Optimization of Ultrasonic-Enzymatic-Assisted Extraction of Flavonoids from Sea Buckthorn (Hippophae rhamnoides L.) Pomace: Chemical Composition and Biological Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Extraction Procedure of SBP
2.4. Single-Factor Experiments
2.5. Box–Behnken Design and Analysis
2.6. Purification Procedure of SBP
2.7. Determination of Total Flavonoid Content (TFC)
2.8. UPLC-QTOF-MS Analysis
2.9. In Vitro Antioxidant Capacity
2.9.1. DPPH Assay
2.9.2. ABTS Assay
2.9.3. Ferric Reducing Antioxidant Potential (FRAP) Assay
2.10. In Vitro Enzyme Inhibitory Effect
2.10.1. α-Amylase Inhibition Assay
2.10.2. α-Glucosidase Inhibition Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Single-Factor Experimental Analysis of UEAE
3.1.1. Effect of Enzyme Ratio on the Flavonoid Extraction Yield
3.1.2. Effect of Enzyme Dosage on the Flavonoid Extraction Yield
3.1.3. Effect of Extraction Time on the Flavonoid Extraction Yield
3.1.4. Effect of Extraction Temperature on the Flavonoid Extraction Yield
3.1.5. Effect of Ultrasonic Power on the Flavonoid Extraction Yield
3.1.6. Effect of Ethanol Concentration on the Flavonoid Extraction Yield
3.1.7. Effect of Liquid–Solid Ratio on the Flavonoid Extraction Yield
3.2. Response Surface Optimization of UEAE
3.2.1. Statistical Analysis and Model Fitting
3.2.2. Response Surface Analysis
3.2.3. Verification of the Extraction Process
3.3. Preliminary Identification of Flavonoids in Sea Buckthorn Pomace
3.4. Antioxidant Activity
3.5. In Vitro Enzyme Inhibitory Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Xiao, P.; Kuang, Y.; Hao, J.; Huang, T.; Liu, E. Flavonoids from sea buckthorn: A review on phytochemistry, pharmacokinetics and role in metabolic diseases. J. Food Biochem. 2021, 45, e13724. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Wang, Q.; Huang, H.; Chen, J.; Wu, G.; Zhu, M.; Shao, F.; Yan, Z.; Sang, Z.; Cao, L.; et al. A comprehensive review on extraction, structure, detection, bioactivity, and metabolism of flavonoids from sea buckthorn (Hippophae rhamnoides L.). J. Food Biochem. 2023, 2023, 4839124. [Google Scholar] [CrossRef]
- Wei, E.; Yang, R.; Zhao, H.; Wang, P.; Zhao, S.; Zhai, W.; Zhang, Y.; Zhou, H. Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries. Int. J. Biol. Macromol. 2019, 123, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, K.; Yuen, M.; Yuen, T.; Yuen, H.; Peng, Q. Extraction and characterization of a pectin from sea buckthorn peel. Front. Nutr. 2022, 9, 969465. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, F.; Wei, P.; Chai, X.; Hou, G.; Meng, Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review. Front. Nutr. 2022, 9, 1036295. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Ren, Y.; Wei, C.; Luo, J.; Wu, D.; Ye, X.; Donlao, N.; Tian, J. Compounds from sea buckthorn and their application in food: A review. Food Chem. 2025, 476, 143428. [Google Scholar] [CrossRef]
- Hussain, S.; Sharma, M.; Bhat, R. Valorisation of sea buckthorn pomace by optimization of ultrasonic-assisted extraction of soluble dietary fibre using response surface methodology. Foods 2021, 10, 1330. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, T.; Cao, Y.; Deng, B.; Zhang, J.; Zhao, J. Effects of dietary sea buckthorn pomace supplementation on skeletal muscle mass and meat quality in lambs. Meat Sci. 2020, 166, 108141. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, M.; Zhao, J.; Lu, M.; Hao, J.; Guan, X.; Li, C. Anti-atherosclerotic effect of sea buckthorn (Hippophae rhamnoides Linn) and its molecular mechanism. J. Funct. Foods 2024, 117, 106248. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Zhu, C.; Gao, X.; Chu, W. Evaluation of antioxidative and neuroprotective activities of total flavonoids from sea buckthorn (Hippophae rhamnoides L.). Front. Nutr. 2022, 9, 861097. [Google Scholar] [CrossRef]
- Hao, Y.; Zhou, F.; Dong, J.; Wang, Y.; Lang, Z.; Li, S.; Li, S. Study on the role of flavonoids derived extract from seed residues of Hippophae rhamnoides on high-fat diet induced obese mice. J. King Saud Univ. 2020, 32, 1597–1603. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Gokulakrishnan, S.A.; Arthanareeswaran, G.; Gnanasekaran, G.; László, Z.; Veréb, G.; Kertész, S.; Taweepreda, W. Advanced extraction and separation approaches for the recovery of dietary flavonoids from plant biomass: A review. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; Sepúlveda, L.; Verma, D.K.; Luna-García, H.A.; Rodríguez-Durán, L.V.; Ilina, A.; Aguilar, C.N. Conventional and emerging extraction processes of flavonoids. Processes 2020, 8, 434. [Google Scholar] [CrossRef]
- Dip, G.; Aggarwal, P.; Kaur, S.; Grover, S. Extraction and characterization of phytochemicals from bauhinia variegata flowers using ultrasound and microwave techniques. Biomass Bioenergy 2025, 192, 107517. [Google Scholar] [CrossRef]
- Vo, T.P.; Tran, T.Q.D.; Phan, T.H.; Huynh, H.D.; Vo, T.T.Y.; Vo, N.M.K.; Ha, M.P.; Le, T.N.; Nguyen, D.Q. Ultrasonic-assisted and enzymatic-assisted extraction to recover tannins, flavonoids, and terpenoids from used tea leaves using natural deep eutectic solvents. Int. J. Food Sci. Technol. 2023, 58, 5855–5864. [Google Scholar] [CrossRef]
- Hao, J.; Wang, Z.; Jia, Y.; Sun, L.; Fu, Z.; Zhao, M.; Li, Y.; Yuan, N.; Cong, B.; Zhao, L.; et al. Optimization of ultrasonic-assisted extraction of flavonoids from Lactuca indica L. Cv. Mengzao and Their Antioxidant Properties. Front. Nutr. 2023, 10, 1065662. [Google Scholar] [CrossRef]
- Masci, A.; Coccia, A.; Lendaro, E.; Mosca, L.; Paolicelli, P.; Cesa, S. Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chem. 2016, 202, 59–69. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Sansenya, S.; Nanok, K. A-glucosidase, A-amylase inhibitory potential and antioxidant activity of fragrant black rice (Thai coloured rice). Flavour Fragr. J. 2020, 35, 376–386. [Google Scholar] [CrossRef]
- Zheng, F.; Yan, J.; Zhu, M.; Ye, C. Ultrasound-cellulase synergy for the extraction of total flavonoids from astragali complanati semen and its antioxidant properties. J. Appl. Res. Med. Aromat. Plants 2024, 43, 100597. [Google Scholar] [CrossRef]
- Stanek-Wandzel, N.; Krzyszowska, A.; Zarębska, M.; Gębura, K.; Wasilewski, T.; Hordyjewicz-Baran, Z.; Tomaka, M. Evaluation of cellulase, pectinase, and hemicellulase effectiveness in extraction of phenolic compounds from grape pomace. Int. J. Mol. Sci. 2024, 25, 13538. [Google Scholar] [CrossRef]
- Fu, Y.-J.; Liu, W.; Zu, Y.-G.; Tong, M.-H.; Li, S.-M.; Yan, M.-M.; Efferth, T.; Luo, H. Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanuscajan (L.) Millsp.] leaves. Food Chem. 2008, 111, 508–512. [Google Scholar] [CrossRef]
- Wen, J.; Huang, R.; Li, S.; Jiang, L.; Shao, L.; Zhang, Q.; Shan, C. Polysaccharides from sea buckthorn—Ultrasound-assisted enzymatic extraction, purification, structural characterization, and antioxidant activity analysis. Food Chem. X 2025, 26, 102265. [Google Scholar] [CrossRef]
- Mao, B.; Lu, W.; Huang, G. Ultrasound-assisted enzymatic extraction, process optimization, and antioxidant activity of polysaccharides from sugarcane peel. Sci. Rep. 2025, 15, 5009. [Google Scholar] [CrossRef]
- Alzorqi, I.; Sudheer, S.; Lu, T.-J.; Manickam, S. Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity. Ultrason. Sonochem. 2017, 35, 531–540. [Google Scholar] [CrossRef]
- Chu, Q.; Xie, S.; Wei, H.; Tian, X.; Tang, Z.; Li, D.; Liu, Y. Enzyme-assisted ultrasonic extraction of total flavonoids and extraction polysaccharides in residue from Abelmoschus manihot (L). Ultrason. Sonochem. 2024, 104, 106815. [Google Scholar] [CrossRef]
- Kruszewski, B.; Boselli, E. Blackcurrant pomace as a rich source of anthocyanins: Ultrasound-assisted extraction under different parameters. Appl. Sci. 2024, 14, 821. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Fan, T.; Hu, J.; Fu, L.; Zhang, L. Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology. Carbohydr. Polym. 2015, 115, 701–706. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Ponmurugan, K.; Maran Jeganathan, P. Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason. Sonochem. 2017, 34, 206–213. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Zhi, X.; Peng, G. Optimization of ultrasonic assisted membrane strategy for saponins from Gynostemma pentaphyllum with response surface methodology. Food Sci. Biotechnol. 2023, 32, 319–328. [Google Scholar] [CrossRef]
- Wen, Y.; Zeng, X.; Tan, H.; Liu, B. Optimization of extraction process of total flavonoids from cortex lycii and its biological activities. Biomass Convers. Biorefin. 2024, 14, 16575–16588. [Google Scholar] [CrossRef]
- Zhuo, G.; Xiong, F.; Ping-Ping, W.; Chin-Ping, T.; Chun, C. Ultrasonic collaborative pulse extraction of sugarcane polyphenol with good antiaging and α-glucosidase inhibitory activity. Int. J. Biol. Macromol. 2025, 297, 139930. [Google Scholar] [CrossRef]
- Hiranpradith, V.; Therdthai, N.; Soontrunnarudrungsri, A.; Rungsuriyawiboon, O. Optimisation of ultrasound-assisted extraction of total phenolics and flavonoids content from centella asiatica. Foods 2025, 14, 291. [Google Scholar] [CrossRef]
- Li, Q.; Wei, P.; Li, Y.; Fu, Y. Optimization of extraction process and analysis of biological activity of flavonoids from leaves of cultivated ‘Qi-Nan’ agarwood. Molecules 2024, 29, 1828. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Zheng, H.; Du, H.; Ye, E.; Xu, X.; Wang, X.; Jiang, X.; Min, Z.; Zhuang, L.; Li, S.; Guo, L. Optimized extraction of polyphenols with antioxidant and anti-biofilm activities and LC-MS/MS-based characterization of phlorotannins from Sargassum muticum. LWT 2024, 198, 116069. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, W.; Zhang, S.; Tian, S.; Aikemu, A. Optimization of flavonoid extraction from Abelmoschus manihot flowers using ultrasonic techniques: Predictive modeling through response surface methodology and deep neural network and biological activity assessment. Molecules 2024, 29, 2610. [Google Scholar] [CrossRef]
- Sheng, Z.-L.; Wan, P.-F.; Dong, C.-L.; Li, Y.-H. Optimization of total flavonoids content extracted from flos populi using response surface methodology. Ind. Crops Res. J. 2013, 43, 778–786. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cai, X. Optimization of the extraction of total flavonoids from Scutellaria baicalensis georgi using the response surface methodology. J. Food Sci. Technol. 2015, 52, 2336–2343. [Google Scholar] [CrossRef]
- Acosta, O.; Víquez, F.; Cubero, E. Optimisation of low calorie mixed fruit jelly by response surface methodology. Food Qual. Prefer. 2008, 19, 79–85. [Google Scholar] [CrossRef]
- Miao, M.; Chen, X.; Wu, Z.; Liu, J.; Xu, C.; Zhang, Z.; Wang, J. Extraction, composition, and antioxidant activity of flavonoids from Xanthoceras sorbifolium bunge leaves. J. AOAC Int. 2023, 106, 769–777. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Zhao, B.; Wang, X.; Wu, Y.; Yao, J. A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: Molecule weight and antioxidant activities evaluation. Carbohydr. Polym. 2010, 80, 84–93. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, J.; Su, T.; Li, S.; Sheng, W.; Feng, L.; Bi, Y. Flavonoid extract from seed residues of Hippophae rhamnoides ssp. sinensis protects against alcohol-induced intestinal barrier dysfunction by regulating the Nrf2 pathway. Antioxidants 2023, 12, 562. [Google Scholar] [CrossRef]
- Wei, J.; Li, S.; Su, T.; Zhao, J.; Jiang, Y.; Zubarev, Y.A.; Bi, Y. Phenolic compositions and antioxidant activities of Hippophae tibetana and H. rhamnoides ssp. sinensis berries produced in Qinghai-Tibet Plateau. Food Chem. X 2022, 15, 100397. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Zhang, T.; Chen, X. Fingerprint and difference analysis of flavonoids of hippophae plants grown on the Tibetan Plateau. J. Food Compos. Anal. 2024, 128, 106010. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Xiao, W.; Yong, Z.-P.; Bai, N. High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries. J. Chromatogr. A 2007, 1154, 250–259. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, J.; Zhu, L.; Yu, X.; Zhang, Q.; Li, M.; Hu, B.; Yang, X. Metabolomics provide a novel interpretation of the changes in flavonoids during sea buckthorn (Hippophae rhamnoides L.) drying. Food Chem. 2023, 413, 135598. [Google Scholar] [CrossRef]
- Sajeeda, A.; Bhat, A.M.; Gorke, S.; Wani, I.A.; Sidiqui, A.; Ahmed, Z.; Sheikh, T.A. Naringenin, a flavanone constituent from sea buckthorn pulp extract, prevents ultraviolet (UV)-B radiation-induced skin damage via alleviation of impaired mitochondrial dynamics mediated inflammation in human dermal fibroblasts and balb/c mice models. J. Photochem. Photobiol. B 2024, 256, 112944. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, J.; Chen, N.; Yang, M.; Shi, D. Extraction and antioxidant activity analysis of total flavonoids from Okra (Abelmoschus esculentus L.). Food Meas. 2025, 19, 2035–2051. [Google Scholar] [CrossRef]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Novaes, P.; Torres, P.B.; Cornu, T.A.; Lopes, J.D.C.; Ferreira, M.J.P.; Santos, D.Y.A.C.D. Comparing antioxidant activities of flavonols from annona coriacea by four approaches. S. Afr. J. Bot. 2019, 123, 253–258. [Google Scholar] [CrossRef]
- Kozyra, M.; Komsta, Ł.; Wojtanowski, K. Analysis of phenolic compounds and antioxidant activity of methanolic extracts from inflorescences of Carduus sp. Phytochem. Lett. 2019, 31, 256–262. [Google Scholar] [CrossRef]
- Zaharudin, N.; Salmeán, A.A.; Dragsted, L.O. Inhibitory effects of edible seaweeds, polyphenolics and alginates on the activities of porcine pancreatic α-amylase. Food Chem. 2018, 245, 1196–1203. [Google Scholar] [CrossRef]
- Wen, Y.; Zeng, X.; Dai, H.; Liu, B. Optimization of ultrasonic assisted extraction and biological activity of total flavonoids from ligusticum chuanxiong hort. using response surface methodology. Biomass Convers. Biorefin. 2024, 14, 17101–17113. [Google Scholar] [CrossRef]
- Deb, P.K.; Khound, P.; Bhattacharjee, S.; Choudhury, P.; Sarma, H.; Devi, R.; Sarkar, B. Variation in chemical constituents, in-vitro bioactivity and toxicity profile among different parts of clerodendrum glandulosum lindl. (C. colebrookianum Walp.). S. Afr. J. Bot. 2021, 140, 50–61. [Google Scholar] [CrossRef]
- Hendra, R.; Army, M.K.; Frimayanti, N.; Teruna, H.Y.; Abdulah, R.; Nugraha, A.S. α-glucosidase and α-amylase inhibitory activity of flavonols from stenochlaena palustris (Burm.f.) bedd. Saudi Pharm. J. 2024, 32, 101940. [Google Scholar] [CrossRef]
- Tian, J.-L.; Si, X.; Wang, Y.-H.; Gong, E.-S.; Xie, X.; Zhang, Y.; Li, B.; Shu, C. Bioactive flavonoids from rubus corchorifolius inhibit α-glucosidase and α-amylase to improve postprandial hyperglycemia. Food Chem. 2021, 341, 128149. [Google Scholar] [CrossRef]
- Lam, T.-P.; Tran, N.-V.N.; Pham, L.-H.D.; Lai, N.V.-T.; Dang, B.-T.N.; Truong, N.-L.N.; Nguyen-Vo, S.-K.; Hoang, T.-L.; Mai, T.T.; Tran, T.-D. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: A systematic review of in vitro studies. Nat. Prod. Bioprospect. 2024, 14, 4. [Google Scholar] [CrossRef]
Standard Order | Factors | Flavonoid Extraction Field (mg/g) | ||
---|---|---|---|---|
(A) Extraction Time (min) | (B) Ethanol Concentration (%) | (C) Liquid–Solid Ratio (mL/g) | ||
1 | 15 | 40 | 30:1 | 21.08 ± 0.27 |
2 | 45 | 40 | 30:1 | 21.66 ± 0.12 |
3 | 15 | 80 | 30:1 | 18.58 ± 0.44 |
4 | 45 | 80 | 30:1 | 19.70 ± 0.04 |
5 | 15 | 60 | 20:1 | 17.63 ± 0.09 |
6 | 45 | 60 | 20:1 | 18.91 ± 0.25 |
7 | 15 | 60 | 40:1 | 20.54 ± 0.08 |
8 | 45 | 60 | 40:1 | 21.08 ± 0.12 |
9 | 30 | 40 | 20:1 | 19.02 ± 0.18 |
10 | 30 | 80 | 20:1 | 15.10 ± 0.32 |
11 | 30 | 40 | 40:1 | 20.77 ± 0.19 |
12 | 30 | 80 | 40:1 | 19.32 ± 0.21 |
13 | 30 | 60 | 30:1 | 21.45 ±0.28 |
14 | 30 | 60 | 30:1 | 21.71 ± 0.24 |
15 | 30 | 60 | 30:1 | 20.83 ± 0.20 |
16 | 30 | 60 | 30:1 | 20.67 ± 0.31 |
17 | 30 | 60 | 30:1 | 21.44 ± 0.14 |
Identified Compounds | Molecular Formula | Retention Time (min) | Found at m/z ([M-H−]) | MS/MS Fragments | Reference |
---|---|---|---|---|---|
(-)-Gallocatechin | C15H14O7 | 1.66 | 305.0662 | 137.0247, 179.0344 | [45] |
Procyanidin B2 | C30H26O12 | 2.58 | 577.134 | 125.0248, 289.0727, 407.0783, 425.0890, 577.1375 | [46] |
L-Epicatechin | C15H14O6 | 3.02 | 289.0715 | 179.0354, 245.0812 | [45] |
Quercetin-3-O-rutinoside (Rutin) | C27H30O16 | 11.49 | 609.1456 | 301.0347 | [47] |
Quercetin-3-O-glucoside | C21H20O12 | 12.35 | 463.0879 | 301.0357, 463.0878 | [48] |
Kaempferol-3-O-rutinoside | C27H30O15 | 14.77 | 593.1506 | 285.0414 | [45] |
Isorhamnetin-3-O-neohespeidoside | C28H32O16 | 15.70 | 623.1611 | 315.0509 | [49] |
Myricetin | C15H10O8 | 18.00 | 317.03 | 137.0252, 151.0035, 178.9992 | [44] |
Kaempferol-3-O-glucoside | C21H20O11 | 19.44 | 447.0922 | 285.0422 | [45] |
Quercetin | C15H10O7 | 22.91 | 301.0353 | 151.0043, 178.9990 | [48] |
Apigenin-7-glucoside | C21H20O10 | 23.04 | 431.0975 | 151.0040, 257.0444 | [49] |
Naringenin | C15H12O5 | 25.84 | 271.0611 | 119.0512, 151.0034 | [50] |
Kaempferol | C15H10O6 | 27.18 | 285.0404 | [48] | |
Isorhamnetin | C16H12O7 | 27.88 | 315.051 | 151.0038 | [48] |
FRAP (mmol FeSO4·7H2O/g) | DPPH (μmol Trolox/g) | ABTS (μmol Trolox/g) | |
---|---|---|---|
SBFE | 0.50 ± 0.01 | 208.58 ± 2.21 | 176.67 ± 0.51 |
PSBFE | 2.68 ± 0.01 | 947.17 ± 3.85 | 427.33 ± 0.67 |
VC | 13.50 ± 0.33 | 3050.00 ± 83.89 | 4271.11 ± 3.85 |
Types of Enzyme | Sample | IC50 (μg/mL) |
---|---|---|
α-glucosidase | SBFE | 52.89 ± 0.09 |
PSBFE | 131.04 ± 0.41 | |
Acarbose | 8.00 ± 0.01 | |
α-amylase | SBFE | 97.81 ± 0.42 |
PSBFE | 316.70 ± 1.43 | |
Acarbose | 18.44 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suo, W.; Wang, W.; Li, D.; Wu, H.; Liu, H.; Huang, W.; Ma, Y. Optimization of Ultrasonic-Enzymatic-Assisted Extraction of Flavonoids from Sea Buckthorn (Hippophae rhamnoides L.) Pomace: Chemical Composition and Biological Activities. Foods 2025, 14, 1656. https://doi.org/10.3390/foods14101656
Suo W, Wang W, Li D, Wu H, Liu H, Huang W, Ma Y. Optimization of Ultrasonic-Enzymatic-Assisted Extraction of Flavonoids from Sea Buckthorn (Hippophae rhamnoides L.) Pomace: Chemical Composition and Biological Activities. Foods. 2025; 14(10):1656. https://doi.org/10.3390/foods14101656
Chicago/Turabian StyleSuo, Wenyu, Wenzhe Wang, Dajing Li, Haihong Wu, Haiyan Liu, Wuyang Huang, and Yanhong Ma. 2025. "Optimization of Ultrasonic-Enzymatic-Assisted Extraction of Flavonoids from Sea Buckthorn (Hippophae rhamnoides L.) Pomace: Chemical Composition and Biological Activities" Foods 14, no. 10: 1656. https://doi.org/10.3390/foods14101656
APA StyleSuo, W., Wang, W., Li, D., Wu, H., Liu, H., Huang, W., & Ma, Y. (2025). Optimization of Ultrasonic-Enzymatic-Assisted Extraction of Flavonoids from Sea Buckthorn (Hippophae rhamnoides L.) Pomace: Chemical Composition and Biological Activities. Foods, 14(10), 1656. https://doi.org/10.3390/foods14101656