Quality Properties of Innovative Goat Milk Kefir Enriched with Date Paste (Phoenix dactylifera L.) and Whey Derived from Goat Cheese Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Kefir Making
2.3. Kefir Analysis
2.3.1. Proximate Composition
2.3.2. Physicochemical Properties
pH and Acidity
Color Properties
Viscosity
2.3.3. Mineral Composition
2.3.4. Organic Acids and Sugars
2.3.5. Microbiology
2.3.6. Sensory Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Mineral Profile
3.3. Organic Acids and Sugars
3.4. Physicochemical Properties
3.5. Microbiology
3.6. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Visioli, F.; Strata, A. Milk, Dairy Products, and Their Functional Effects in Humans: A Narrative Review of Recent Evidence. Adv. Nutr. 2014, 5, 131–143. [Google Scholar] [CrossRef]
- Sukhikh, S.; Astakhova, L.; Golubcova, Y.; Lukin, A.; Prosekova, E.; Milentèva, I.; Kostina, N.; Rasshchepkin, A. Functional Dairy Products Enriched with Plant Ingredients. Foods Raw Mater. 2019, 7, 428–438. [Google Scholar] [CrossRef]
- Tunick, M.H.; Van Hekken, D.L. Dairy Products and Health: Recent Insights. J. Agric. Food Chem. 2015, 63, 9381–9388. [Google Scholar] [CrossRef]
- Verruck, S.; Balthazar, C.F.; Rocha, R.S.; Silva, R.; Esmerino, E.A.; Pimentel, T.C.; Freitas, M.Q.; Silva, M.C.; da Cruz, A.G.; Prudencio, E.S. Dairy Foods and Positive Impact on the Consumer’s Health. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 95–164. [Google Scholar] [CrossRef]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional Food. Product Development, Marketing and Consumer Acceptance—A Review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Bimbo, F.; Bonanno, A.; Nocella, G.; Viscecchia, R.; Nardone, G.; De Devitiis, B.; Carlucci, D. Consumers’ Acceptance and Preferences for Nutrition-Modified and Functional Dairy Products: A Systematic Review. Appetite 2017, 113, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Putch, K. Consumers Seeking Functional Health Benefits. Available online: https://www.dairyprocessing.com/articles/2539-consumers-seeking-functional-health-benefits (accessed on 3 January 2025).
- Cais-Sokolińska, D.; Danków, R.; Pikul, P. Physicochemical and Sensory Characteristics of Sheep Kefir during Storage. Acta Sci. Pol. Technol. Aliment. 2008, 7, 63–73. [Google Scholar]
- Saleem, K.; Ikram, A.; Saeed, F.; Afzaal, M.; Ateeq, H.; Hussain, M.; Raza, A.; Rasheed, A.; Asghar, A.; Asif Shah, M. Nutritional and Functional Properties of Kefir: Review. Int. J. Food Prop. 2023, 26, 3261–3274. [Google Scholar] [CrossRef]
- Buran, İ.; Akal, C.; Ozturkoglu-Budak, S.; Yetisemiyen, A. Rheological, Sensorial and Volatile Profiles of Synbiotic Kefirs Produced from Cow and Goat Milk Containing Varied Probiotics in Combination with Fructooligosaccharide. LWT 2021, 148, 111591. [Google Scholar] [CrossRef]
- Muñoz-Bas, C.; Muñoz-Tebar, N.; Viuda-Martos, M.; Sayas-Barberá, E.; Pérez-Alvarez, J.A.; Fernández-López, J. Application of Date-Coproducts for the Fortification of Fresh Goat Cheese: Effect on Their Nutritional, Technological, Physicochemical, Microstructural, Microbiological and Sensory Properties. Appl. Food Res. 2024, 4, 100619. [Google Scholar] [CrossRef]
- Satir, G.; Guzel-Seydim, Z.B. The Effect of Kefir Fermentation on the Protein Profile and the Monoterpenic Bioactive Compounds in Goat Milk. Int. Dairy J. 2023, 137, 105532. [Google Scholar] [CrossRef]
- Aslam, H.; Marx, W.; Rocks, T.; Loughman, A.; Chandrasekaran, V.; Ruusunen, A.; Dawson, S.L.; West, M.; Mullarkey, E.; Pasco, J.A.; et al. The Effects of Dairy and Dairy Derivatives on the Gut Microbiota: A Systematic Literature Review. Gut Microbes 2020, 12, 1799533. [Google Scholar] [CrossRef] [PubMed]
- Rabot, S.; Rafter, J.; Rijkers, G.T.; Watzl, B.; Antoine, J.-M. Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Impact of Probiotics on Digestive System Metabolism. J. Nutr. 2010, 140, 677S–689S. [Google Scholar] [CrossRef]
- Azizi, N.F.; Kumar, M.R.; Yeap, S.K.; Abdullah, J.O.; Khalid, M.; Omar, A.R.; Osman, M.A.; Mortadza, S.A.S.; Alitheen, N.B. Kefir and Its Biological Activities. Foods 2021, 10, 1210. [Google Scholar] [CrossRef]
- Taheur, F.B.; Chahbani, A.; Mansour, C.; Mokni, A.; Amira, A.B.; Jridi, M.; Fakhfakh, N.; Zouari, N. Functional Properties of a Kefir-Based Probiotic Dairy Product Enriched with Red Prickly Pear (Opuntia Dillenii) Powder. J. Food Meas. Charact. 2023, 17, 6522–6535. [Google Scholar] [CrossRef]
- Gül Dikme, T.; Güneş, S. Determination of Kefir Knowledge Levels and Consumption Habits of Associate Degree Students: The Case of Harran University. Mehes J. 2024, 2, 15–27. [Google Scholar]
- Łopusiewicz, Ł.; Waszkowiak, K.; Polanowska, K.; Mikołajczak, B.; Śmietana, N.; Hrebień-Filisińska, A.; Sadowska, J.; Mazurkiewicz-Zapałowicz, K.; Drozłowska, E. The Effect of Yogurt and Kefir Starter Cultures on Bioactivity of Fermented Industrial By-Product from Cannabis Sativa Production—Hemp Press Cake. Fermentation 2022, 8, 490. [Google Scholar] [CrossRef]
- Kandyliari, A.; Potsaki, P.; Bousdouni, P.; Kaloteraki, C.; Christofilea, M.; Almpounioti, K.; Moutsou, A.; Fasoulis, C.K.; Polychronis, L.V.; Gkalpinos, V.K.; et al. Development of Dairy Products Fortified with Plant Extracts: Antioxidant and Phenolic Content Characterization. Antioxidants 2023, 12, 500. [Google Scholar] [CrossRef]
- Granato, D.; Carocho, M.; Barros, L.; Zabetakis, I.; Mocan, A.; Tsoupras, A.; Cruz, A.G.; Pimentel, T.C. Implementation of Sustainable Development Goals in the Dairy Sector: Perspectives on the Use of Agro-Industrial Side-Streams to Design Functional Foods. Trends Food Sci. Technol. 2022, 124, 128–139. [Google Scholar] [CrossRef]
- Maxine Roman Trends in the Dairy Industry. Available online: https://www.dairyfoods.com/articles/97668-trends-in-the-dairy-industry (accessed on 3 January 2025).
- Sánchez-Zapata, E.; Fernández-López, J.; Peñaranda, M.; Fuentes-Zaragoza, E.; Sendra, E.; Sayas, E.; Pérez-Alvarez, J.A. Technological Properties of Date Paste Obtained from Date By-Products and Its Effect on the Quality of a Cooked Meat Product. Food Res. Int. 2011, 44, 2401–2407. [Google Scholar] [CrossRef]
- Navarro-Hortal, M.D.; Forbes-Hernández, T.Y.; Battino, M. Valorization of Wastes/By-Products in the Design of Functional Foods/Supplements; Academic Press: Cambridge, MA, USA, 2023; ISBN 0-323-95567-3. [Google Scholar]
- Dominguez Aldama, D.; Grassauer, F.; Zhu, Y.; Ardestani-Jaafari, A.; Pelletier, N. Allocation Methods in Life Cycle Assessments (LCAs) of Agri-Food Co-Products and Food Waste Valorization Systems: Systematic Review and Recommendations. J. Clean. Prod. 2023, 421, 138488. [Google Scholar] [CrossRef]
- Muñoz-Bas, C.; Muñoz-Tebar, N.; Candela-Salvador, L.; Sayas-Barberá, E.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. Development of Value-Added Products Suitable for Food Applications from Fresh Date Fruit (Confitera Cv.) and Its Co-Products. Food Bioproc. Technol. 2024, 17, 1265–1277. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M.; Sayas-Barberá, E.; Navarro-Rodríguez de Vera, C.; Pérez-álvarez, J.Á. Biological, Nutritive, Functional and Healthy Potential of Date Palm Fruit (Phoenix dactylifera L.): Current Research and Future Prospects. Agronomy 2022, 12, 876. [Google Scholar] [CrossRef]
- Muñoz-Bas, C.; Muñoz-Tebar, N.; Candela-Salvador, L.; Pérez-Alvarez, J.A.; Lorenzo, J.M.; Viuda-Martos, M.; Fernández-López, J. Quality Characteristics of Fresh Date Palm Fruits of “Medjoul” and “Confitera” Cv. from the Southeast of Spain (Elche Palm Grove). Foods 2023, 12, 2659. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bas, C.; Vedor, R.; Machado, D.; Barbosa, J.C.; Gomes, A.M.; Pérez-Alvarez, J.A.; Fernández-Lopez, J. In Vitro Evaluation of Biological Properties of High-Added Value Ingredients (Date Juice and Date Powder) Obtained from Date Co-Products. Appl. Food Res. 2025, 5, 100685. [Google Scholar] [CrossRef]
- Ji, J.; Jin, W.; Liu, S.; Jiao, Z.; Li, X. Probiotics, Prebiotics, and Postbiotics in Health and Disease. MedComm 2023, 4, e420. [Google Scholar] [CrossRef]
- Victoria Obayomi, O.; Folakemi Olaniran, A.; Olugbemiga Owa, S. Unveiling the Role of Functional Foods with Emphasis on Prebiotics and Probiotics in Human Health: A Review. J. Funct. Foods 2024, 119, 106337. [Google Scholar] [CrossRef]
- AOAC. AOAC (2006) Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburgs, MD, USA, 2006. [Google Scholar]
- Akgün, D.; Gültekin-Özgüven, M.; Yücetepe, A.; Altin, G.; Gibis, M.; Weiss, J.; Özçelik, B. Stirred-Type Yoghurt Incorporated with Sour Cherry Extract in Chitosan-Coated Liposomes. Food Hydrocoll. 2020, 101, 105532. [Google Scholar] [CrossRef]
- Paredes, J.L.; Escudero-Gilete, M.L.; Vicario, I.M. A New Functional Kefir Fermented Beverage Obtained from Fruit and Vegetable Juice: Development and Characterization. LWT 2022, 154, 112728. [Google Scholar] [CrossRef]
- Muñoz-Tebar, N.; Muñoz-Bas, C.; Viuda-Martos, M.; Sayas-Barberá, E.; Pérez-Alvarez, J.A.; Fernández-López, J. Fortification of Goat Milk Yogurts with Date Palm (Phoenix dactylifera L.) Coproducts: Impact on Their Quality during Cold Storage. Food Chem. 2024, 454, 139800. [Google Scholar] [CrossRef]
- ASTM. Physical Requirement Guidelines for Sensory Evaluation Laboratories; American Society for Testing and Materials: West Conshohocken, PA, USA, 1986; STP 913. [Google Scholar]
- Ramírez-Rivera, E.d.J.; Díaz-Rivera, P.; Guadalupe Ramón-Canul, L.; Juárez-Barrientos, J.M.; Rodríguez-Miranda, J.; Herman-Lara, E.; Prinyawiwatkul, W.; Herrera-Corredor, J.A. Comparison of Performance and Quantitative Descriptive Analysis Sensory Profiling and Its Relationship to Consumer Liking between the Artisanal Cheese Producers Panel and the Descriptive Trained Panel. J. Dairy Sci. 2018, 101, 5851–5864. [Google Scholar] [CrossRef]
- Wang, H.; Guo, M. Microbiological Profiles, Physiochemical Properties and Volatile Compounds of Goat Milk Kefir Fermented by Reconstituted Kefir Grains. LWT 2023, 183, 114943. [Google Scholar] [CrossRef]
- Gürsoy, O.; Kocatürk, K.; Güler Dal, H.Ö.; Yakali, H.N.; Yilmaz, Y. Physicochemical and Rheological Properties of Commercial Kefir Drinks. Akad. Gıda 2020, 18, 375–381. [Google Scholar] [CrossRef]
- Satir, G.; Guzel-Seydim, Z.B. How Kefir Fermentation Can Affect Product Composition? Small Rumin. Res. 2016, 134, 1–7. [Google Scholar] [CrossRef]
- Galdino, I.K.C.P.d.O.; Salles, H.O.; dos Santos, K.M.O.; Veras, G.; Alonso Buriti, F.C. Proximate Composition Determination in Goat Cheese Whey by near Infrared Spectroscopy (NIRS). PeerJ 2020, 8, e8619. [Google Scholar] [CrossRef]
- Sanmartín, B.; Díaz, O.; Rodríguez-Turienzo, L.; Cobos, A. Composition of Caprine Whey Protein Concentrates Produced by Membrane Technology after Clarification of Cheese Whey. Small Rumin. Res. 2012, 105, 186–192. [Google Scholar] [CrossRef]
- Erzhad, M.F.; Adiyoga, R.; Zakiah, M.H.; Soenarono, M.S.; Arifin, M.; Murtini, D. The Utilization of Red Fruit (Pandanus Conoideus Lam) Extract for Making Goat’s Milk Kefir. IOP Conf. Ser. Earth Environ. Sci. 2022, 1020, 012030. [Google Scholar] [CrossRef]
- Tawfek, M.A.; Baker, E.A.; El-Sayed, H.A. Study Properties of Fermented Camels’ and Goats’ Milk Beverages Fortified with Date Palm (Phoenix dactylifera L.). Food Nutr. Sci. 2021, 12, 418–428. [Google Scholar] [CrossRef]
- Sousa, Y.R.F.; Araújo, D.F.S.; Pulido, J.O.; Pintado, M.M.E.; Martínez-Férez, A.; Queiroga, R.C.R.E. Composition and Isolation of Goat Cheese Whey Oligosaccharides by Membrane Technology. Int. J. Biol. Macromol. 2019, 139, 57–62. [Google Scholar] [CrossRef]
- Borba, K.K.S.; Gadelha, T.S.; Sant’Ana, A.M.S.; Pacheco, M.T.B.; Pinto, L.S.; Madruga, M.S.; Medeiros, A.N.; Bessa, R.J.B.; Alves, S.P.A.; Magnani, M.; et al. Fatty Acids, Essential Amino Acids, Minerals and Proteins Profile in Whey from Goat Cheese: Impacts of Raising System. Small Rumin. Res. 2022, 217, 106842. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Saygili, D.; DÖner, D.; Içier, F.; KaragÖzlü, C. Rheological Properties and Microbiological Characteristics of Kefir Produced from Different Milk Types. Food Sci. Technol. 2022, 42, e32520. [Google Scholar] [CrossRef]
- Vedamuthu, E.R. Starter Cultures for Yogurt and Fermented Milks. In Manufacturing Yogurt and Fermented Milks; Wiley: Hoboken, NJ, USA, 2006; pp. 89–116. [Google Scholar]
- Ntsame Affane, A.L.; Fox, G.P.; Sigge, G.O.; Manley, M.; Britz, T.J. Simultaneous Prediction of Acidity Parameters (PH and Titratable Acidity) in Kefir Using near Infrared Reflectance Spectroscopy. Int. Dairy J. 2011, 21, 896–900. [Google Scholar] [CrossRef]
- Chan, C.-L.; Gan, R.; Shah, N.P.; Corke, H. Enhancing Antioxidant Capacity of Lactobacillus Acidophilus-Fermented Milk Fortified with Pomegranate Peel Extracts. Food Biosci. 2018, 26, 185–192. [Google Scholar] [CrossRef]
- Vicenssuto, G.M.; de Castro, R.J.S. Development of a Novel Probiotic Milk Product with Enhanced Antioxidant Properties Using Mango Peel as a Fermentation Substrate. Biocatal. Agric. Biotechnol. 2020, 24, 101564. [Google Scholar] [CrossRef]
- Chen, T.-H.; Wang, S.-Y.; Chen, K.-N.; Liu, J.-R.; Chen, M.-J. Microbiological and Chemical Properties of Kefir Manufactured by Entrapped Microorganisms Isolated from Kefir Grains. J. Dairy Sci. 2009, 92, 3002–3013. [Google Scholar] [CrossRef] [PubMed]
- Simova, E.; Beshkova, D.; Angelov, A.; Hristozova, T.; Frengova, G.; Spasov, Z. Lactic Acid Bacteria and Yeasts in Kefir Grains and Kefir Made from Them. J. Ind. Microbiol. Biotechnol. 2002, 28, 1–6. [Google Scholar] [CrossRef]
- Arı, P.; Eroğlu, S.; İçier, F.; Karagözlü, C.; Obuz, E. Investigation of the Changes in Rheological Properties and PH Values of Kefirs with Different Fat Contents during Incubation. In III Geleneksel Gıdalar Sempozyumu Konya; TAGEM: Konya, Turkey, 2012. [Google Scholar]
- Vianna, F.S.; Canto, A.C.V.C.S.; da Costa-Lima, B.R.C.; Salim, A.P.A.A.; Costa, M.P.; Balthazar, C.F.; Oliveira, B.R.; Rachid, R.P.; Franco, R.M.; Conte-Junior, C.A.; et al. Development of New Probiotic Yoghurt with a Mixture of Cow and Sheep Milk: Effects on Physicochemical, Textural and Sensory Analysis. Small Rumin. Res. 2017, 149, 154–162. [Google Scholar] [CrossRef]
- Goncu, B.; Celikel, A.; Guler-Akin, M.B.; Akin, M.S. Some Properties of Kefir Enriched with Apple and Lemon Fiber. Mljekarstvo 2017, 67, 208–216. [Google Scholar] [CrossRef]
- Al-Qarni, S.S.M.; Bazzi, M.D. Date Fruit Ripening with Degradation of Chlorophylls, Carotenes, and Other Pigments. Int. J. Fruit Sci. 2020, 20, S827–S839. [Google Scholar] [CrossRef]
- IRANOR. Nomenclatura Cromática Española; Instituto Nacional de Racionalización: Madrid, Spain, 1981. [Google Scholar]
- Marinova, V.Y.; Rasheva, I.K.; Kizheva, Y.K.; Dermenzhieva, Y.D.; Hristova, P.K. Microbiological Quality of Probiotic Dietary Supplements. Biotechnol. Biotechnol. Equip. 2019, 33, 834–841. [Google Scholar] [CrossRef]
- De Oliveira, F.L.; Arruda, T.Y.P.; Morzelle, M.C.; Pereira, A.P.A.; Casarotti, S.N. Fruit By-Products as Potential Prebiotics and Promising Functional Ingredients to Produce Fermented Milk. Food Res. Int. 2022, 161, 111841. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, S.D.; Araújo, C.M.; Borges, G.d.S.C.; Lima, M.d.S.; Viera, V.B.; Garcia, E.F.; de Souza, E.L.; de Oliveira, M.E.G. Improvement in Physicochemical Characteristics, Bioactive Compounds and Antioxidant Activity of Acerola (Malpighia emarginata D.C.) and Guava (Psidium guajava L.) Fruit by-Products Fermented with Potentially Probiotic Lactobacilli. LWT 2020, 134, 110200. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of Kiwifruit Juice from Two Cultivars by Probiotic Bacteria: Bioactive Phenolics, Antioxidant Activities and Flavor Volatiles. Food Chem. 2022, 373, 131455. [Google Scholar] [CrossRef] [PubMed]
Sample | Protein | Fat | Ash | Moisture | Total Solids |
---|---|---|---|---|---|
Control | 3.73 ± 0.12 a | 4.87 ± 0.04 a | 0.72 ± 0.01 c | 85.42 ± 0.32 c | 4.85 ± 0.21 a |
DP3 | 2.39 ± 0.01 b | 3.04 ± 0.00 b | 0.76 ± 0.02 bc | 86.56 ± 0.83 bc | 4.36 ± 0.06 b |
DP6 | 2.46 ± 0.03 b | 3.22 ± 0.80 b | 0.85 ± 0.05 b | 86.73 ± 0.19 ab | 4.40 ± 0.07 b |
WH25 | 2.11 ± 0.07 c | 3.17 ± 0.04 b | 0.82 ± 0.02 bc | 86.08 ± 0.59 bc | 3.81 ± 0.01 c |
WH50 | 1.63 ± 0.01 d | 2.68 ± 0.17 c | 0.98 ± 0.04 a | 87.96 ± 0.62 a | 3.16 ± 0.05 d |
p-value | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
Sample | Control | DP3 | DP6 | WH25 | WH50 | p-Value |
---|---|---|---|---|---|---|
Ca | 82.09 ± 1.70 b | 88.16 ± 0.86 a | 88.68 ±1.29 a | 80.32 ± 0.28 b | 64.04 ± 1.28 c | 0.000 |
Cu | 0.01 ± 0.00 b | 0.01 ± 0.00 ab | 0.02 ± 0.00 a | 0.01 ± 0.00 b | 0.01 ± 0.00 b | 0.000 |
Fe | 0.05 ± 0.00 a | 0.04 ± 0.00 b | 0.04 ± 0.00 b | 0.05 ± 0.00 a | 0.04 ± 0.00 b | 0.000 |
K | 96.64 ± 1.84 b | 131.25 ± 0.45 a | 131.37 ± 0.75 a | 97.74 ± 1.81 b | 95.45 ± 2.48 b | 0.000 |
Mg | 8.47 ± 0.11 c | 10.39 ± 0.10 b | 11.43 ± 0.08 a | 8.27 ± 0.45 c | 8.04 ± 0.19 c | 0.000 |
Mn | 0.01 ± 0.00 b | 0.01 ± 0.00 b | 0.02 ± 0.00 a | 0.01 ± 0.00 b | 0.01 ± 0.00 b | 0.000 |
Na | 95.06 ± 5.25 d | 104.83 ± 1.57 c | 111.23 ± 3.37 c | 376.86 ± 0.84 b | 423.58 ± 0.66 a | 0.000 |
P | 54.33 ± 0.01 c | 58.06 ± 0.77 b | 64.61 ± 0.83 a | 55.25 ± 0.68 c | 39.92 ± 0.63 d | 0.000 |
Zn | 0.23 ± 0.01 c | 0.30 ± 0.001 b | 0.36 ± 0.02 a | 0.22 ± 0.01 c | 0.17 ± 0.01 d | 0.000 |
Sample | Lactic Acid | Fructose | Lactose |
---|---|---|---|
Control | 5.55 ± 0.16 b | ND | 27.06 ± 0.89 c |
DP3 | 6.28 ± 0.07 a | 4.37 ± 0.02 b | 27.25 ± 0.72 c |
DP6 | 6.42 ± 0.09 a | 5.68 ± 0.02 a | 26.93 ± 0.19 c |
WH25 | 3.21 ± 0.18 c | ND | 34.22 ± 0.04 b |
WH50 | 2.89 ± 0.17 d | ND | 36.38 ± 0.03 a |
p-value | 0.001 | 0.000 | 0.000 |
Sample | Control | DP3 | DP6 | WH25 | WH50 | p-Value |
---|---|---|---|---|---|---|
pH | 4.32 ± 0.02 a | 4.24 ± 0.01 b | 4.21 ± 0.01 c | 4.26 ± 0.01 b | 4.20 ± 0.01 c | 0.000 |
Acidicity (0D) | 94.00 ± 2.83 a | 101.00 ± 1.41 a | 96.50 ± 2.12 a | 64.00 ± 1.41 b | 66.00 ± 1.41 c | 0.000 |
Viscosity (mPa.s) | 1125.80 ± 60.37 a | 1193.10 ± 1.18 a | 1141.10 ± 6.20 a | 451.60 ± 12.82 b | 113.27 ± 4.02 c | 0.000 |
L* (D65) | 81.186 ± 0.74 a | 73.83 ± 0.71 b | 77.36 ± 0.57 b | 78.48 ± 0.57 c | 61.12 ± 0.39 d | 0.000 |
a* (D65) | −0.74 ± 0.09 c | 0.77 ± 0.18 a | 0.67 ± 0.08 a | −0.23 ± 0.03 b | −0.62 ± 0.05 c | 0.000 |
b* (D65) | 5.14 ± 0.18 b | 8.67 ± 0.54 a | 9.18 ± 0.53 a | 8.39 ± 0.19 a | 4.55 ± 0.02 b | 0.000 |
C* (D65) | 5.19 ± 0.17 b | 8.70 ± 0.54 a | 9.21 ± 0.53 a | 8.39 ± 0.19 a | 4.59 ± 0.03 b | 0.000 |
H* (D65) | 98.24 ± 1.16 a | 84.92 ± 1.14 c | 85.81 ± 0.19 c | 91.59 ± 0.14 b | 97.73 ± 0.60 a | 0.000 |
WI | 80.48 ± 0.72 a | 75.73 ± 0.41 b | 76.60 ± 0.72 b | 72.51 ± 0.62 c | 60.84 ± 0.38 d | <0.001 |
Sample | Total Aerobic Count | Lactobacillus sp. | Streptococcus sp. | Enterobacteriaceae | Molds | Yeasts |
---|---|---|---|---|---|---|
Control | 8.36 ± 0.03 bc | 8.21 ± 0.01 d | 8.27 ± 0.01 a | ND | ND | ND |
DP3 | 8.41 ± 0.01 ab | 8.47 ± 0.01 a | 8.25 ± 0.01 ab | ND | ND | ND |
DP6 | 8.45 ± 0.00 a | 8.44 ± 0.01 a | 8.23 ± 0.02 ab | ND | ND | ND |
WH25 | 8.29 ± 0.02 c | 8.32 ± 0.01 c | 8.21 ± 0.01 bc | ND | 1.54 ± 0.09 b | 1.98 ± 0.03 b |
WH50 | 8.33 ± 0.02 bc | 8.37 ± 0.01 b | 8.18 ± 0.00 c | ND | 1.81 ± 0.05 a | 2.83 ± 0.02 a |
p-value | 0.003 | 0.000 | 0.004 | ND | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Bas, C.; Muñoz-Tebar, N.; Viuda-Martos, M.; Lucas-González, R.; Pérez-Álvarez, J.Á.; Fernández-López, J. Quality Properties of Innovative Goat Milk Kefir Enriched with Date Paste (Phoenix dactylifera L.) and Whey Derived from Goat Cheese Production. Foods 2025, 14, 1655. https://doi.org/10.3390/foods14101655
Muñoz-Bas C, Muñoz-Tebar N, Viuda-Martos M, Lucas-González R, Pérez-Álvarez JÁ, Fernández-López J. Quality Properties of Innovative Goat Milk Kefir Enriched with Date Paste (Phoenix dactylifera L.) and Whey Derived from Goat Cheese Production. Foods. 2025; 14(10):1655. https://doi.org/10.3390/foods14101655
Chicago/Turabian StyleMuñoz-Bas, Clara, Nuria Muñoz-Tebar, Manuel Viuda-Martos, Raquel Lucas-González, José Ángel Pérez-Álvarez, and Juana Fernández-López. 2025. "Quality Properties of Innovative Goat Milk Kefir Enriched with Date Paste (Phoenix dactylifera L.) and Whey Derived from Goat Cheese Production" Foods 14, no. 10: 1655. https://doi.org/10.3390/foods14101655
APA StyleMuñoz-Bas, C., Muñoz-Tebar, N., Viuda-Martos, M., Lucas-González, R., Pérez-Álvarez, J. Á., & Fernández-López, J. (2025). Quality Properties of Innovative Goat Milk Kefir Enriched with Date Paste (Phoenix dactylifera L.) and Whey Derived from Goat Cheese Production. Foods, 14(10), 1655. https://doi.org/10.3390/foods14101655