Chitosan Coating with Rosemary Extract Increases Shelf Life and Reduces Water Losses from Beef
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rosemary Extract and Filmogenic Solutions
2.2. Mechanical Properties
2.3. Moisture Absorption
2.4. Thickness
2.5. Solubility in Water
2.6. Barrier Property
2.7. Water Vapor Permeability (WVP)
2.8. Color
2.9. Meat Processing and Coating Application
2.10. Instrumental Analyses of Coated Meat
2.10.1. pH
2.10.2. Color
2.10.3. Water Holding Capacity (WHC), Cooking Losses (CL), and Shear Force (SF)
2.10.4. Thiobarbituric Acid Reactive Substances (TBARS)
2.11. Microbiological Analysis of Coated Meat
2.12. Statistical Analysis
3. Results and Discussion
3.1. Coatings
3.2. Instrumental Evaluation of Coated Meat
3.2.1. pH
3.2.2. WRC, Cl, and SF
Coating | Aging (Days) | SEM | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | CH | CHR4% | CHR8% | 0 | 2 | 4 | 8 | Coating | Days of Aging | C × P | ||
pH | 6.63 a | 6.14 b | 5.83 c | 5.77 d | 5.75 D | 6.04 C | 6.11 B | 6.47 A | 0.48 | <0.0001 | <0.0001 | <0.0001 |
WHC | 58.51 d | 61.12 c | 70.21 b | 73.57 a | 61.93 B | 66.87 A | 67.53 A | 67.08 A | 7.00 | <0.0001 | <0.0001 | <0.0001 |
CL | 37.52 a | 34.33 b | 26.58 c | 27.00 c | 31.90 AB | 31.03 B | 33.27 A | 29.23 C | 5.30 | <0.0001 | <0.0001 | 0.0014 |
Shear force | 3.59 a | 3.03 b | 3.16 b | 2.69 c | 3.88 A | 3.27 B | 3.01 C | 2.31 D | 0.78 | <0.0001 | <0.0001 | <0.0001 |
L* | 65.51 c | 67.31 b | 68.39 a | 68.25 a | 69.58 A | 68.46 B | 67.14 C | 64.27 D | 2.97 | <0.0001 | <0.0001 | <0.0001 |
a* | 2.95 b | 3.25 a | 2.54 c | 2.51 c | 3.65 A | 2.99 B | 2.35 C | 2.26 C | 0.91 | <0.0001 | <0.0001 | <0.0001 |
b* | 8.35 bc | 8.17 c | 8.81 a | 8.53 b | 7.43 C | 10.67 A | 7.55 C | 8.21 B | 1.42 | <0.0001 | <0.0001 | <0.0001 |
TBARS | 0.38 a | 0.35 b | 0.21 c | 0.21 c | 0.14 D | 0.20 C | 0.40 B | 0.41 B | 0.15 | <0.0001 | <0.0001 | <0.0001 |
Treatment | CO | CH | CRE4% | CRE8% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Days of Aging (Days) | 0 | 2 | 4 | 8 | 0 | 2 | 4 | 8 | 0 | 2 | 4 | 8 | 0 | 2 | 4 | 8 |
TBARS | 0.17 d | 0.29 c | 0.49 b | 0.59 a | 0.17 c | 0.27 b | 0.47 a | 0.48 a | 0.11 b | 0.11 b | 0.31 a | 0.31 a | 0.10 c | 0.15 b | 0.32 a | 0.26 a |
pH | 5.90 b | 6.44 c | 6.63 b | 7.57 a | 5.87 c | 6.07 b | 6.15 b | 6.45 a | 5.73 b | 5.78 b | 5.84 ab | 5.97 a | 5.51 b | 5.88 a | 5.82 a | 5.88 a |
WHC | 57.77 | 60.07 | 57.74 | 58.47 | 55.78 b | 62.75 a | 62.96 a | 62.99 a | 63.17 b | 71.61 a | 75.02 a | 71.03 a | 71.00 b | 73.04 ab | 74.43 ab | 75.82 a |
CL | 36.31 b | 35.31 b | 42.27 a | 36.20 b | 36.02 | 33.5 | 34.99 | 32.78 | 27.18 a | 28.16 a | 28.20 a | 22.79 b | 28.1 | 27.13 | 27.62 | 25.14 |
SF | 4.83 a | 4.13 b | 3.69 b | 1.71 c | 3.81 a | 3.34 a | 2.56 b | 2.42 b | 3.56 a | 3.16 ab | 3.24 a | 2.67 b | 3.30 a | 2.47 b | 2.55 b | 2.45 b |
L* | 70.56 a | 68.54 b | 65.46 c | 57.47 d | 69.59 a | 68.30 b | 66.81 c | 64.55 d | 69.16 a | 68.35 a | 68.60 a | 67.44 b | 69.04 a | 68.65 a | 67.71 b | 67.60 b |
a* | 4.68 a | 3.78 b | 1.68 c | 1.67 c | 4.84 a | 3.37 b | 2.66 c | 2.13 d | 2.64 | 2.55 | 2.44 | 2.53 | 2.45 | 2.27 | 2.63 | 2.7 |
b* | 7.56 c | 10.53 a | 6.62 d | 8.67 b | 7.40 b | 10.25 a | 7.47 b | 7.54 b | 7.38 c | 11.43 a | 7.63 c | 8.82 b | 7.37 c | 10.47 a | 8.47 b | 7.81 c |
Days of Aging (Days) | 0 | 2 | 4 | 8 | ||||||||||||
Treatment | CO | CH | CRE4% | CRE8% | CO | CH | CRE4% | CRE8% | CO | CH | CRE4% | CRE8% | CO | CH | CRE4% | CRE8% |
TBARS | 0.17 | 0.17 | 0.11 | 0.10 | 0.29 A | 0.27 A | 0.11 B | 0.15 B | 0.49 A | 0.47 A | 0.31 B | 0.32 B | 0.59 A | 0.48 B | 0.31 C | 0.26 D |
pH | 5.90 A | 5.87 AB | 5.73 B | 5.51 C | 6.44 A | 6.07 B | 5.78 C | 5.88 C | 6.63 A | 6.15 B | 5.84 C | 5.82 C | 7.57 A | 6.45 B | 5.97 C | 5.88 C |
WHC | 57.77 C | 55.78 C | 63.17 B | 71.00 A | 60.07 B | 62.75 B | 71.61 A | 73.04 A | 57.74 C | 62.96 B | 75.02 A | 74.43 A | 58.47 D | 62.99 C | 71.03 B | 75.82 A |
CL | 36.31 A | 36.02 A | 27.18 B | 28.10 B | 35.31 A | 33.50 A | 28.16 B | 27.13 B | 42.27 C | 34.99 B | 28.20 A | 27.62 A | 36.20 D | 32.78 C | 22.79 B | 25.14 A |
SF | 4.83 A | 3.81 B | 3.56 B | 3.30 B | 4.13 A | 3.34 B | 3.16 B | 2.47 C | 3.69 A | 2.56 B | 3.24 A | 2.55 B | 1.71 B | 2.42 A | 2.67 A | 2.45 A |
L* | 70.56 A | 69.59 B | 69.16 B | 69.04 B | 68.54 | 68.3 | 68.35 | 68.65 | 65.46 D | 66.81 C | 68.60 A | 67.71 B | 57.47 C | 64.55 B | 67.44 A | 67.60 A |
a* | 4.68 A | 4.84 A | 2.64 B | 2.45 B | 3.78 A | 3.37 A | 2.55 B | 2.27 B | 1.68 B | 2.66 A | 2.44 A | 2.63 A | 1.67 B | 2.13 B | 2.53 AB | 2.70 A |
b* | 7.56 | 7.4 | 7.38 | 7.37 | 10.53 B | 10.25 B | 11.43 A | 10.47 B | 6.62 C | 7.47 B | 7.63 B | 8.47 A | 8.67 A | 7.54 B | 8.82 A | 7.81 B |
3.2.3. Meat Color
3.2.4. Lipid Oxidation
3.2.5. Microbiological Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karanth, S.; Feng, S.; Patra, D.; Pradhan, A.K. Linking Microbial Contamination to Food Spoilage and Food Waste: The Role of Smart Packaging, Spoilage Risk Assessments, and Date Labeling. Front. Microbiol. 2023, 14, 1198124. [Google Scholar] [CrossRef] [PubMed]
- Segli, F.; Melian, C.; Vignolo, G.; Castellano, P. Inhibition of a Spoilage Exopolysaccharide Producer by Bioprotective Extracts from Lactobacillus Acidophilus CRL641 and Latilactobacillus Curvatus CRL705 in Vacuum-Packaged Refrigerated Meat Discs. Meat Sci. 2021, 178, 108509. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, R.; Hassan, M.M.; Cheng, Z.; Mills, V.; Hou, C.; Realini, C.E.; Chen, L.; Day, L.; Zheng, X.; et al. Active Packaging for the Extended Shelf-Life of Meat: Perspectives from Consumption Habits, Market Requirements and Packaging Practices in China and New Zealand. Foods 2022, 11, 2903. [Google Scholar] [CrossRef] [PubMed]
- Devlieghere, F.; Vermeiren, L.; Debevere, J. New Preservation Technologies: Possibilities and Limitations. Int. Dairy J. 2004, 14, 273–285. [Google Scholar] [CrossRef]
- Yaghoubi, M.; Ayaseh, A.; Alirezalu, K.; Nemati, Z.; Pateiro, M.; Lorenzo, J.M. Effect of Chitosan Coating Incorporated with Artemisia Fragrans Essential Oil on Fresh Chicken Meat during Refrigerated Storage. Polymers 2021, 13, 716. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.M.; Kim, Y.J.; Yune, J.H.; Kim, D.H.; Kwon, H.C.; Sohn, H.; Han, S.G.; Han, J.H.; Lim, S.J.; Han, S.G. Effects of Chitosan and Duck Fat-Based Emulsion Coatings on the Quality Characteristics of Chicken Meat during Storage. Foods 2022, 11, 245. [Google Scholar] [CrossRef] [PubMed]
- Arkoun, M.; Daigle, F.; Holley, R.A.; Heuzey, M.C.; Ajji, A. Chitosan-Based Nanofibers as Bioactive Meat Packaging Materials. Packag. Technol. Sci. 2018, 31, 185–195. [Google Scholar] [CrossRef]
- Muñoz-Tebar, N.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Chitosan Edible Films and Coatings with Added Bioactive Compounds: Antibacterial and Antioxidant Properties and Their Application to Food Products: A Review. Polymers 2023, 15, 396. [Google Scholar] [CrossRef]
- Muthu, M.; Gopal, J.; Chun, S.; Devadoss, A.J.P.; Hasan, N.; Sivanesan, I. Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants 2021, 10, 228. [Google Scholar] [CrossRef]
- Cui, H.; Wu, J.; Li, C.; Lin, L. Improving Anti-Listeria Activity of Cheese Packaging via Nanofiber Containing Nisin-Loaded Nanoparticles. LWT—Food Sci. Technol. 2017, 81, 233–242. [Google Scholar] [CrossRef]
- Lin, L.; Xue, L.; Duraiarasan, S.; Cui, H. Preparation of ε-Polylysine/Chitosan Nanofibers for Food Packaging against Salmonella on Chicken. Food Packag. Shelf Life 2018, 17, 134–141. [Google Scholar] [CrossRef]
- Alirezalu, K.; Hesari, J.; Nemati, Z.; Munekata, P.E.S.; Barba, F.J.; Lorenzo, J.M. Combined Effect of Natural Antioxidants and Antimicrobial Compounds during Refrigerated Storage of Nitrite-Free Frankfurter-Type Sausage. Food Res. Int. 2019, 120, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, K.; Hesari, J.; Yaghoubi, M.; Khaneghah, A.M.; Alirezalu, A.; Pateiro, M.; Lorenzo, J.M. Combined Effects of ε-Polylysine and ε-Polylysine Nanoparticles with Plant Extracts on the Shelf Life and Quality Characteristics of Nitrite-Free Frankfurter-Type Sausages. Meat Sci. 2021, 172, 108318. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, T.; Issa, G.; Bingol, E.B.; Kahraman, B.B.; Dumen, E. Effect of Rosemary Essential Oil and Modified-Atmosphere Packaging (MAP) on Meat Quality and Survival of Pathogens in Poultry Fillets. Braz. J. Microbiol. 2015, 46, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Sirocchi, V.; Devlieghere, F.; Peelman, N.; Sagratini, G.; Maggi, F.; Vittori, S.; Ragaert, P. Effect of Rosmarinus officinalis L. Essential Oil Combined with Different Packaging Conditions to Extend the Shelf Life of Refrigerated Beef Meat. Food Chem. 2017, 221, 1069–1076. [Google Scholar] [CrossRef]
- Bolumar, T.; LaPeña, D.; Skibsted, L.H.; Orlien, V. Rosemary and Oxygen Scavenger in Active Packaging for Prevention of High-Pressure Induced Lipid Oxidation in Pork Patties. Food Packag. Shelf Life 2016, 7, 26–33. [Google Scholar] [CrossRef]
- Nawaz, T.; Fatima, M.; Shah, S.Z.H.; Afzal, M. Coating Effect of Rosemary Extract Combined with Chitosan on Storage Quality of Mori (Cirrhinus mrigala). J. Food. Process. Preserv. 2020, 44, e14833. [Google Scholar] [CrossRef]
- Michiels, J.A.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Extraction Conditions Can Greatly Influence Antioxidant Capacity Assays in Plant Food Matrices. Food Chem. 2012, 130, 986–993. [Google Scholar] [CrossRef]
- Zarpelon, F.; Galiotto, D.; Aguzolli, C.; Carli, L.N.; Figueroa, C.A.; Baumvol, I.J.R.; Machado, G.; Crespo, J.D.S.; Giovanela, M. Removal of Coliform Bacteria from Industrial Wastewaters Using Polyelectrolytes/Silver Nanoparticles Self-Assembled Thin Films. J. Environ. Chem. Eng. 2016, 4, 137–146. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Improving the Barrier and Mechanical Properties of Corn Starch-Based Edible Films: Effect of Citric Acid and Carboxymethyl Cellulose. Ind. Crops Prod. 2011, 33, 229–235. [Google Scholar] [CrossRef]
- Gontard, N.; Duchez, C.; Cuq, J.-L.; Guilbert, S. Edible Composite Films of Wheat Gluten and Lipids: Water Vapour Permeability and Other Physical. Int. J. Food Sci. Technol. 1994, 29, 39–50. [Google Scholar] [CrossRef]
- Fang, Y.Z.; Yang, S.; Wu, G. Free Radicals, Antioxidants, and Nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef] [PubMed]
- ASTM E96/E96M10; Standard Test Methods for Water Vapour Transmission of Materials. ASTM (American Society for Testing and Materials): Philadelphia, PA, USA, 2011.
- Gennadios, A.; Weller, C.L.; Hanna, M.A.; Froning, G.W. Mechanical and Barrier Properties of Egg Albumen Films. J. Food Sci. 1996, 61, 585–589. [Google Scholar] [CrossRef]
- Ministério da Saúde. Regulamento Técnico de Boas Práticas Para Serviços de Alimentação; Ministério da Saúde: Brasília, Brasil, 2004.
- Hamm, R. Biochemistry of Meat Hydration. Adv. Food Res. 1961, 10, 355–463. [Google Scholar]
- American Meat Science Association. AMSA Details of Analytical Analyses Related to Meat Color. In Meat Color Measurement Guidelines; American Meat Science Association, Ed.; AMSA: Champaign, IL, USA, 2012; pp. 100–102. [Google Scholar]
- Ministério da Saúde. Procedimentos Operacionais Padronizados Aplicados Aos Estabelecimentos Produtores/Industrializadores de Alimentos; Ministério da Saúde: Brasília, Brasil, 2002.
- Kerch, G. Chitosan Films and Coatings Prevent Losses of Fresh Fruit Nutritional Quality: A Review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Denavi, G.; Tapia-Blácido, D.R.; Añón, M.C.; Sobral, P.J.A.; Mauri, A.N.; Menegalli, F.C. Effects of Drying Conditions on Some Physical Properties of Soy Protein Films. J. Food Eng. 2009, 90, 341–349. [Google Scholar] [CrossRef]
- Kerch, G.; Korkhov, V. Effect of Storage Time and Temperature on Structure, Mechanical and Barrier Properties of Chitosan-Based Films. Eur. Food Res. Technol. 2011, 232, 17–22. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Kittur, F.S. Chitin—The Undisputed Biomolecule of Great Potential. Crit. Rev. Food Sci. Nutr. 2003, 43, 61–87. [Google Scholar] [CrossRef]
- Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernandez-Lopez, J.; Muñoz, L.A.; Viuda-Martos, M. Assessment of Antibacterial and Antioxidant Properties of Chitosan Edible Films Incorporated with Maqui Berry (Aristotelia chilensis). LWT—Food Sci. Technol. 2015, 64, 1057–1062. [Google Scholar] [CrossRef]
- Kola, V.; Carvalho, I.S. Plant Extracts as Additives in Biodegradable Films and Coatings in Active Food Packaging. Food Biosci. 2023, 54, 102860. [Google Scholar] [CrossRef]
- Mali, S.; Grossmann, M.V.E.; García, M.A.; Martino, M.N.; Zaritzky, N.E. Mechanical and Thermal Properties of Yam Starch Films. Food Hydrocoll. 2005, 19, 157–164. [Google Scholar] [CrossRef]
- López-Córdoba, A.; Medina-Jaramillo, C.; Piñeros-Hernandez, D.; Goyanes, S. Cassava Starch Films Containing Rosemary Nanoparticles Produced by Solvent Displacement Method. Food Hydrocoll. 2017, 71, 26–34. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef] [PubMed]
- Hanzelková, Š.; Simeonovová, J.; Hampel, D.; Dufek, A.; Šubrt, J. Vliv Plemene, Pohlaví a Doby Zrání Na Křehkost Hovězího Masa. Acta Vet. Brno 2011, 80, 191–196. [Google Scholar] [CrossRef]
- Viljoen, H.F.; De Kock, H.L.; Webb, E.C. Consumer Acceptability of Dark, Firm and Dry (DFD) and Normal PH Beef Steaks. Meat Sci. 2006, 61, 181–185. [Google Scholar] [CrossRef]
- Barrasso, R.; Ceci, E.; Tufarelli, V.; Casalino, G.; Luposella, F.; Fustinoni, F.; Dimuccio, M.M.; Bozzo, G. Religious Slaughtering: Implications on PH and Temperature of Bovine Carcasses. Saudi J. Biol. Sci. 2022, 29, 2396–2401. [Google Scholar] [CrossRef] [PubMed]
- Warner, R.D. The Eating Quality of Meat-IV Water-Holding Capacity and Juiciness. In Lawrie’s Meat Science; Elsevier: Amsterdam, The Netherlands, 2017; pp. 419–459. [Google Scholar]
- Woelfel, R.L.; Owens, C.M.; Hirschler, E.M.; Martinez-Dawson, R.; Sams, A.R. The Characterization and Incidence of Pale, Soft, and Exudative Broiler Meat in a Commercial Processing Plant. Poult. Sci. 2002, 81, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.B.; Wheeler, T.L.; Koohmaraiet, M.; Crouset, J.D.; Savell, J.W. Effect of Castration on Myofibrillar Protein Turnover, Endogenous Proteinase Activities, and Muscle Growth in Bovine Skeletal Muscle. J. Anim. Sci. 1993, 71, 408–414. [Google Scholar] [CrossRef]
- Koohmaraie, M.; Geesink, G.H. Contribution of Postmortem Muscle Biochemistry to the Delivery of Consistent Meat Quality with Particular Focus on the Calpain System. Meat Sci. 2006, 74, 34–43. [Google Scholar] [CrossRef]
- Koohmaraie, M. Biochemical Factors Regulating the Toughening Tenderization Processes of Meat. Meat Sci. 1996, 43, S193–S201. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of Water-Holding Capacity of Meat: The Role of Postmortem Biochemical and Structural Changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Vital, A.C.P.; Guerrero, A.; Monteschio, J.D.O.; Valero, M.V.; Carvalho, C.B.; De Abreu Filho, B.A.; Madrona, G.S.; Do Prado, I.N. Effect of Edible and Active Coating (with Rosemary and Oregano Essential Oils) on Beef Characteristics and Consumer Acceptability. PLoS ONE 2016, 11, e0160535. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current Research in Meat Color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef] [PubMed]
- Insausti, K.; Beriain, M.J.; Purroy, A.; Alberti, P.; Lizaso, L.; Hernandez, B. Colour Stability of Beef from Different Spanish Native Cattle Breeds Stored under Vacuum and Modifed Atmosphere. Meat Sci. 1999, 53, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Batlle, R.; Gómez, M. Extension of the Shelf-Life of Foal Meat with Two Antioxidant Active Packaging Systems. LWT—Food Sci. Technol. 2014, 59, 181–188. [Google Scholar] [CrossRef]
- Tang, J.; Faustman, C.; Hoagland, T.A.; Mancini, R.A.; Seyfert, M.; Hunt, M.C. Postmortem Oxygen Consumption by Mitochondria and Its Effects on Myoglobin Form and Stability. J. Agric. Food Chem. 2005, 53, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Georgantelis, D.; Blekas, G.; Katikou, P.; Ambrosiadis, I.; Fletouris, D.J. Effect of Rosemary Extract, Chitosan and a-Tocopherol on Lipid and Colour Stability during Frozen Storage of Beef Burgers. Meat Sci. 2007, 75, 256–264. [Google Scholar] [CrossRef]
- Cardoso, G.P.; Dutra, M.P.; Fontes, P.R.; Ramos, A.d.L.S.; Gomide, L.A.d.M.; Ramos, E.M. Selection of a Chitosan Gelatin-Based Edible Coating for Color Preservation of Beef in Retail Display. Meat Sci. 2016, 114, 85–94. [Google Scholar] [CrossRef]
- Sañudo, C.; Alfonso, M.; Saâ Nchez, A.; Delfa, R.; Teixeira, A. Carcass and Meat Quality in Light Lambs from Different Fat Classes in the EU Carcass Classification System. Meat Sci. 2000, 56, 89–94. [Google Scholar] [CrossRef]
- Liu, F.; Dai, R.; Zhu, J.; Li, X. Optimizing Color and Lipid Stability of Beef Patties with a Mixture Design Incorporating with Tea Catechins, Carnosine, and α-Tocopherol. J. Food Eng. 2010, 98, 170–177. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wada, S. Enhancing the Antioxidant Effect of Ar-Tocopherol with Rosemary in Inhibiting Catalyzed Oxidation Caused by-Fe2+ and Hemoprotein. Food Res. Int. 1993, 26, 405–411. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Alegre, L. Subcellular Compartmentation of the Diterpene Carnosic Acid and Its Derivatives in the Leaves of Rosemary. Plant Physiol. 2001, 125, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Kahya, N.; Kestir, S.M.; Öztürk, S.; Yolaç, A.; Torlak, E.; Kalaycıoğlu, Z.; Akın-Evingür, G.; Erim, F.B. Antioxidant and Antimicrobial Chitosan Films Enriched with Aqueous Sage and Rosemary Extracts as Food Coating Materials: Characterization of the Films and Detection of Rosmarinic Acid Release. Int. J. Biol. Macromol. 2022, 217, 470–480. [Google Scholar] [CrossRef]
- Ministério da Saúde. Regulamento Técnico Sobre Padrões Microbiológicos Para Alimentos; Ministério da Saúde: Brasília, Brasil, 2001.
- Pothakos, V.; Samapundo, S.; Devlieghere, F. Total Mesophilic Counts Underestimate in Many Cases the Contamination Levels of Psychrotrophic Lactic Acid Bacteria (LAB) in Chilled-Stored Food Products at the End of Their Shelf-Life. Food Microbiol. 2012, 32, 437–443. [Google Scholar] [CrossRef]
- Abandansarie, S.S.R.; Ariaii, P.; Langerodi, M.C. Effects of Encapsulated Rosemary Extract on Oxidative and Microbiological Stability of Beef Meat During Refrigerated Storage. Food Sci. Nutr. 2019, 7, 3969–3978. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and Antioxidant Properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) Essential Oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. Biomed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef]
- Saranraj, P.; Alfaris, A.A.S.; Karunya, S.K. Preservation of Broiler Chicken from Food Borne Microorganisms: A Review. Glob. Vet. 2016, 17, 282–294. [Google Scholar]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Foodborne Gastroenteritis Caused by Escherichia coli. In Modern Food Microbiology; Aspen Publishers: Boston, MA, USA, 2005; pp. 657–678. [Google Scholar]
- Pandit, V.A.; Shelef, L.A. Sensitivity of Listeria Monocytogenes to Rosemary (Rosmarinus officinalis L.). Food Microbiol. 1994, 11, 57–63. [Google Scholar] [CrossRef]
- Fernández-López, J.; Zhi, N.; Aleson-Carbonell, L.; Pérez-Alvarez, J.A.; Kuri, V. Antioxidant and Antibacterial Activities of Natural Extracts: Application in Beef Meatballs. Meat Sci. 2005, 69, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Grün, I.U.; Mustapha, A. Effects of Plant Extracts on Microbial Growth, Color Change, and Lipid Oxidation in Cooked Beef. Food Microbiol. 2007, 24, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Camo, J.; Beltrán, J.A.; Roncalés, P. Extension of the Display Life of Lamb with an Antioxidant Active Packaging. Meat Sci. 2008, 80, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
Treatment | Chitosan (%) | Glycerol (%) | Rosemary Extract (%) | Acetic Acid 2% (%) |
---|---|---|---|---|
Control (CO) | - | - | - | - |
Coating 1 (CH) | 3.0 | 0.6 | - | 96.4 |
Coating 2 (CRE4%) | 3.0 | 0.6 | 4.0 | 92.4 |
Coating 3 (CRE8%) | 3.0 | 0.6 | 8.0 | 88.4 |
Item | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CO | CH | CRE4% | CRE8% | |||
Water vapor permeability (g mm/h m2 kPa) | - | 0.41 b | 0.70 a | 0.59 ab | 0.05 | 0.0419 |
Solubility (%) | - | 41.67 | 37.91 | 39.37 | 0.84 | 0.1859 |
Moisture absorption (%) | - | 26.56 a | 15.50 b | 13.28 b | 2.10 | 0.0001 |
Deformation (%) | - | 14.53 a | 7.70 b | 8.77 b | 1.09 | 0.0002 |
Breaking strength (%) | - | 16.12 | 17.35 | 16.67 | 0.58 | 0.7400 |
Thickness (mm) | - | 0.07 | 0.10 | 0.09 | 0.01 | 0.2099 |
Transparency (%) | - | 2.56 a | 1.99 ab | 1.90 b | 0.13 | 0.0612 |
L* | - | 72.55 ab | 73.50 a | 69.48 b | 0.72 | 0.0262 |
a* | - | 1.86 a | 1.11 ab | 1.09 b | 0.16 | 0.0409 |
b* | - | 32.90 | 27.57 | 29.79 | 1.42 | 0.3493 |
Microorganisms | Coating | Aging (Days) | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | CH | CRE4% | CRE8% | 0 | 2 | 4 | 8 | Coating | Days of Aging | C × SP | ||
Mesophiles | 7.15 a | 7.13 a | 6.06 b | 5.93 b | 6.40 B | 6.96 A | 6.56 AB | 6.36 B | 0.14 | <0.0001 | 0.0132 | 0.0028 |
Psychrotrophic | 7.15 a | 6.07 b | 5.11 c | 4.58 d | 5.30 C | 6.44 A | 5.62 B | 5.55 B | 0.20 | <0.0001 | <0.0001 | <0.0001 |
Staphylococcus | 2.24 a | 0.71 b | 0 | 0 | 1.60 A | 0.00 | 0.00 | 1.35 B | 0.29 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, A.F.; Leite, R.H.d.L.; Pereira, M.W.F.; Silva, M.R.L.; de Araújo, T.L.A.C.; de Lima Júnior, D.M.; Gomes, M.d.N.B.; Lima, P.d.O. Chitosan Coating with Rosemary Extract Increases Shelf Life and Reduces Water Losses from Beef. Foods 2024, 13, 1353. https://doi.org/10.3390/foods13091353
de Lima AF, Leite RHdL, Pereira MWF, Silva MRL, de Araújo TLAC, de Lima Júnior DM, Gomes MdNB, Lima PdO. Chitosan Coating with Rosemary Extract Increases Shelf Life and Reduces Water Losses from Beef. Foods. 2024; 13(9):1353. https://doi.org/10.3390/foods13091353
Chicago/Turabian Stylede Lima, Allison F., Ricardo H. de L. Leite, Marília W. F. Pereira, Maria R. L. Silva, Thiago L. A. C. de Araújo, Dorgival M. de Lima Júnior, Marina de N. B. Gomes, and Patrícia de O. Lima. 2024. "Chitosan Coating with Rosemary Extract Increases Shelf Life and Reduces Water Losses from Beef" Foods 13, no. 9: 1353. https://doi.org/10.3390/foods13091353