Production of Red Beetroot (Beta vulgaris L.) Pestil as an Alternative Healthy Snack: Effects of Traditional, Thermosonication, and Microwave Pretreatments on Physicochemical, Sensorial, Nutritional, and Chemometric Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pestil Production
2.3. Chemicals and Solutions
2.4. Sensory Analyses
2.5. Physicochemical Analyses
2.6. Hydroxy Methylfurfural (HMF)
2.7. Mineral Composition
2.8. Total Betalain Content
2.9. Total Antioxidant Capacity, Total Phenolic and Flavonoid Contents, Polyphenols
2.9.1. Extraction
2.9.2. Total Antioxidant Capacity
2.9.3. Total Phenolic Compounds
2.9.4. Total Flavonoid Compounds
2.9.5. Polyphenol Composition
2.10. Statistical Analyses
3. Results and Discussion
3.1. Variations in Total Heat Treatment Period
3.2. Sensorial Quality
3.3. Physicochemical Properties
3.4. Hydroxymethyl Furfural (HMF) Content of the Pestils
3.5. Mineral Composition
3.6. Total Betalain Content
3.7. Total Antioxidant Capacity (TAC), Total Phenolic Compound (TPC) and Total Flavonoid Compound (TFC) Values
3.8. Characterization of Polyphenols by UPLC-ESI-MS/MS
3.8.1. Flavonoids
3.8.2. Phenolic Acids and Other Polyphenols
3.9. Chemometric Analysis
3.9.1. Correlation Coefficient
3.9.2. Principal Component Analysis
3.9.3. Hierarchical Cluster Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alonzo-Macías, M.; Cardador-Martínez, A.; Besombes, C.; Allaf, K.; Tejada-Ortigoza, V.; Soria-Mejía, M.; Vázquez-García, R.; Téllez-Pérez, C. Instant Controlled Pressure Drop as Blanching and Texturing Pre-Treatment to Preserve the Antioxidant Compounds of Red Dried Beetroot (Beta vulgaris L.). Molecules 2020, 25, 4132. [Google Scholar] [CrossRef]
- Ceclu, L.; Nistor, O.-V. Red Beetroot: Composition and Health Effects—A Review. J. Nutr. Med. Diet. Care 2020, 6, 43. [Google Scholar]
- Aarti; Sarkar, D.; Gupta, K.; Singh, S.; Aaditya. A Review on Potential Health Benefits of Beetroot. Indian J. Health Care Med. Pharm. Pract. 2024, 5, 96–102. [Google Scholar]
- Dhiman, A.; Suhag, R.; Chauhan, D.; Thakur, D.; Chhikara, S.; Prabhakar, P. Status of Beetroot Processing and Processed Products: Thermal and Emerging Technologies Intervention. Trends Food Sci. Technol. 2021, 114, 443–458. [Google Scholar] [CrossRef]
- Bahriye, G.; Dadashi, S.; Dehghannya, J.; Ghaffari, H. Influence of Processing Temperature on Production of Red Beetroot Powder as a Natural Red Colorant Using Foam-Mat Drying: Experimental and Modeling Study. Food Sci. Nutr. 2023, 11, 6955–6973. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P. Red Beetroot Juice Fermented by Water Kefir Grains: Physicochemical, Antioxidant Profile, and Anticancer Activity. Eur. Food Res. Technol. 2023, 249, 939–950. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Melkis, K.; Janda-Milczarek, K.; Skonieczna-Zydecka, K. Phenolic Compounds and Antioxidant Properties of Fermented Beetroot Juices Enriched with Different Additives. Foods 2024, 13, 102. [Google Scholar] [CrossRef]
- Tontul, I.; Topuz, A. Effects of Different Drying Methods on the Physicochemical Properties of Pomegranate Leather (Pestil). LWT-Food Sci. Technol. 2017, 80, 294–303. [Google Scholar] [CrossRef]
- Özkan-Karabacak, A. Assessment of Total Phenolic Compounds, Antioxidant Capacity, β-Carotene Bioaccessibility, HMF Formation, and Color Degradation Kinetics in Pumpkin Pestils. J. Turk. Chem. Soc. Sect. A 2023, 10, 729–744. [Google Scholar] [CrossRef]
- Boz, H.; Karaoglu, M.; Kaban, G. The Effects of Cooking Time and Sugar on Total Phenols, Hydroxymethylfurfural and Acrylamide Content of Mulberry Leather (Pestil). Qual. Assur. Saf. Crop. Foods 2016, 8, 493–500. [Google Scholar] [CrossRef]
- Şengül, M.; Ünver, H. Farklı Tatlandırıcılar ile Üretilen Kızılcık Pestillerinin Bazı Fizikokimyasal Özellikleri. ATA-Gıda Dergisi 2022, 1, 1–10. [Google Scholar]
- Simao, R.; de Moraes, J.; Carciofi, B.; Laurindo, J. Recent Advances in the Production of Fruit Leathers. Food Eng. Rev. 2020, 12, 68–82. [Google Scholar] [CrossRef]
- Cagindi, O.; Otles, S. Comparison of Some Properties on the Different Types of Pestil: A Traditional Product in Turkey. Int. J. Food Sci. Technol. 2005, 40, 897–901. [Google Scholar] [CrossRef]
- Eyiz, V.; Tontul, İ.; Türker, S. Effect of Variety, Drying Methods and Drying Temperature on Physical and Chemical Properties of Hawthorn Leather. Food Meas. 2020, 14, 3263–3269. [Google Scholar] [CrossRef]
- Özkan-Karabacak, A. Evaluation of Drying Kinetics and Quality Parameters of Rosehip Pestils Dried by Three Different Methods. J. Berry Res. 2023, 13, 261–283. [Google Scholar] [CrossRef]
- Bagdat, E.S.; Kutlu, G.; Tornuk, F. The Effect of Free and Encapsulated Probiotic Bacteria on Some Physicochemical, Microbiological, and Textural Properties of Apricot Leather (Pestil) During Storage. J. Food Sci. 2024, 89, 4688–4703. [Google Scholar] [CrossRef]
- Sarma, O.; Kundlia, M.; Chutia, H.; Mahanta, C. Processing of Encapsulated Flaxseed Oil-Rich Banana-Based (Dwarf Cavendish) Functional Fruit Leather. J. Food Process Eng. 2023, 46, e14354. [Google Scholar] [CrossRef]
- Ayustaningwarno, F.; Ayu, A.; Afifah, D.; Anjani, G.; Nuryanto, N.; Wijayanti, H.; Fitranti, D.; Tsaniya, L.; Afiani, S.; Razaq, A.; et al. Physicochemical and Sensory Quality of High Antioxidant Fruit Leather of Red Dragon Fruit and Watermelon Rind Enriched with Seaweed. Discov. Food 2024, 4, 92. [Google Scholar] [CrossRef]
- Simao, R.; de Moraes, J.; de Souza, P.; Carciofi, B.; Laurindo, J. Production of Mango Leathers by Cast-Tape Drying: Product Characteristics and Sensory Evaluation. LWT-Food Sci. Technol. 2019, 99, 445–452. [Google Scholar] [CrossRef]
- Aleman, R.; Paz, G.; Morris, A.; Prinyawiwatkul, W.; Moncada, M.; King, J. High Protein Brown Rice Flour, Tapioca Starch & Potato Starch in the Development of Gluten-Free Cupcakes. LWT-Food Sci. Technol. 2021, 152, 112326. [Google Scholar]
- Pokharel, A.; Jaidka, R.; Sruthi, N.; Bhattarai, R. Effects of Incorporation of Porous Tapioca Starch on the Quality of White Salted (Udon) Noodles. Foods 2023, 12, 1662. [Google Scholar] [CrossRef]
- Bassey, E.; Cheng, J.; Sun, D. Novel Nonthermal and Thermal Pretreatments for Enhancing Drying Performance and Improving Quality of Fruits and Vegetables. Trends Food Sci. Technol. 2021, 112, 137–148. [Google Scholar] [CrossRef]
- Dehghannya, J.; Aghazade-Khoie, E.; Heshmati, M.K.; Ghanbarzadeh, B. Influence of Ultrasound Intensification on the Continuous and Pulsed Microwave During Convective Drying of Apple. Int. J. Fruit Sci. 2020, 20, 1751–1764. [Google Scholar] [CrossRef]
- Döner, D.; Içier, F. Exergoeconomic Analysis of Ultrasound-Assisted Extraction of Tannins from Acorn Fruit. J. Food Eng. 2024, 367, 111851. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, M.; Shi, W. Evaluation of Ultrasound Pretreatment and Drying Methods on Selected Quality Attributes of Bitter Melon (Momordica charantia L.). Dry. Technol. 2019, 37, 387–396. [Google Scholar] [CrossRef]
- Galvão, A.M.M.T.; Rodrigues, S.; Fernandes, F.A.N. Kinetics of Ultrasound Pretreated Apple Cubes Dried in Fluidized Bed Dryer. Dry. Technol. 2020, 38, 1367–1377. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, L.; Qiao, Y.; Wang, C.; Shi, D.; An, K.; Hu, J. Effects of Ultrahigh Pressure and Ultrasound Pretreatments on Properties of Strawberry Chips Prepared by Vacuum-Freeze Drying. Food Chem. 2020, 303, 125386. [Google Scholar] [CrossRef]
- Memis, H.; Bekar, F.; Guler, C.; Kamiloğlu, A.; Kutlu, N. Optimization of Ultrasonic-Assisted Osmotic Dehydration as a Pretreatment for Microwave Drying of Beetroot (Beta vulgaris). Food Sci. Technol. Int. 2023, 30, 439–449. [Google Scholar] [CrossRef]
- Nowacka, M.; Rybak, K.; Trusinska, M.; Karwacka, M.; Matys, A.; Pobiega, K.; Witrowa-Rajchert, D. Chosen Biochemical and Physical Properties of Beetroot Treated with Ultrasound and Dried with Infrared–Hot Air Method. Appl. Sci. 2024, 14, 3507. [Google Scholar] [CrossRef]
- Sarkar, A.; Miah, M.S.; Alam, M.; Osman, F.B.; Roy, M. Innovative Preservation of Beetroot Juice via Nisin Assisted Thermo-Sonication: Impact on Antioxidants, Physicochemical Properties, Enzymes, and Microbial Reduction. Food Chem. Adv. 2025, 7, 100979. [Google Scholar] [CrossRef]
- Srimagal, A.; Mishra, S.; Pradhan, R.C. Effects of Ethyl Oleate and Microwave Blanching on Drying Kinetics of Bitter Gourd. J. Food Sci. Technol. 2017, 54, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Mujumdar, A.S.; Zhang, M.; Jiang, H. Comparison of Three Blanching Treatments on the Color and Anthocyanin Level of the Microwave-Assisted Spouted Bed Drying of Purple Flesh Sweet Potato. Dry. Technol. 2015, 33, 66–71. [Google Scholar] [CrossRef]
- Sampedro, F.; McAloon, A.; Yee, W.; Geveke, D. Cost Analysis and Environmental Impact of Pulsed Electric Fields and High Pressure Processing in Comparison with Thermal Pasteurization. Food Bioprocess Technol. 2014, 7, 1928–1937. [Google Scholar] [CrossRef]
- Chen, B.R.; Roobab, U.; Madni, G.M.; Abdi, G.; Zeng, X.A.; Aadil, R.M. A Review of Emerging Applications of Ultrasonication in Comparison with Non-Ionizing Technologies for Meat Decontamination. Ultrason. Sonochem. 2024, 108, 106962. [Google Scholar] [CrossRef]
- TS 12680; Üzüm Pestili. Turkish Standards Institute (TSE): Ankara, Turkey, 2000.
- TS 12679; Kayısı Pestili. Turkish Standards Institute (TSE): Ankara, Turkey, 2000.
- TS 12678; Erik Pestili. Turkish Standards Institute (TSE): Ankara, Turkey, 2000.
- TS 12677; Dut Pestili. Turkish Standards Institute (TSE): Ankara, Turkey, 2000.
- ISO 5496; Sensory Analysis–Methodology–Initiation and Training of Assessors in the Detection and Recognition of Odours. 2nd ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 3972; Sensory Analysis–Methodology–Method of Investigating Sensitivity of Taste. 3rd ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2011.
- ISO 8586; Sensory Analysis–General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; 1st ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2012.
- ISO 11132; Sensory Analysis—Methodology—Guidelines for Monitoring the Performance of a Quantitative Sensory Panel; 2nd ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- AOAC. Official Methods of Analysis of AOAC International, Official Method 2005.02; AOAC International: Gaithersburg, MD, USA, 2023. [Google Scholar]
- TS 2173; Meyve ve Sebze Mamulleri: Çözünür Katı Madde Miktarı Tayini—Refraktometrik Metot. Turkish Standards Institute (TSE): Ankara, Turkey, 1986.
- Ding, P.; Ling, Y.S. Browning assessment methods and polyphenol oxidase in UV-C irradiated Berangan banana fruit. Int. Food Res. J. 2014, 21, 1085–1091. [Google Scholar]
- Rufián-Henares, J.; Delgado-Andrade, C. Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Res. Int. 2009, 42, 394–400. [Google Scholar] [CrossRef]
- Nordic Committee on Food Analysis (NMKL). NMKL 186: Trace Elements—As, Cd, Hg, Pb and Other Elements. Determination by ICP-MS After Pressure Digestion; NMKL Publications: Oslo, Norway, 2007. [Google Scholar]
- Castellanos-Santiago, E.; Yahia, E. Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J. Agric. Food Chem. 2008, 56, 5758–5764. [Google Scholar] [CrossRef]
- Şimşek, A. Kırmızı pancar (Beta vulgaris L.) betalainleri üzerine termal destekli ultrasonik ekstraksiyonun etkisi. Gıda 2019, 44, 318–327. [Google Scholar]
- Kamiloglu, S.; Capanoglu, E. In vitro gastrointestinal digestion of polyphenols from different molasses (pekmez) and leather (pestil) varieties. Int. J. Food Sci. Technol. 2014, 49, 1027–1039. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Kumaran, A.; Karunakaran, R.J. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006, 97, 109–114. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, S.; Lee, C. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Akpinar Bayizit, A.; Bekar, E.; Unal, T.T.; Celik, M.A.; Acoglu Celik, B.; Koc Alibasoglu, E.; Sahin Dilmenler, P.; Yolci Omeroglu, P.; Copur, O.U.; Kamiloglu, S. Investigating the effect of harvest season on the bioaccessibility of bee pollen polyphenols by ultra-high performance liquid chromatography tandem mass spectrometry. Eur. Food Res. Technol. 2023, 249, 2529–2542. [Google Scholar] [CrossRef]
- Ersoyak, N.; Koc-Alibaşoğlu, E.; Acoglu-Celik, B.; Yolci-Ömeroğlu, P. Termosonikasyon ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri. Akademik Gıda 2024, 22, 314–327. [Google Scholar] [CrossRef]
- Maskan, A.; Kaya, S.; Maskan, M. Hot air and sun drying of grape leather (pestil). J. Food Eng. 2002, 54, 81–88. [Google Scholar] [CrossRef]
- Taş, E.N.; Çakaloğlu, B.; Ötleş, S. Farklı Oranlarda Keçiboynuzu Unu İçeren Pestillerin Bazı Fiziksel, Kimyasal ve Duyusal Özelliklerinin Belirlenmesi. Turk. J. Agric. Food Sci. Technol. 2018, 6, 945–952. [Google Scholar]
- Özaltın, K.E.; Çağındı, Ö. Üzüm Çekirdeği Tozu ve Kabuk Tozu Katkısının Pestilin Renk, Tekstür ve Duyusal Özellikleri Üzerine Etkisi. Bahçe 2023, 52, 234–243. [Google Scholar]
- Taraseviciene, Z.; Paulauskiene, A.; Cerniauskiene, J.; Degimiene, A. Chemical content and color of dried organic beetroot powder affected by different drying methods. Horticulturae 2024, 10, 733. [Google Scholar] [CrossRef]
- Polatcı, H.; Taşova, M.; Saraçoğlu, O. Armut (Pirus communis L.) posasının bazı kalite değerleri açısından uygun kurutma sıcaklığının belirlenmesi. Acad. Platform J. Eng. Sci. 2020, 8, 540–546. [Google Scholar] [CrossRef]
- Torres, C.; Romero, L.; Diaz, R. Quality and sensory attributes of apple and quince leathers made without preservatives and with enhanced antioxidant activity. LWT-Food Sci. Technol. 2015, 62, 996–1003. [Google Scholar] [CrossRef]
- Yıldırım, A. Kırklareli İlinde Geleneksel Olarak Üretilen Pancar Pekmezlerinin Bazı Kimyasal Özellikleri Üzerine Bir Araştırma. Master’s Thesis, Namık Kemal University, Tekirdağ, Turkey, 2008. [Google Scholar]
- Suna, S.; Tamer, C.; Incedayi, B.; Sinir, G.; Çopur, Ö. Impact of drying methods on physicochemical and sensory properties of apricot pestil. Indian J. Tradit. Knowl. 2014, 13, 47–55. [Google Scholar]
- Yüksel, F.; Yavuz, B.; Baltacı, C. Hindistan cevizi unu ile zenginleştirilmiş dut pestillerin bazı fizikokimyasal, renk ve duyusal özelliklerinin incelenmesi. Gümüşhane Univ. J. Sci. Technol. 2020, 10, 43–50. [Google Scholar] [CrossRef]
- Xiong, K.; Li, M.-M.; Chen, Y.-Q.; Hu, Y.-M.; Jin, W. Formation and Reduction of Toxic Compounds Derived from the Maillard Reaction During the Thermal Processing of Different Food Matrices. J. Food Prot. 2024, 87, 100338. [Google Scholar] [CrossRef]
- Choudhary, A.; Kumar, V.; Kumar, S.; Majid, I.; Aggarwal, P.; Suri, S. 5-Hydroxymethylfurfural (HMF) Formation, Occurrence and Potential Health Concerns: Recent Developments. Toxin Rev. 2021, 40, 545–561. [Google Scholar] [CrossRef]
- Ateş, E.; Unal, K. The Effects of Deep-Frying, Microwave, Oven and Sous Vide Cooking on the Acrylamide Formation of Gluten-Free Chicken Nuggets. Int. J. Gastron. Food Sci. 2023, 31, 100666. [Google Scholar] [CrossRef]
- Vaitkeviciene, N.; Sapronaite, A.; Kulaitiene, J. Evaluation of Proximate Composition, Mineral Elements and Bioactive Compounds in Skin and Flesh of Beetroot Grown in Lithuania. Agriculture 2022, 12, 1833. [Google Scholar] [CrossRef]
- Awolu, O.O.; Okedele, G.O.; Ojewumi, M.E.; Oseyemi, F.G. Functional jam production from blends of banana, pineapple and watermelon pulp. Int. J. Food Sci. Biotechnol. 2018, 3, 7–14. [Google Scholar] [CrossRef]
- USDA. Agricultural Research Service, USDA Food Composition Databases. 2019. Available online: https://fdc.nal.usda.gov/food-details/167540/nutrients (accessed on 20 March 2025).
- USDA. Agricultural Research Service, USDA Food Composition Databases. 2019. Available online: https://fdc.nal.usda.gov/food-details/167541/nutrients (accessed on 20 March 2025).
- Göncü, A.; Kuzumoğlu, Y.; Çelik, İ. Ticari olarak satılan nar, karadut, ahududu ve frenk üzümü meyve sularından pestil üretilmesi ve bazı kalite özelliklerinin belirlenmesi. Harran J. Agric. Food Sci. 2022, 26, 519–527. [Google Scholar] [CrossRef]
- Aadil, R.; Zeng, X.; Wang, M.; Liu, Z.; Han, Z.; Zhang, Z.; Hong, J.; Jabbar, S. A potential of ultrasound on minerals, micro-organisms, phenolic compounds and colouring pigments of grapefruit juice. Int. J. Food Sci. Technol. 2015, 50, 1144–1150. [Google Scholar] [CrossRef]
- Reddy, M.B.; Love, M. The Impact of Food Processing on the Nutritional Quality of Vitamins and Minerals. In Impact of Processing on Food Safety; Jackson, L.S., Knize, M.G., Morgan, J.N., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1999; Volume 459. [Google Scholar] [CrossRef]
- Kumari, M.; Platel, K. Impact of Soaking, Germination, Fermentation, and Thermal Processing on the Bioaccessibility of Trace Minerals from Food Grains. J. Food Process. Preserv. 2020, 44, e14752. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static In Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Igual, M.; Fernandes, Â.; Dias, M.I.; Pinela, J.; García-Segovia, P.; Martínez-Monzó, J.; Barros, L. The In Vitro Simulated Gastrointestinal Digestion Affects the Bioaccessibility and Bioactivity of Beta vulgaris Constituents. Foods 2023, 12, 338. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Ugarte, G.A.; Sosa-Morales, M.E.; Ballard, T.; Liceaga, A.; San Martín-González, M.F. Microwave-Assisted Extraction of Betalains from Red Beet (Beta vulgaris). LWT-Food Sci. Technol. 2014, 59, 276–282. [Google Scholar] [CrossRef]
- Azeredo, H. Betalains: Properties, sources, applications, and stability—A review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef]
- Chandran, J.; Nisha, P.; Singhal, R.S.; Pandit, A.B. Degradation of Colour in Beetroot (Beta vulgaris L.): A Kinetics Study. J. Food Sci. Technol. 2014, 51, 2678–2684. [Google Scholar] [CrossRef]
- Mikołajczyk-Bator, K.; Pawlak, S. The Effect of Thermal Treatment on Antioxidant Capacity and Pigment Contents in Separated Betalain Fractions. Acta Sci. Pol. Technol. Aliment. 2016, 15, 257–265. [Google Scholar] [CrossRef] [PubMed]
- da Silva, H.R.P.; da Silva, C.; Bolanho, B.C. Ultrasonic-Assisted Extraction of Betalains from Red Beet (Beta vulgaris L.). J. Food Process Eng. 2018, 41, e12833. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.; Bektasoglu, B.; Berker, K.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Capanoglu, E.; Kamiloglu, S.; Ozkan, G.; Apak, R. Evaluation of antioxidant activity/capacity measurement methods for food products. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 273–286. [Google Scholar]
- Guldiken, B.; Toydemir, G.; Memis, K.; Okur, S.; Boyacioglu, D.; Capanoglu, E. Home-processed red beetroot (Beta vulgaris L.) products: Changes in antioxidant properties and bioaccessibility. Int. J. Mol. Sci. 2016, 17, 858. [Google Scholar] [CrossRef]
- Meena, L.; Malini, B.; Byresh, T.; Sunil, C.; Rawson, A.; Venkatachalapathy, N. Ultrasound as a pre-treatment in millet-based probiotic beverage: Its effect on fermentation kinetics and beverage quality. Food Chem. Adv. 2024, 4, 100631. [Google Scholar] [CrossRef]
- Rashid, M.; Ma, H.; Jatoi, M.; Wali, A.; El-Mesery, H.; Ali, Z.; Sarpong, F. Effect of infrared drying with multifrequency ultrasound pretreatments on the stability of phytochemical properties, antioxidant potential, and textural quality of dried sweet potatoes. J. Food Biochem. 2019, 43, e12922. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour-Gilandeh, Y.; Kaveh, M.; Fatemi, H.; Aziz, M. Combined hot air, microwave, and infrared drying of hawthorn fruit: Effects of ultrasonic pretreatment on drying time, energy, qualitative, and bioactive compounds’ properties. Foods 2021, 10, 1006. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, N.; Aggarwal, P.; Grover, K. Bioactive compounds, antioxidant activity, and color retention of beetroot (Beta vulgaris L.) powder: Effect of steam blanching with refrigeration and storage. J. Food Process. Preserv. 2021, 45, e15479. [Google Scholar] [CrossRef]
- Tumbas-Saponjac, V.; Canadanovic-Brunet, J.; Cetkovic, G.; Jakisic, M.; Djilas, S.; Vulic, J.; Stajcic, S. Encapsulation of beetroot pomace extract: RSM optimization, storage and gastrointestinal stability. Molecules 2016, 21, 584. [Google Scholar] [CrossRef]
- Borjan, D.; Seregelj, V.; Andrejc, D.; Pezo, L.; Saponjac, V.; Knez, Z.; Vulic, J.; Marevci, M. Green techniques for preparation of red beetroot extracts with enhanced biological potential. Antioxidants 2022, 11, 805. [Google Scholar] [CrossRef] [PubMed]
- Alwazeer, D.; Elnasanelkasim, M.; Cigdem, A.; Engin, T.; Kanmaz, H.; Hayaloglu, A.; Russell, G.; Hancock, J. Hydrogen incorporation into solvents can improve the extraction of phenolics, flavonoids, anthocyanins, and antioxidants: A case-study using red beetroot. Ind. Crops Prod. 2023, 202, 117005. [Google Scholar] [CrossRef]
- El-Mesallamy, A.; Abd El-Latif, A.; Abd El-Azim, M.; Mahdi, M.; Hussein, S. Chemical composition and biological activities of red beetroot (Beta vulgaris Linnaeus) roots. Egypt. J. Chem. 2020, 63, 239–246. [Google Scholar] [CrossRef]
- Gong, S.; Jiao, C.; Liu, B.; Qu, W.; Guo, L.; Jiang, Y. Beetroot (Beta vulgaris) extract exerts an antibacterial effect by inducing apoptosis-like death in Bacillus cereus. J. Funct. Foods 2023, 105, 105571. [Google Scholar] [CrossRef]
- Carrillo, C.; Wilches-Pérez, D.; Hohmann, E.; Kazimierczak, R.; Rembialkowska, E. Organic versus conventional beetroot: Bioactive compounds and antioxidant properties. LWT-Food Sci. Technol. 2019, 116, 108555. [Google Scholar] [CrossRef]
- Vulic, J.; Canadanovic-Brunet, J.; Cetkovic, G.; Tumbas, V.; Djilas, S.; Cetojevic-Simin, D.; Canadanovic, V. Antioxidant and cell growth activities of beet root pomace extracts. J. Funct. Foods 2012, 4, 670–678. [Google Scholar] [CrossRef]
- Straus, S.B.; Turinek, M.; Slatnar, A.; Rozman, C.; Bavec, M. Nutritional value and economic feasibility of red beetroot (Beta vulgaris L. ssp. vulgaris Rote Kugel) from different production systems. Afr. J. Agric. Res. 2012, 7, 5653–5660. [Google Scholar]
- Sawicki, T.; Baczek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Olumese, F.E.; Oboh, H.A. Antioxidant and antioxidant capacity of raw and processed Nigerian beetroot (Beta vulgaris). Niger. J. Basic Appl. Sci. 2016, 24, 35–40. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoglu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Corke, H. Antioxidant activity of betalains from plants of the Amaranthaceae. J. Agric. Food Chem. 2003, 51, 2288–2294. [Google Scholar] [CrossRef]
- Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res. 2000, 113, 287–299. [Google Scholar] [CrossRef]
- Prior, R.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Ghosh, N.; Chakraborty, T.; Mallick, S.; Mana, S.; Singha, D.; Ghosh, B.; Roy, S. Synthesis, characterization and study of antioxidant activity of quercetin–magnesium complex. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 151, 807–813. [Google Scholar] [CrossRef]
- Akan, S.; Gunes, N.; Erkan, M. Red beetroot: Health benefits, production techniques, and quality maintaining for food industry. J. Food Process. Preserv. 2021, 45, e15665. [Google Scholar] [CrossRef]
- Rada-Mendoza, M.; Sanz, M.L.; Olano, A.; Villamiel, M. Formation of hydroxymethylfurfural and furosine during the storage of jams and fruit-based infant foods. Food Chem. 2004, 85, 605–609. [Google Scholar] [CrossRef]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Chaari, M.; Elhadef, K.; Akermi, S.; Hlima, H.; Fourati, M.; Mtibaa, A.; Sarkar, T.; Shariati, M.A.; Rebezov, M.; D’Amore, T.; et al. Multiobjective response and chemometric approaches to enhance the phytochemicals and biological activities of beetroot leaves: An unexploited organic waste. Biomass Conv. Bioref. 2023, 13, 15067–15081. [Google Scholar] [CrossRef] [PubMed]
- Patras, A.; Brunton, N.; Downey, G.; Rawson, A.; Warriner, K.; Gernigon, G. Application of Principal Component and Hierarchical Cluster Analysis to Classify Fruits and Vegetables Commonly Consumed in Ireland Based on In Vitro Antioxidant Activity. J. Food Compos. Anal. 2011, 24, 250–256. [Google Scholar] [CrossRef]
Trial/Conditions Number | 1st Step of Pretreatment (Boiling) (Duration of the Process) | 3rd Step of Pretreatment (Concentration) 6 |
---|---|---|
Final Degrees of Brix (°Bx) (Duration of the Process) | ||
1. (Traditional Control 1) | Open vessel (15 min) 1,4 | 40 °Bx (120 min) |
2. | [Thermosonication (30 min)] 2,4 | 40 °Bx (78 min) |
3. | [Thermosonication (45 min)] 2,4 | 40 °Bx (58 min) |
4. | [Thermosonication 2 (30 min) + microwave 3 (10 min)] 4 | 40 °Bx (60 min) |
5. | [Thermosonication 2 (45 min) + microwave 3 (10 min)] 4 | 40 °Bx (30 min) |
6. (Traditional Control 2) | Open vessel (15 min) 1,4 | 20 °Bx (78 min) |
7 | [Thermosonication (30 min)] 2,4 | 20 °Bx (27 min) |
8 | [Thermosonication (45 min)] 2,4 | 20 °Bx (6 min) |
9 | [Thermosonication 2 (30 min) + microwave 3 (10 min)] 4 | 20 °Bx (6 min) |
10 | [Thermosonication 2 (45 min) + microwave 3 (10 min)] 4 | 20 °Bx (4 min) |
11 | [Thermosonication,(45 min)] 2,5 | not applicable |
12 | [Thermosonication 2 (45 min) + microwave 3 (10 min)] 5 | not applicable |
Quality Parameter | Score |
---|---|
Color | |
Characteristic color of red beetroot pestil, no caramelization | 4 |
Slight browning in color, no caramelization | 3 |
Dark brown color, caramelization present | 2 |
Excessive caramelization due to burning | 1 |
Appearance | |
Transparent, uniform thickness | 4 |
Matte, uniform thickness | 3 |
Thickness is not uniform | 2 |
Thickness is not uniform, matte, presence of clumping and irregular particles | 1 |
Taste and Aroma | |
Characteristic aromatic taste and aroma of red beetroot pestil. | 4 |
Characteristic red beetroot aroma and taste, no foreign taste or odor | 3 |
Characteristic red beetroot aroma and taste, with a very slight foreign fruit taste | 2 |
Presence of foreign taste and odor | 1 |
Conditions | Color | Appearance | Taste | Odor | Beetroot-Specific Aroma | Beetroot-Specific Odor | Chewability | Texture | Overall Acceptability |
---|---|---|---|---|---|---|---|---|---|
1. (Traditional Control 1) | 5.5 ± 0.9 b | 6.0 ± 1.6 c | 6.1 ± 1.3 abc | 6.1 ± 1.3 abc | 6.4 ± 1.2 ab | 6.2 ± 1.2 a | 6.7 ± 1.1 ab | 7.4 ± 0.9 a | 6.2 ± 1.1 ab |
2. | 7.1 ± 1.0 ab | 7.5 ± 0.7 abc | 5.4 ± 0.5 c | 5.5 ± 0.5 c | 6.2 ± 1.1 ab | 6.7 ± 0.7 a | 5.0 ± 0.8 c | 6.5 ± 0.7 a | 6.5 ± 0.7 ab |
3. | 6.5 ± 0.7 ab | 6.2 ± 1.1 bc | 5.2 ± 0.7 c | 6.4 ± 1.2 abc | 6.7 ± 0.7 ab | 6.7 ± 0.7 a | 5.4 ± 0.7 bc | 7.2 ± 0.9 a | 6.4 ± 1.2 ab |
4. | 7.4 ± 1.3 a | 6.8 ± 1.0 abc | 7.1 ± 0.6 ab | 7.2 ± 0.9 ab | 7.0 ± 1.0 a | 6.8 ± 1.0 a | 7.1 ± 0.6 a | 7.4 ± 1.3 a | 7.4 ± 1.3 a |
5. | 7.4 ± 1.3 a | 7.7 ± 0.9 abc | 7.2 ± 1.2 a | 6.4 ± 1.2 abc | 6.5 ± 0.9 ab | 6.4 ± 1.2 a | 7.4 ± 1.3 a | 7.4 ± 1.3 a | 7.1 ± 1.0 ab |
6. (Traditional Control 2) | 7.2 ± 1.1 ab | 7.4 ± 0.9 abc | 5.5 ± 0.5 bc | 5.7 ± 0.4 bc | 5.8 ± 0.6 ab | 6.1 ± 0.9 a | 6.0 ± 0.8 abc | 6.8 ± 1.0 a | 6.2 ± 1.1 ab |
7 | 7.7 ± 0.9 a | 7.2 ± 0.7 abc | 7.4 ± 0.9 a | 7.4 ± 0.9 a | 7.4 ± 0.9 a | 7.0 ± 0.5 a | 7.5 ± 0.9 a | 7.1 ± 0.6 a | 7.5 ± 0.4 a |
8 | 7.5 ± 0.9 a | 7.2 ± 0.7 abc | 6.2 ± 1.1 abc | 6.4 ± 0.5 abc | 7.1 ± 0.6 a | 7.0 ± 0.5 a | 7.1 ± 0.6 a | 7.2 ± 0.7 a | 7.0 ± 0.5 ab |
9 | 8.1 ± 0.6 a | 8.1 ± 0.6 a | 6.7 ± 0.7 abc | 7.1 ± 0.6 abc | 7.0 ± 0.5 a | 6.8 ± 1.0 a | 6.1 ± 0.9 abc | 7.1 ± 0.6 a | 6.7 ± 0.7 ab |
10 | 8.1 ± 0.6 a | 8.0 ± 0.5 ab | 6.5 ± 0.5 abc | 6.5 ± 0.5 abc | 6.8 ± 1.0 ab | 6.7 ± 0.4 a | 7.0 ± 0.5 ab | 7.0 ± 0.5 a | 7.0 ± 0.5 ab |
11 | 8.1 ± 1.1 a | 7.7 ± 0.9 abc | 7.4 ± 0.7 a | 6.5 ± 0.6 abc | 7.4 ± 0.7 a | 7.4 ± 0.7 a | 7.5 ± 0.9 a | 7.5 ± 0.9 a | 7.5 ± 0.9 a |
12 | 7.0 ± 1.3 ab | 6.2 ± 1.3 bc | 5.2 ± 0.9 c | 5.5 ± 0.7 c | 5.2 ± 0.9 b | 5.8 ± 0.6 a | 5.0 ± 0.8 c | 6.2 ± 1.1 a | 5.9 ± 0.6 b |
Conditions | L* | a* | b* | C* | h° | BI | HMF (mg/kg) |
---|---|---|---|---|---|---|---|
1. (Traditional Control 1) | 30.80 ± 0.02 a | 10.83 ± 0.11 b | 7.83 ± 0.06 a | 13.35 ± 0.11 b | 35.84 ± 0.23 a | 26.47 e | 282.01 ± 5.85 a |
2. | 26.06 ± 0.13 bc | 7.42 ± 0.08 d | 2.66 ± 0.05 d | 7.87 ± 0.10 e | 19.64 ± 0.07 b | 20.54 f | 100.07 ± 4.13 c |
3. | 23.85 ± 0.24 ef | 6.80 ± 0.09 d | 2.14 ± 0.10 e | 7.19 ± 0.32 e | 18.37 ± 0.17 c | 20.44 f | 25.73 ± 0.92 e |
4. | 26.83 ± 0.15 b | 7.17 ± 0.07 d | 2.47 ± 0.05 d | 7.67 ± 0.11 e | 18.98 ± 0.51 bc | 19.30 g | 120.05 ± 0.2 b |
5. | 20.98 ± 0.49 g | 8.77 ± 0.24 c | 2.05 ± 0.07 e | 9.00 ± 0.24 d | 13.15 ± 0.12 g | 29.01 c | 70.71 ± 0.50 d |
6. (Traditional Control 2) | 23.60 ± 0.33 f | 3.99 ± 0.14 e | 1.22 ± 0.16 f | 4.29 ± 0.38 f | 14.75 ± 0.24 f | 12.39 | 2.23 ± 0.40 f |
7 | 21.29 ± 0.56 g | 8.82 ± 0.64 c | 1.98 ± 0.12 e | 9.09 ± 0.64 d | 11.90 ± 0.52 h | 28.73 d | <LOQ |
8 | 23.56 ± 0.39 f | 10.77 ± 0.28 b | 2.48 ± 0.07 d | 10.96 ± 0.14 c | 13.06 ± 0.18 g | 31.52 b | 0.31 ± 0.06 f |
9 | 24.82 ± 0.09 de | 14.41 ± 0.11 a | 4.39 ± 0.04 b | 15.07 ± 0.10 a | 16.96 ± 0.22 d | 39.75 a | <LOQ |
10 | 23.39 ± 0.06 f | 10.50 ± 0.10 b | 2.42 ± 0.05 d | 10.77 ± 0.11 c | 12.96 ± 0.16 g | 30.99 c | <LOQ |
11 | 23.22 ± 0.18 f | 11.06 ± 0.03 b | 3.03 ± 0.12 c | 11.48 ± 0.08 c | 14.96 ± 0.15 f | 32.96 b | 1.09 ± 0.10 f |
12 | 25.74 ± 0.71 cd | 10.53 ± 0.11 b | 2.95 ± 0.07 c | 10.96 ± 0.10 c | 16.01 ± 0.14 d | 28.62 d | <LOQ |
Conditions | Na (mg/kg) | Mg (mg/kg) | P (mg/kg) | K (mg/kg) | Ca (mg/kg) | Mn (mg/kg) | Fe (mg/kg) | Zn (mg/kg) |
---|---|---|---|---|---|---|---|---|
1. (Traditional Control 1) | 850.01 ± 0.01 g | 397.95 ± 8.74 c | 592.80 ± 26.70 def | 7280.10 ± 69.70 ab | 113.33 ± 1.44 a | 1.24 ± 0.05 h | 5.39 ± 0.05 cd | 2.95 ± 0.04 de |
2. | 1124.10 ± 34.70 f | 402.99 ± 3.62 c | 913.42 ± 13.76 a | 4308.00 ± 19.61 cde | 91.75 ± 1.34 b | 1.58 ± 0.01 fg | 7.69 ± 0.54 ab | 4.07 ± 0.01 b |
3. | 1213.50 ± 20.40 ef | 545.33 ± 3.60 a | 1006.30 ± 18.10 a | 5725.98 ± 10.87 cde | 114.52 ± 1.81 a | 3.15 ± 0.06 a | 8.50 ± 0.53 a | 5.01 ± 0.05 a |
4. | 1589.30 ± 28.20 bc | 302.08 ± 0.25 e | 638.74 ± 3.31 cde | 6208.70 ± 45.20 abcd | 84.85 ± 1.30 c | 1.46 ± 0.02 g | 6.09 ± 0.06 bc | 2.31 ± 0.24 c |
5. | 1636.50 ± 59.10 b | 387.9 ± 14.9 c | 790.10 ± 72.70 b | 6792.00 ± 142.00 ab | 92.95 ± 2.66 b | 2.10 ± 0.09 c | 7.13 ± 0.04 bc | 3.41 ± 0.12 cd |
6. (Traditional Control 2) | 1271.46 ± 2.18 e | 437.04 ± 2.14 b | 953.15 ± 12.72 a | 6126.06 ± 10.32 abcd | 93.24 ± 1.45 b | 1.76 ± 0.04 ef | 7.91 ± 0.37 ab | 3.55 ± 0.25 c |
7 | 2047.66 ± 12.36 a | 360.42 ± 0.75 d | 687.70 ± 42.40 bcd | 6143.80 ± 33.90 abcd | 82.84 ± 0.57 c | 2.42 ± 0.01 b | 6.28 ± 0.17 bc | 1.96 ± 0.08 fg |
8 | 1662.89 ± 4.10 b | 344.44 ± 3.79 d | 684.62 ± 7.43 bcd | 6439.90 ± 34.80 abc | 79.82 ± 0.50 c | 1.86 ± 0.01 de | 7.14 ± 0.02 abc | 1.94 ± 0.03 fg |
9 | 1305.09 ± 8.08 e | 259.34 ± 1.37 f | 487.30 ± 16.20 f | 3485.38 ± 6.72 e | 67.10 ± 0.68 d | 2.04 ± 0.03 cd | 5.35 ± 1.43 cd | 1.27 ± 0.08 h |
10 | 1469.55 ± 3.57 d | 280.21 ± 0.794 ef | 547.72 ± 1.50 ef | 4107.48 ± 13.84 de | 64.96 ± 2.35 d | 2.06 ± 0.02 c | 3.35 ± 0.06 d | 1.56 ± 0.13 gh |
11 | 1283.20 ± 15.30 e | 393.38 ± 5.41 c | 730.16 ± 8.26 bc | 5182.80 ± 29.80 bcde | 82.90 ± 1.64 c | 2.12 ± 0.05 c | 5.82 ± 0.10 bc | 2.81 ± 0.01 e |
12 | 1488.70 ± 49.30 cd | 403.42 ± 13.03 c | 898.64 ± 6.55 a | 7955.00 ± 305.00 a | 114.48 ± 0.98 a | 1.48 ± 0.04 g | 9.03 ± 0.71 a | 4.47 ± 0.01 b |
Conditions | Betaxanthin (mg/kg) | Betacyanin (mg/kg) | Total Betalain (mg/kg) |
---|---|---|---|
1. (Traditional Control 1) | 145.86 ± 7.71 d | 168.53 ± 9.20 f | 314.40 ± 16.91 ef |
2 | 151.76 ± 16.13 cd | 208.27 ± 23.59 ef | 360.03 ± 39.72 ef |
3 | 128.68 ± 13.02 d | 171.64 ± 15.69 f | 300.32 ± 28.71 f |
4 | 229.00 ± 23.36 a | 306.01 ± 33.60 b | 535.01 ± 56.97 b |
5. | 257.10 ± 18.52 a | 355.90 ± 13.22 a | 613.00 ± 31.70 a |
6. (Traditional Control 2) | 200.07 ± 5.25 b | 288.59 ± 8.45 bc | 488.66 ± 13.69 bc |
7 | 147.98 ± 5.34 d | 234.70 ± 6.55 de | 382.68 ± 11.89 de |
8 | 131.64 ± 3.49 d | 209.80 ± 2.06 def | 341.44 ± 1.44 ef |
9 | 192.20 ± 29.60 b | 289.10 ± 61.60 bc | 481.30 ± 91.21 bc |
10 | 130.76 ± 3.89 d | 220.17 ± 12.02 de | 350.93 ± 15.91 de |
11 | 143.76 ± 11.14 d | 229.04 ± 20.80 de | 372.80 ± 31.94 ef |
12 | 179.41 ± 7.22 bc | 255.37 ± 10.08 cd | 434.79 ± 17.30 bc |
Conditions | TAC | TPC (mg GAE/100 g DM) | TFC (mg RE/100 g DM) | |
---|---|---|---|---|
CUPRAC (mg TE/100 g DM) | DPPH (mg TE/100 g DM) | |||
1. (Traditional Control 1) | 587.48 ± 42.90 b | 30.85 ± 2.84 bc | 220.60 ± 9.63 b | 365.08 ± 15.71 b |
2 | 515.38 ± 11.96 c | 31.98 ± 1.06 b | 205.46 ± 3.80 c | 340.48 ± 6.20 c |
3 | 183.90 ± 4.01 h | 17.28 ± 0.88 e | 82.01 ± 2.03 i | 138.62 ± 3.31 i |
4 | 182.07 ± 26.48 h | 14.05 ± 0.46 f | 76.26 ± 2.37 i | 128.19 ± 3.86 i |
5. | 347.30 ± 10.21 e | 24.65 ± 0.50 d | 149.13 ± 1.55 ef | 248.13 ± 2.53 ef |
6. (Traditional Control 2) | 870.78 ± 25.05 a | 48.18 ± 0.76 a | 313.17 ± 10.63 a | 517.46 ± 17.35 a |
7 | 304.84 ± 40.50 ef | 24.93 ± 2.57 d | 146.43 ± 5.82 f | 245.47 ± 9.49 f |
8 | 255.29 ± 17.34 g | 22.94 ± 0.72 d | 113.11 ± 2.15 h | 190.96 ± 3.51 h |
9 | 348.05 ± 7.98 e | 28.20 ± 0.63 c | 157.54 ± 2.30 e | 263.66 ± 3.76 e |
10 | 301.72 ± 10.37 f | 23.69 ± 0.95 d | 130.75 ± 4.83 g | 218.78 ± 7.88 g |
11 | 420.81 ± 19.47 d | 32.46 ± 0.88 b | 178.90 ± 3.05 d | 299.12 ± 4.97 d |
12 | 530.50 ± 19.16 c | 33.68 ± 2.26 b | 218.34 ± 5.76 b | 362.96 ± 9.40 b |
Compound | Retention Time (RT) | Ionization Mode | Mass (m/z) | Main Fragment (m/z) | Other Fragmental Ions (m/z) |
---|---|---|---|---|---|
Phenolic acids and other polyphenols | |||||
Chlorogenic acid | 2.01 | ESI- | 353.1 | 191.1 | 110.9 |
Ferulic acid | 3.79 | ESI- | 192.9 | 134.1 | 178.1 |
Caffeic acid | 2.67 | ESI- | 178.8 | 135.1 | 89.2 |
o-salicylic acid | 5.06 | ESI- | 137.1 | 93.0 | 75.0; 65.0 |
p-coumaric acid | 3.54 | ESI- | 163.1 | 119.1 | 146.0; 117.1; 93.0; 65.0; 41.0 |
Vanillin | 3.55 | ESI- | 151.0 | 136.1 | 92.1 |
Flavonoid | |||||
Isoquercitrin | 3.45 | ESI- | 463.1 | 300.0 | 271.0 |
Epicatechin | 2.44 | ESI- | 289.1 | 245.1 | 205.1 |
Quercetin | 5.95 | ESI- | 301.0 | 151.2 | 179.0 |
Rutin | 3.10 | ESI- | 609.1 | 300.0 | 271.1 |
Taxifolin | 3.87 | ESI- | 303.1 | 285.1 | 125.0 |
Conditions | Epicatechin | Rutin | Isoquercitrin | Taxifolin | Quercetin |
---|---|---|---|---|---|
1. (Traditional Control 1) | 2693.17 ± 109.03 c | 14.49 ± 0.36 bc | 119.10 ± 1.31 cd | 2.95 ± 0.02 cd | 13.59 ± 0.35 d |
2 | 1771.29 ± 165.76 e | 12.74 ± 0.62 def | 161.55 ± 8.22 a | 3.00 ± 0.36 cd | 15.59 ± 0.60 d |
3 | 2307.19 ± 109.48 d | 10.84 ± 0.25 gh | 96.43 ± 2.58 ef | 4.02 ± 0.24 b | 38.59 ± 1.93 a |
4 | 651.88 ± 0.65 g | 7.78 ± 0.36 i | 56.29 ± 2.27 h | 2.01 ± 0.06 f | 5.87 ± 0.86 g |
5. | 1240.70 ± 98.96 f | 9.33 ± 0.07 h | 73.67 ± 1.25 g | 2.01 ± 0.02 f | 5.43 ± 0.64 g |
6. (Traditional Control 2) | 2371.00 ± 182.25 d | 13.16 ± 1.42 cde | 132.47 ± 10.24 bc | 3.39 ± 0.12 c | 18.21 ± 2.06 c |
7 | 4306.23 ± 103.54 a | 13.43 ± 0.24 cde | 146.35 ± 0.41 ab | 4.94 ± 0.20 a | 32.21 ± 0.85 b |
8 | 1978.33 ± 168.21 e | 14.26 ± 0.39 cd | 83.87 ± 1.35 fg | 2.56 ± 0.24 de | 18.11 ± 0.84 c |
9 | 3097.76 ± 16.57 b | 15.96 ± 1.67 ab | 128.42 ± 12.08 c | 3.38 ± 0.22 c | 8.68 ± 1.00 e |
10 | 1807.34 ± 138.79 e | 12.33 ± 0.85 efg | 80.69 ± 0.23 fg | 2.69 ± 0.17 de | 5.00 ± 0.18 g |
11 | 2882.42 ± 141.92 bc | 16.89 ± 0.05 a | 153.74 ± 21.61 a | 3.20 ± 0.42 c | 8.52 ± 0.80 ef |
12 | 2812.91 ± 5.97 c | 11.46 ± 0.01 fg | 105.47 ± 0.29 de | 2.28 ± 0.18 ef | 6.40 ± 0.21 fg |
Conditions | Chlorogenic Acid | Ferulic Acid | Caffeic Acid | o-Salicylic Acid | p-Coumaric Acid | Vanillin |
---|---|---|---|---|---|---|
1. (Traditional Control 1) | 56,274.93 ± 719.86 b | 259.72 ± 4.68 c | 19.93 ± 0.66 e | 42.51 ± 0.59 cd | 34.14 ± 1.95 b | 234.86 ± 6.03 d |
2 | 46,783.23 ± 414.76 d | 432.22 ± 13.82 a | 54.93 ± 2.05 a | 42.86 ± 2.48 cd | 48.93 ± 3.23 a | 554.20 ± 36.88 a |
3 | 53,430.91 ± 477.30 bc | 245.37 ± 11.01 cd | 24.89 ± 0.62 c | 55.70 ± 0.08 a | 46.43 ± 0.35 a | 22.83 ± 1.53 d |
4 | 16,351.71 ± 329.13 g | 128.70 ± 0.76 f | 13.47 ± 0.99 fg | 47.83 ± 0.37 b | 21.86 ± 0.27 d | 143.64 ± 1.79 g |
5. | 19,001.83 ± 192.20 g | 184.90 ± 7.45 e | 13.63 ± 0.61 f | 46.74 ± 0.28 bc | 20.56 ± 2.96 de | 177.14 ± 0.29 f |
6. (Traditional Control 2) | 51,236.94 ± 383.32 c | 335.03 ± 5.99 b | 25.01 ± 0.29 c | 38.41 ± 0.83 d | 45.74 ± 3.12 a | 310.37 ± 19.14 c |
7 | 92,638.67 ± 1077.40 a | 337.86 ± 14.74 b | 37.88 ± 0.20 b | 51.44 ± 4.76 ab | 49.84 ± 5.48 a | 209.86 ± 6.00 de |
8 | 25,139.23 ± 1928.66 f | 172.86 ± 6.31 e | 11.33 ± 0.21 gh | 24.43 ± 0.39 f | 24.44 ± 0.28 cd | 167.57 ± 5.77 fg |
9 | 41,683.02 ± 2151.84 e | 317.55 ± 12.90 b | 20.83 ± 0.48 e | 29.55 ± 3.55 e | 38.66 ± 0.10 b | 181.45 ± 2.93 ef |
10 | 23,426.25 ± 490.18 f | 222.84 ± 1.44 d | 10.83 ± 0.01 h | 23.97 ± 2.54 f | 16.59 ± 2.44 e | 164.54 ± 5.80 fg |
11 | 45,136.42 ± 3556.85 d | 324.02 ± 35.34 b | 21.82 ± 2.51 de | 29.95 ± 1.64 e | 27.98 ± 2.27 c | 211.68 ± 25.36 de |
12 | 45,449.35 ± 1449.61 d | 179.25 ± 1.79 e | 23.08 ± 0.04 cd | 20.62 ± 3.17 f | 27.1 ± 0.08 c | 362.36 ± 12.93 b |
Variables | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 |
---|---|---|---|---|---|---|---|
Eigenvalue | 9.326 | 6.372 | 5.684 | 4.217 | 2.272 | 1.905 | 1.342 |
Percentage % | 28.30 | 19.30 | 17.20 | 12.80 | 6.90 | 5.80 | 4.10 |
Cumulative | 28.30 | 47.60 | 64.80 | 77.60 | 84.50 | 90.20 | 94.30 |
DPPH | 0.597 | 0.368 | −0.290 | −0.596 | 0.147 | −0.038 | −0.201 |
CUPRAC | 0.642 | 0.275 | −0.480 | −0.462 | 0.077 | 0.049 | −0.208 |
TFC | 0.628 | 0.349 | −0.417 | −0.508 | 0.125 | 0.065 | −0.153 |
TPC | 0.629 | 0.345 | −0.422 | −0.506 | 0.120 | 0.066 | −0.153 |
Epicatechin | 0.328 | 0.616 | 0.488 | −0.001 | 0.359 | 0.323 | −0.084 |
Rutin | 0.135 | 0.875 | 0.199 | −0.088 | 0.147 | −0.175 | −0.170 |
Isoquercitrin | 0.658 | 0.624 | 0.229 | −0.189 | −0.093 | 0.007 | 0.154 |
Quercetin | 0.538 | −0.156 | 0.650 | 0.422 | 0.047 | 0.132 | −0.155 |
Taxifolin | 0.476 | 0.304 | 0.727 | 0.165 | −0.090 | 0.255 | −0.201 |
Caffeic acid | 0.729 | 0.180 | 0.249 | −0.040 | −0.271 | 0.043 | 0.527 |
o-salicylic acid | 0.368 | −0.430 | 0.176 | 0.413 | −0.451 | 0.464 | −0.018 |
Vanillin | 0.729 | 0.079 | −0.172 | −0.178 | −0.064 | −0.257 | 0.541 |
p-coumaric acid | 0.802 | 0.172 | 0.396 | 0.091 | −0.187 | 0.193 | 0.118 |
Ferulic acid | 0.650 | 0.521 | 0.269 | −0.200 | −0.394 | −0.064 | 0.130 |
Chlorogenic acid | 0.635 | 0.372 | 0.444 | 0.147 | 0.125 | 0.436 | −0.034 |
Na | −0.406 | −0.317 | 0.569 | −0.329 | 0.190 | 0.428 | 0.118 |
Mg | 0.764 | −0.396 | 0.050 | 0.292 | 0.237 | −0.162 | −0.171 |
P | 0.752 | −0.558 | 0.053 | −0.102 | 0.199 | −0.237 | 0.075 |
K | 0.159 | −0.378 | −0.379 | 0.148 | 0.656 | 0.419 | −0.071 |
Ca | 0.606 | −0.312 | −0.362 | 0.434 | 0.427 | 0.080 | 0.044 |
Fe | 0.597 | −0.512 | 0.014 | −0.070 | 0.454 | −0.036 | 0.308 |
Zn | 0.704 | −0.483 | −0.193 | 0.160 | 0.244 | −0.245 | 0.147 |
Mn | 0.186 | −0.300 | 0.669 | 0.394 | 0.020 | −0.410 | −0.204 |
Betalain | −0.463 | 0.047 | 0.497 | 0.003 | 0.442 | 0.184 | 0.349 |
Betaxanthin | −0.206 | −0.436 | −0.413 | −0.444 | −0.149 | 0.431 | 0.138 |
Betacyanin | −0.339 | −0.353 | −0.184 | −0.664 | −0.115 | 0.358 | 0.091 |
HMF | 0.116 | 0.104 | −0.677 | 0.568 | −0.256 | 0.287 | 0.061 |
L* | 0.134 | 0.295 | −0.685 | 0.512 | −0.061 | 0.002 | 0.149 |
a* | −0.577 | 0.674 | 0.027 | 0.130 | 0.285 | −0.081 | 0.206 |
b* | −0.050 | 0.623 | −0.516 | 0.547 | 0.064 | 0.152 | 0.007 |
C* | −0.502 | 0.725 | −0.103 | 0.245 | 0.261 | −0.020 | 0.162 |
h° | 0.246 | 0.311 | −0.626 | 0.644 | −0.104 | 0.137 | −0.014 |
BI | −0.619 | 0.577 | 0.225 | 0.005 | 0.288 | −0.056 | 0.162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ersoyak, N.; Acoglu Celik, B.; Koc Alibasoglu, E.; Bekar, E.; Unal, T.T.; Yetan, E.; Kamiloglu, S.; Akpinar Bayizit, A.; Copur, O.U.; Aral Baskaya, I.; et al. Production of Red Beetroot (Beta vulgaris L.) Pestil as an Alternative Healthy Snack: Effects of Traditional, Thermosonication, and Microwave Pretreatments on Physicochemical, Sensorial, Nutritional, and Chemometric Profiles. Foods 2025, 14, 1784. https://doi.org/10.3390/foods14101784
Ersoyak N, Acoglu Celik B, Koc Alibasoglu E, Bekar E, Unal TT, Yetan E, Kamiloglu S, Akpinar Bayizit A, Copur OU, Aral Baskaya I, et al. Production of Red Beetroot (Beta vulgaris L.) Pestil as an Alternative Healthy Snack: Effects of Traditional, Thermosonication, and Microwave Pretreatments on Physicochemical, Sensorial, Nutritional, and Chemometric Profiles. Foods. 2025; 14(10):1784. https://doi.org/10.3390/foods14101784
Chicago/Turabian StyleErsoyak, Neslihan, Busra Acoglu Celik, Elif Koc Alibasoglu, Erturk Bekar, Taha Turgut Unal, Ersin Yetan, Senem Kamiloglu, Arzu Akpinar Bayizit, Omer Utku Copur, Irmak Aral Baskaya, and et al. 2025. "Production of Red Beetroot (Beta vulgaris L.) Pestil as an Alternative Healthy Snack: Effects of Traditional, Thermosonication, and Microwave Pretreatments on Physicochemical, Sensorial, Nutritional, and Chemometric Profiles" Foods 14, no. 10: 1784. https://doi.org/10.3390/foods14101784
APA StyleErsoyak, N., Acoglu Celik, B., Koc Alibasoglu, E., Bekar, E., Unal, T. T., Yetan, E., Kamiloglu, S., Akpinar Bayizit, A., Copur, O. U., Aral Baskaya, I., & Yolci Omeroglu, P. (2025). Production of Red Beetroot (Beta vulgaris L.) Pestil as an Alternative Healthy Snack: Effects of Traditional, Thermosonication, and Microwave Pretreatments on Physicochemical, Sensorial, Nutritional, and Chemometric Profiles. Foods, 14(10), 1784. https://doi.org/10.3390/foods14101784