Influence of Cultivation System and Proportion of Local Cultivars ‘Caaveiro’ and ‘Callobre’ in Flour Mixtures on the Nutritional Quality of Galician Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation Conditions
2.2. Bread Samples
2.3. Nutritional Analysis
2.3.1. Moisture
2.3.2. Crude Protein
2.3.3. Ash
2.3.4. Crude Fat
2.3.5. Carbohydrates
2.3.6. Starch
2.3.7. Simple Sugars
2.3.8. Amylose and Amylopectin
2.3.9. Fiber
2.3.10. Minerals
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arranz-Otaegui, A.; Gonzalez Carretero, L.; Ramsey, M.N.; Fuller, D.Q.; Richter, T. Archaeobotanical evidence reveals the origins of bread 14,400 years ago in northeastern Jordan. Proc. Natl. Acad. Sci. USA 2018, 115, 7925–7930. [Google Scholar] [CrossRef]
- Luengo, E.; Pastor, J.; Saldaña, G. Traditional breads from Spain. In Traditional European Breads; Springer International Publishing: Cham, Switzerland, 2023; pp. 343–366. [Google Scholar]
- MAPA. Informe del Consumo de Alimentación en España 2023. Available online: https://www.mapa.gob.es/es/alimentacion/temas/consumo-tendencias/informe_2023_baja_tcm30-685878.pdf (accessed on 18 October 2024).
- European Commission. Commission Regulation (EU) 2019/2182 of 16 December 2019 entering a name in the register of protected designations of origin and protected geographical indications [Pan Galego (PGI)]. Off. J. Eur. Union 2019, L330, 42. [Google Scholar]
- Estévez-López, R.D.; García-Gómez, B.; Vázquez-Odériz, M.L.; Ferreiro, N.M.; Romero-Rodríguez, M.Á. Influence of bread shape on the sensory characteristics of Galician breads: Development of lexicon, efficacy control of the trained panel and establishment of a sensory profile. LWT 2021, 135, 110024. [Google Scholar] [CrossRef]
- García-Gómez, B.; Fernández-Canto, N.; Vázquez-Odériz, M.L.; Quiroga-García, M.; Muñoz-Ferreiro, N.; Romero-Rodríguez, M.Á. Sensory descriptive analysis and hedonic consumer test for Galician type breads. Food Control 2022, 134, 108765. [Google Scholar] [CrossRef]
- Guzmán, C.; Ibba, M.I.; Álvarez, J.B.; Sissons, M.; Morris, C. Wheat quality. In Wheat Improvement; Springer International Publishing: Cham, Switzerland, 2022; pp. 177–193. [Google Scholar]
- Aghalari, Z.; Dahms, H.-U.; Sillanpää, M. Evaluation of nutrients in bread: A systematic review. J. Health Popul. Nutr. 2022, 41, 50. [Google Scholar] [CrossRef] [PubMed]
- Păucean, A.; Șerban, L.-R.; Chiș, M.S.; Mureșan, V.; Pușcaș, A.; Man, S.M.; Pop, C.R.; Socaci, S.A.; Igual, M.; Ranga, F.; et al. Nutritional composition, in vitro carbohydrates digestibility, textural and sensory characteristics of bread as affected by ancient wheat flour type and sourdough fermentation time. Food Chem. X 2024, 22, 101298. [Google Scholar] [CrossRef] [PubMed]
- Urquijo, L. ¿Cómo recuperar los ecotipos autóctonos? In Respostas ás Preguntas Sobre o Pan e o Cereal do País; Romero Rodríguez, M., Pereira Lorenzo, S., Eds.; Monografías do Ibader: Lugo, Spain, 2018; pp. 33–38. [Google Scholar]
- Arzani, A.; Ashraf, M. Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Comprehensive Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef]
- Adhikari, S.; Kumari, J.; Jacob, S.R.; Prasad, P.; Gangwar, O.P.; Lata, C.; Thakur, R.; Singh, A.K.; Bansal, R.; Kumar, S.; et al. Landraces—Potential treasure for sustainable wheat improvement. Genet. Resour. Crop Evol. 2022, 69, 499–523. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Gerhardt, K.; Wendin, K. Biochemical characteristics and potential applications of ancient cereals—An underexploited opportunity for sustainable production and consumption. Trends Food Sci. Technol. 2021, 107, 114–123. [Google Scholar] [CrossRef]
- Vindras-Fouillet, C.; Goldringer, I.; van Frank, G.; Dewalque, M.; Colin, A.; Montaz, H.; Berthellot, J.-F.; Baltassat, R.; Dalmasso, C. Sensory analyses and nutritional qualities of wheat population varieties developed by participatory breeding. Agronomy 2021, 11, 2117. [Google Scholar] [CrossRef]
- Sumberg, J.; Giller, K.E. What is ‘conventional’ agriculture? Glob. Food Secur. 2022, 32, 100617. [Google Scholar] [CrossRef]
- Câmara-Salim, I.; Almeida-García, F.; Feijoo, G.; Moreira, M.T.; González-García, S. Environmental consequences of wheat-based crop rotation in potato farming systems in Galicia, Spain. J. Environ. Manag. 2021, 287, 112351. [Google Scholar] [CrossRef] [PubMed]
- Rebolledo-Leiva, R.; Almeida-García, F.; Pereira-Lorenzo, S.; Ruíz-Nogueira, B.; Moreira, M.T.; González-García, S. Determining the environmental and economic implications of lupin cultivation in wheat-based organic rotation systems in Galicia, Spain. Sci. Total Environ. 2022, 845, 157342. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chatzidimitriou, E.; Wood, L.; Hasanalieva, G.; Markellou, E.; Iversen, P.O.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour. Food Chem. X 2020, 6, 100091. [Google Scholar] [CrossRef]
- Pontonio, E.; Arora, K.; Dingeo, C.; Carafa, I.; Celano, G.; Scarpino, V.; Genot, B.; Gobbetti, M.; Di Cagno, R. Commercial organic versus conventional whole rye and wheat flours for making sourdough bread: Safety, nutritional, and sensory implications. Front. Microbiol. 2021, 12, 674413. [Google Scholar] [CrossRef]
- Stern, A.L.; Berstein, J.; Jones, S.S.; Blumberg, J.B.; Griffin, T.S. The impacts of germinating organic wheat: Effects on phytic acid, resistant starch, and functional properties of flour, and sensory attributes of sourdough bread. Int. J. Food Sci. Technol. 2021, 56, 3858–3865. [Google Scholar] [CrossRef]
- Fernández-Canto, N.; García-Gómez, M.B.; Vázquez-Odériz, M.L.; Lombardero-Fernández, M.; Pereira-Lorenzo, S.; Cobos, Á.; Díaz, O.; Romero-Rodríguez, M.Á. Autochthonous Wheat Grown in Organic and Conventional Systems: Nutritional Quality of Flour and Bread. Foods 2024, 13, 1120. [Google Scholar] [CrossRef]
- Fernández-Canto, M.N.; García-Gómez, M.B.; Boado-Crego, S.; Vázquez-Odériz, M.L.; Muñoz-Ferreiro, M.N.; Lombardero-Fernández, M.; Pereira-Lorenzo, S.; Romero-Rodríguez, M.Á. Element Content in Different Wheat Flours and Bread Varieties. Foods 2022, 11, 3176. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists International, 21st ed.; AOAC: Rockville, MD, USA, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Bhatt, C.M.; Nagaraju, J. Studies on Electrical Properties of Wheat Bread as a Function of Moisture Content during Storage. Sens. Instrum. Food Qual. Saf. 2010, 4, 61–66. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ciudad-Mulero, M.; Fernández-Ruiz, V.; Ferreira, E.; Heleno, S.; Rodrigues, P.; Barros, L.; Ferreira, I.C.F.R. Comparison of Different Bread Types: Chemical and Physical Parameters. Food Chem. 2020, 310, 125954. [Google Scholar] [CrossRef] [PubMed]
- Pico, J.; Martínez, M.M.; Martín, M.T.; Gómez, M. Quantification of Sugars in Wheat Flours with an HPAEC-PAD Method. Food Chem. 2015, 173, 674–681. [Google Scholar] [CrossRef]
- Boukid, F.; Vittadini, E.; Prandi, B.; Mattarozzi, M.; Marchini, M.; Sforza, S.; Sayar, R.; Seo, Y.W.; Yacoubi, I.; Mejri, M. Insights into a Century of Breeding of Durum Wheat in Tunisia: The Properties of Flours and Starches Isolated from Landraces, Old and Modern Genotypes. LWT 2018, 97, 743–751. [Google Scholar] [CrossRef]
- Calvin, O. Starch and Modified Starch in Bread Making: A Review. Afr. J. Food Sci. 2016, 10, 344–351. [Google Scholar] [CrossRef]
- AESAN. Informe del Comité Científico de La Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) de Revisión y Actualización de Las Recomendaciones Dietéticas Para La Población Española. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/evaluacion_riesgos/informes_comite/RECOMENDACIONES_DIETETICAS.pdf (accessed on 12 November 2024).
- Sitrin, M.D. Digestion and Absorption of Carbohydrates and Proteins. In The Gastrointestinal System; Springer: Dordrecht, The Netherlands, 2014; pp. 137–158. [Google Scholar]
- Bulut, S. Mineral Content of Some Bread Wheat Cultivars. Cereal Res. Commun. 2022, 50, 1145–1153. [Google Scholar] [CrossRef]
- European Commission. Council Directive of 24 September 1990 on Nutrition Labelling for Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1990L0496:20081211:EN:PDF (accessed on 12 November 2024).
- Lockyer, S.; Spiro, A. The Role of Bread in the UK Diet: An Update. Nutr. Bull. 2020, 45, 133–164. [Google Scholar] [CrossRef]
- Valli, V.; Taccari, A.; Di Nunzio, M.; Danesi, F.; Bordoni, A. Health Benefits of Ancient Grains. Comparison among Bread Made with Ancient, Heritage and Modern Grain Flours in Human Cultured Cells. Food Res. Int. 2018, 107, 206–215. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The Need to Breed Crop Varieties Suitable for Organic Farming, Using Wheat, Tomato and Broccoli as Examples: A Review. NJAS Wageningen J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Boukid, F.; Gentilucci, V.; Vittadini, E.; De Montis, A.; Rosta, R.; Bosi, S.; Dinelli, G.; Carini, E. Rediscovering Bread Quality of “Old” Italian Wheat (Triticum aestivum L. ssp. aestivum) through an Integrated Approach: Physicochemical Evaluation and Consumers’ Perception. LWT 2020, 122, 109043. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Acquistucci, R. Nutritional Characterization of an Italian Traditional Bread from Ancient Grains: The Case Study of the Durum Wheat Bread “Pane Di Monreale”. Eur. Food Res. Technol. 2021, 247, 193–200. [Google Scholar] [CrossRef]
- Lamlom, S.F.; Irshad, A.; Mosa, W.F.A. The Biological and Biochemical Composition of Wheat (Triticum aestivum) as Affected by the Bio and Organic Fertilizers. BMC Plant Biol. 2023, 23, 111. [Google Scholar] [CrossRef] [PubMed]
- EL-Guibali, A. Effect of Organic and Mineral Fertilization on Wheat Yield and Quality. J. Soil Sci. Agric. Eng. 2016, 7, 829–836. [Google Scholar] [CrossRef]
- Nasiroleslami, E.; Mozafari, H.; Sadeghi-Shoae, M.; Habibi, D.; Sani, B. Changes in Yield, Protein, Minerals, and Fatty Acid Profile of Wheat (Triticum aestivum L.) under Fertilizer Management Involving Application of Nitrogen, Humic Acid, and Seaweed Extract. J. Soil Sci. Plant Nutr. 2021, 21, 2642–2651. [Google Scholar] [CrossRef]
- Vrček, I.V.; Čepo, D.V.; Rašić, D.; Peraica, M.; Žuntar, I.; Bojić, M.; Mendaš, G.; Medić-Šarić, M. A Comparison of the Nutritional Value and Food Safety of Organically and Conventionally Produced Wheat Flours. Food Chem. 2014, 143, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Canto, N.; García-Gómez, M.B.; Vázquez-Odériz, M.L.; Lombardero-Fernández, M.; Pereira-Lorenzo, S.; Cobos, Á.; Díaz, O.; Vázquez, M.; Romero-Rodríguez, M.Á. Impact of Organic and Conventional Farming Practices on the Multidimensional Characteristics of Flour and Indirectly on Bread. LWT 2024, 209, 116807. [Google Scholar] [CrossRef]
- Hellemans, T.; Landschoot, S.; Dewitte, K.; Van Bockstaele, F.; Vermeir, P.; Eeckhout, M.; Haesaert, G. Impact of Crop Husbandry Practices and Environmental Conditions on Wheat Composition and Quality: A Review. J. Agric. Food Chem. 2018, 66, 2491–2509. [Google Scholar] [CrossRef]
- Rozbicki, J.; Ceglińska, A.; Gozdowski, D.; Jakubczak, M.; Cacak-Pietrzak, G.; Mądry, W.; Golba, J.; Piechociński, M.; Sobczyński, G.; Studnicki, M.; et al. Influence of the Cultivar, Environment and Management on the Grain Yield and Bread-Making Quality in Winter Wheat. J. Cereal Sci. 2015, 61, 126–132. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Antichi, D.; Silvestri, N.; Ciantelli, G.; Sgherri, C. Organically vs Conventionally Grown Winter Wheat: Effects on Grain Yield, Technological Quality, and on Phenolic Composition and Antioxidant Properties of Bran and Refined Flour. Food Chem. 2015, 175, 445–451. [Google Scholar] [CrossRef]
- Zörb, C.; Niehaus, K.; Barsch, A.; Betsche, T.; Langenkämper, G. Levels of Compounds and Metabolites in Wheat Ears and Grains in Organic and Conventional Agriculture. J. Agric. Food Chem. 2009, 57, 9555–9562. [Google Scholar] [CrossRef]
- Smith, O.M.; Cohen, A.L.; Rieser, C.J.; Davis, A.G.; Taylor, J.M.; Adesanya, A.W.; Jones, M.S.; Meier, A.R.; Reganold, J.P.; Orpet, R.J.; et al. Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis. Front. Sustain. Food Syst. 2019, 3, 82. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The Contribution of Wheat to Human Diet and Health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
Local Variety | Percentage of Local Flour | Production System |
---|---|---|
‘Caaveiro’ | 100% | Organic |
‘Caaveiro’ | 100% | Conventional |
‘Caaveiro’ | 25% | Organic |
‘Caaveiro’ | 25% | Conventional |
‘Callobre’ | 100% | Organic |
‘Callobre’ | 100% | Conventional |
‘Callobre’ | 25% | Organic |
‘Callobre’ | 25% | Conventional |
Proportion and Variety | 100% ‘Caaveiro’ | 100% ‘Callobre’ | 25% ‘Caaveiro’ | 25% ‘Callobre’ | ||||
---|---|---|---|---|---|---|---|---|
Cultivation System | Organic | Conventional | Organic | Conventional | Organic | Conventional | Organic | Conventional |
Moisture (g/100 g) | 30.63 ± 3.30 b | 30.28 ± 2.89 b | 26.08 ± 3.90 b | 28.08 ± 2.47 b | 38.64 ± 1.74 a | 38.53 ± 2.02 a | 38.45 ± 1.59 a | 36.23 ± 4.62 a |
Protein (g/100 g) | 13.21 ± 0.01 a | 11.86 ± 0.03 b | 10.66 ± 0.08 c | 10.36 ± 0.00 d | 9.30 ± 0.03 e | 9.18 ± 0.00 f | 9.30 ± 0.00 f | 9.97 ± 0.03 f |
Ash (g/100 g) | 2.22 ± 0.08 a | 1.95 ± 0.02 a | 1.88 ± 0.02 a | 3.76 ± 2.69 a | 1.81 ± 0.07 a | 1.80 ± 0.11 a | 1.79 ± 0.02 a | 1.54 ± 0.02 a |
Fat (g/100 g) | 1.22 ± 0.07 a | 1.09 ± 0.00 ab | 1.07 ± 0.08 ab | 1.11 ± 0.11 ab | 0.85 ± 0.10 bc | 0.63 ± 0.01 c | 0.67 ± 0.06 c | 0.68 ± 0.07 c |
CHO (g/100 g) | 49.10 ± 2.07 b | 53.06 ± 0.47 ab | 60.98 ± 0.28 a | 57.45 ± 6.05 ab | 49.93 ± 3.83 ab | 49.27 ± 2.40 c | 49.89 ± 1.09 ab | 48.09 ± 3.03 b |
TS (g/100 g) | 37.51 ± 0.36 cd | 39.58 ± 0.29 b | 42.08 ± 0.47 a | 38.10 ± 0.46 bcd | 34.80 ± 0.37 e | 35.35 ± 0.11 e | 36.52 ± 0.74 de | 39.12 ± 0.49 bc |
RS (g/100 g) | 3.08 ± 0.80 a | 3.35 ± 1.28 a | 3.83 ± 1.11 a | 4.16 ± 1.56 a | 3.75 ± 0.07 a | 3.39 ± 1.10 a | 4.21 ± 0.39 a | 3.40 ± 0.69 a |
TDS (g/100 g) | 34.43 ± 0.45 abc | 36.23 ± 1.57 ab | 38.25 ± 1.57 a | 33.94 ± 1.10 bc | 31.04 ± 0.30 c | 31.97 ± 1.21 bc | 32.31 ± 0.35 bc | 35.72 ± 1.18 ab |
RDS (g/100 g) | 26.90 ± 5.94 a | 26.76 ± 6.30 a | 28.31 ± 5.25 a | 26.70 ± 6.62 a | 24.03 ± 3.77 a | 23.84 ± 5.13 a | 23.88 ± 4.92 a | 26.94 ± 5.13 a |
SDS (g/100 g) | 0.72 ± 0.94 a | 1.52 ± 0.19 a | 0.98 ± 0.60 a | 0.60 ± 0.79 a | 0.68 ± 0.73 a | 1.33 ± 0.44 a | 0.92 ± 0.29 a | 0.80 ± 0.01 a |
Glucose (g/100 g) | 0.01 ± 0.00 c | 0.01 ± 0.00 bc | 0.04 ± 0.01 abc | 0.06 ± 0.00 a | 0.04 ± 0.00 abc | 0.04 ± 0.03 abc | 0.04 ± 0.03 abc | 0.05 ± 0.00 ab |
Fructose (g/100 g) | 0.01 ± 0.00 c | 0.03 ± 0.00 c | 0.09 ± 0.02 b | 0.13 ± 0.01 ab | 0.13 ± 0.01 ab | 0.13 ± 0.03 ab | 0.14 ± 0.03 ab | 0.14 ± 0.00 a |
Sucrose (g/100 g) | 0.004 ± 0.00 ab | 0.004 ± 0.00 ab | 0.004 ± 0.00 ab | 0.007 ± 0.00 a | 0.003 ± 0.00 b | 0.003 ± 0.00 b | 0.006 + 0.00 ab | 0.004 ± 0.00 b |
Maltose (g/100 g) | 0.61 ± 0.04 d | 0.47 ± 0.03 e | 0.34 ± 0.03 f | 0.25 ± 0.02 f | 1.07 ± 0.04 a | 1.04 ± 0.02 ab | 0.97 ± 0.04 b | 0.87 ± 0.02 c |
Fiber (g/100 g) | 3.00 ± 1.88 a | 1.47 ± 0.01 a | 2.44 ± 1.90 a | 2.34 ± 0.17 a | 2.83 ± 0.25 a | 2.09 ± 0.10 a | 2.17 ± 0.26 a | 1.60 ± 0.07 a |
Amylose (g/100 g) | 15.31 ± 0.12 cd | 14.78 ± 0.00 d | 15.28 ± 0.39 cd | 16.01 ± 0.99 bcd | 17.25 ± 0.20 ab | 16.68 ± 0.23 bc | 17.49 ± 0.03 ab | 18.51 ± 0.32 a |
AmyP(g/100 g) | 84.69 ± 0.12 ab | 85.22 ± 0.00 a | 84.73 ± 0.39 ab | 83.99 ± 0.99 abc | 82.75 ± 0.20 cd | 83.33 ± 0.23 bc | 82.51 ± 0.03 cd | 81.49 ± 0.32 d |
Na (mg/100 g) | 569.75 ± 31.40 a | 550.59 ± 14.73 a | 575.01 ± 8.02 a | 504.13 ± 20.25 b | 503.19 ± 29.74 b | 506.48 ± 8.60 b | 503.11 ± 18.30 b | 434.40 ± 18.60 c |
Mg (mg/100 g) | 31.60 ± 1.09 d | 36.47 ± 0.96 c | 39.85 ± 0.59 b | 42.46 ± 1.70 a | 28.39 ± 1.40 e | 28.08 ± 0.68 e | 28.67 ± 1.41 e | 27.90 ± 1.10 e |
P (mg/100 g) | 154.02 ± 7.35 c | 165.26 ± 3.34 b | 188.58 ± 4.17 a | 192.33 ± 6.75 a | 123.60 ± 6.25 d | 122.73 ± 2.32 d | 127.64 ± 4.54 d | 121.50 ± 4.66 d |
K (mg/100 g) | 132.07 ± 3.60 c | 144.55 ± 1.75 b | 157.10 ± 2.87 a | 149.13 ± 4.67 b | 115.57 ± 5.80 d | 114.06 ± 1.67 d | 128.66 ± 5.09 c | 114.77 ± 4.69 d |
Ca (mg/100 g) | 13.75 ± 0.81 e | 20.29 ± 1.15 bc | 28.72 ± 2.35 a | 21.72 ± 1.11 b | 21.17 ± 0.82 bc | 19.79 ± 0.89 bc | 18.48 ± 0.99 d | 19.05 ± 0.40 cd |
Mn (mg/100 g) | 1.44 ± 0.02 c | 1.18 ± 0.03 d | 1.80 ± 0.02 b | 1.95 ± 0.08 a | 0.82 ± 0.04 e | 0.83 ± 0.01 e | 0.76 ± 0.04 e | 0.72 ± 0.03 f |
Fe (mg/100 g) | 1.67 ± 0.43 cd | 2.85 ± 0.42 a | 1.99 ± 0.42 bc | 2.17 ± 0.23 b | 1.35 ± 0.09 d | 1.77 ± 0.20 bcd | 1.70 ± 0.20 cd | 1.72 ± 0.09 bcd |
Cu (mg/100 g) | 0.27 ± 0.01 c | 0.39 ± 0.01 b | 0.40 ± 0.01 b | 0.44 ± 0.02 a | 0.18 ± 0.01 d | 0.19 ± 0.00 d | 0.17 ± 0.01 d | 0.18 ± 0.01 d |
Zn (mg/100 g) | 1.26 ± 0.06 c | 1.23 ± 0.01 c | 1.66 ± 0.03 b | 1.80 ± 0.09 a | 0.91 ± 0.04 de | 1.00 ± 0.11 d | 0.85 ± 0.04 e | 0.86 ± 0.02 e |
Se (mg/100 g) | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Cultivation | Proportion | Variety | Cultivation × Proportion | Cultivation × Variety | Proportion × Variety | Cultivation × Proportion × Variety | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value |
Moisture | 0.03 | 0.873 | 126.10 | 0.000 | 8.37 | 0.006 | 1.43 | 0.239 | 0.01 | 0.921 | 1.64 | 0.206 | 1.86 | 0.176 |
Protein | 279.64 | 0.000 | 16554.02 | 0.000 | 2529.85 | 0.000 | 1159.65 | 0.000 | 810.10 | 0.000 | 5602.80 | 0.000 | 15.32 | 0.004 |
Ash | 0.51 | 0.496 | 2.30 | 0.168 | 0.39 | 0.548 | 0.97 | 0.354 | 1.01 | 0.345 | 0.85 | 0.385 | 1.57 | 0.246 |
Fat | 4.85 | 0.059 | 136.56 | 0.000 | 3.03 | 0.120 | 0.69 | 0.430 | 8.41 | 0.020 | 0.00 | 0.972 | 0.13 | 0.726 |
Carbohydrates | 0.12 | 0.743 | 15.22 | 0.005 | 6.30 | 0.036 | 0.23 | 0.642 | 2.07 | 0.188 | 8.45 | 0.019 | 1.13 | 0.320 |
TS | 1.96 | 0.199 | 166.54 | 0.000 | 93.03 | 0.000 | 32.40 | 0.000 | 20.26 | 0.002 | 7.30 | 0.027 | 82.60 | 0.000 |
RS | 0.09 | 0.779 | 0.03 | 0.876 | 1.06 | 0.334 | 0.81 | 0.393 | 0.04 | 0.847 | 0.31 | 0.596 | 0.06 | 0.807 |
TDS | 0.70 | 0.427 | 29.64 | 0.001 | 9.14 | 0.016 | 9.98 | 0.013 | 2.78 | 0.134 | 2.59 | 0.146 | 15.70 | 0.004 |
RDS | 0.01 | 0.921 | 0.84 | 0.387 | 0.16 | 0.703 | 0.18 | 0.683 | 0.03 | 0.874 | 0.02 | 0.887 | 0.19 | 0.677 |
SDS | 0.65 | 0.445 | 0.01 | 0.944 | 0.68 | 0.435 | 0.01 | 0.923 | 2.79 | 0.133 | 0.10 | 0.763 | 0.12 | 0.738 |
Glucose | 3.27 | 0.089 | 5.54 | 0.032 | 13.09 | 0.002 | 0.12 | 0.739 | 1.31 | 0.268 | 7.63 | 0.014 | 0.24 | 0.629 |
Fructose | 7.17 | 0.016 | 123.36 | 0.000 | 62.40 | 0.000 | 2.46 | 0.136 | 0.45 | 0.514 | 43.21 | 0.000 | 0.18 | 0.677 |
Sucrose | 0.01 | 0.936 | 3.98 | 0.063 | 12.89 | 0.002 | 4.04 | 0.062 | 0.01 | 0.911 | 0.10 | 0.759 | 7.99 | 0.012 |
Maltose | 47.96 | 0.000 | 2097.80 | 0.000 | 230.28 | 0.000 | 3.95 | 0.064 | 0.04 | 0.847 | 18.20 | 0.000 | 5.94 | 0.027 |
Fiber | 2.19 | 0.170 | 0.10 | 0.756 | 0.18 | 0.681 | 0.04 | 0.838 | 0.01 | 0.912 | 0.42 | 0.531 | 0.00 | 0.960 |
Amylose | 0.63 | 0.449 | 108.12 | 0.000 | 15.75 | 0.004 | 0.10 | 0.762 | 11.94 | 0.009 | 1.12 | 0.320 | 0.16 | 0.703 |
Amylopectin | 0.63 | 0.449 | 108.12 | 0.000 | 15.75 | 0.004 | 0.10 | 0.762 | 11.94 | 0.009 | 1.12 | 0.320 | 0.16 | 0.703 |
Na | 43.75 | 0.000 | 115.23 | 0.000 | 23.26 | 0.000 | 1.09 | 0.302 | 27.71 | 0.000 | 1.74 | 0.195 | 0.75 | 0.393 |
Mg | 22.39 | 0.000 | 762.31 | 0.000 | 112.57 | 0.000 | 40.12 | 0.000 | 4.05 | 0.051 | 109.51 | 0.000 | 1.75 | 0.193 |
P | 1.78 | 0.189 | 1170.49 | 0.000 | 115.98 | 0.000 | 13.52 | 0.001 | 4.55 | 0.039 | 96.63 | 0.000 | 0.14 | 0.712 |
K | 5.47 | 0.024 | 554.96 | 0.000 | 86.80 | 0.000 | 18.23 | 0.000 | 49.66 | 0.000 | 11.52 | 0.002 | 3.00 | 0.091 |
Ca | 0.87 | 0.357 | 18.98 | 0.000 | 88.71 | 0.000 | 0.07 | 0.800 | 70.81 | 0.000 | 207.51 | 0.000 | 126.70 | 0.000 |
Mn | 8.32 | 0.006 | 5085.21 | 0.000 | 451.09 | 0.000 | 2.76 | 0.104 | 61.12 | 0.000 | 815.30 | 0.000 | 99.23 | 0.000 |
Fe | 37.70 | 0.000 | 52.73 | 0.000 | 0.02 | 0.887 | 9.60 | 0.004 | 22.58 | 0.000 | 4.86 | 0.033 | 4.16 | 0.048 |
Cu | 265.99 | 0.000 | 5580.89 | 0.000 | 208.75 | 0.000 | 205.33 | 0.000 | 59.08 | 0.000 | 311.45 | 0.000 | 75.75 | 0.000 |
Zn | 9.28 | 0.004 | 1150.90 | 0.000 | 128.29 | 0.000 | 0.03 | 0.873 | 1.81 | 0.187 | 291.05 | 0.000 | 14.38 | 0.000 |
Se | 0.06 | 0.816 | 0.02 | 0.884 | 2.09 | 0.156 | 0.05 | 0.831 | 1.05 | 0.312 | 0.04 | 0.849 | 0.10 | 0.754 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
España-Fariñas, M.P.; Camba-Carrión, J.; García-Gómez, M.B.; Vázquez-Odériz, M.L.; Lombardero-Fernández, M.; Pereira-Lorenzo, S.; Urquijo-Zamora, L.; Cobos, Á.; Díaz, O.; Romero-Rodríguez, M.Á. Influence of Cultivation System and Proportion of Local Cultivars ‘Caaveiro’ and ‘Callobre’ in Flour Mixtures on the Nutritional Quality of Galician Bread. Foods 2025, 14, 1712. https://doi.org/10.3390/foods14101712
España-Fariñas MP, Camba-Carrión J, García-Gómez MB, Vázquez-Odériz ML, Lombardero-Fernández M, Pereira-Lorenzo S, Urquijo-Zamora L, Cobos Á, Díaz O, Romero-Rodríguez MÁ. Influence of Cultivation System and Proportion of Local Cultivars ‘Caaveiro’ and ‘Callobre’ in Flour Mixtures on the Nutritional Quality of Galician Bread. Foods. 2025; 14(10):1712. https://doi.org/10.3390/foods14101712
Chicago/Turabian StyleEspaña-Fariñas, M Pilar, Joaquín Camba-Carrión, María Belén García-Gómez, María Lourdes Vázquez-Odériz, Matilde Lombardero-Fernández, Santiago Pereira-Lorenzo, Luis Urquijo-Zamora, Ángel Cobos, Olga Díaz, and María Ángeles Romero-Rodríguez. 2025. "Influence of Cultivation System and Proportion of Local Cultivars ‘Caaveiro’ and ‘Callobre’ in Flour Mixtures on the Nutritional Quality of Galician Bread" Foods 14, no. 10: 1712. https://doi.org/10.3390/foods14101712
APA StyleEspaña-Fariñas, M. P., Camba-Carrión, J., García-Gómez, M. B., Vázquez-Odériz, M. L., Lombardero-Fernández, M., Pereira-Lorenzo, S., Urquijo-Zamora, L., Cobos, Á., Díaz, O., & Romero-Rodríguez, M. Á. (2025). Influence of Cultivation System and Proportion of Local Cultivars ‘Caaveiro’ and ‘Callobre’ in Flour Mixtures on the Nutritional Quality of Galician Bread. Foods, 14(10), 1712. https://doi.org/10.3390/foods14101712