholar] [CrossRef]
- Luo, J.; Li, M.; Zhang, Y.; Zheng, M.; Ling, C.M. The low-field NMR studies the change in cellular water in tilapia fillet tissue during different drying conditions. Food Sci. Nutr. 2021, 9, 2644–2657. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Pan, N.; Liu, S.; Su, Y.; Xiao, M.; Shi, W.; Liu, Z. The effects of five different drying methods on the quality of semi-dried Takifugu obscurus fillets. LWT 2022, 161, 113340. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Geng, Y.; Liu, F.; Guo, L.; Wang, X. Convenient use of low field nuclear magnetic resonance to determine the drying kinetics and predict the quality properties of mulberries dried in hot-blast air. LWT 2021, 137, 110402. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Xie, L.; Zielinska, M.; Pan, Z.; Deng, L.-Z.; Zhang, J.-S.; Gao, L.; Wang, S.-Y.; Zheng, Z.-A.; Xiao, H.-W. Improvement of drying efficiency and quality attributes of blueberries using innovative far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD). Innov. Food Sci. Emerg. Technol. 2022, 77, 102948. [Google Scholar] [CrossRef]
- Chu, Q.; Ren, G.; Duan, X.; Li, L.; Zhu, K.; Zhao, M. Comparison of superheated steam and hot-air drying in the food industries. Food Ferment. Ind. 2022, 48, 297–304. [Google Scholar] [CrossRef]
- Goh, L.J.; Othman, M.Y.; Mat, S.; Ruslan, H.; Sopian, K. Review of heat pump systems for drying application. Renew. Sustain. Energy Rev. 2011, 15, 4788–4796. [Google Scholar] [CrossRef]
- Pawar, B.S.; Pratape, V. Fundamentals of Infrared Heating and Its Application in Drying of Food Materials: A Review. J. Food Process Eng. 2017, 40, e12308. [Google Scholar] [CrossRef]
- Ekezie, C.F.; Sun, D.; Han, Z.; Cheng, J. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends Food Sci. Technol. 2017, 67, 58–69, Corrigendum in Trends Food Sci. Technol. 2018, 75, 243. [Google Scholar] [CrossRef]
Drying Method | HAD | HPD | FIRD | MVD |
---|---|---|---|---|
fit (graph) | ||||
L* | 25.18 ± 0.71 b | 24.85 ± 0.17 b | 25.96 ± 0.53 b | 30.91 ± 0.72 a |
a* | 10.87 ± 0.81 b | 10.95 ± 0.48 b | 10.49 ± 0.88 b | 9.34 ± 0.51 a |
b* | 18.06 ± 0.34 b | 18.32 ± 0.17 b | 18.44 ± 0.61 b | 25.03 ± 0.86 a |
∆E | 68.21 ± 0.41 a | 68.64 ± 0.39 a | 67.59 ± 0.73 a | 64.82 ± 0.67 b |
Fracture rate | 11.97 ± 1.07 a | 10.79 ± 0.56 ab | 9.84 ± 0.37 b | 10.33 ± 1.12 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, X.; Zhang, S.; Guo, C.; Jiang, Y.; Liu, W.; Zhang, F.; Huang, Q.; Yi, J. Impact of Drying-Induced Structural Modifications on Flavor Release of Star Anise During Boiling. Foods 2025, 14, 1802. https://doi.org/10.3390/foods14101802
Kuang X, Zhang S, Guo C, Jiang Y, Liu W, Zhang F, Huang Q, Yi J. Impact of Drying-Induced Structural Modifications on Flavor Release of Star Anise During Boiling. Foods. 2025; 14(10):1802. https://doi.org/10.3390/foods14101802
Chicago/Turabian StyleKuang, Xiangmin, Silei Zhang, Chaofan Guo, Yongli Jiang, Wenchao Liu, Fujie Zhang, Qingbo Huang, and Junjie Yi. 2025. "Impact of Drying-Induced Structural Modifications on Flavor Release of Star Anise During Boiling" Foods 14, no. 10: 1802. https://doi.org/10.3390/foods14101802
APA StyleKuang, X., Zhang, S., Guo, C., Jiang, Y., Liu, W., Zhang, F., Huang, Q., & Yi, J. (2025). Impact of Drying-Induced Structural Modifications on Flavor Release of Star Anise During Boiling. Foods, 14(10), 1802. https://doi.org/10.3390/foods14101802