Development of a Novel HS-GC/MS Method Using the Total Ion Spectra Combined with Machine Learning for the Intelligent and Automatic Evaluation of Food-Grade Paraffin Wax Odor Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Paraffin Wax Samples
Odor Levels Preparation
2.2. HS-GC/MS Acquisition
2.3. Optimization of Conditions
2.3.1. Experimental Design
2.3.2. Kinetic Study
2.4. Data Analysis
2.4.1. Total Ion Spectra
2.4.2. Machine Learning Algorithms
2.5. Software
3. Results and Discussions
3.1. Method Optimization
3.1.1. Box–Behnken Design with RSM
3.1.2. Kinetic Study of the Optimal Conditions
3.2. Repeatability and Intermediate Precision of the Method
3.3. Machine Learning Evaluation
3.3.1. Exploratory Study
3.3.2. Classifiers
Gaussian SVM Classifier
RF Classifier
3.3.3. Regression Models
PLSR
RF Regression
Gaussian SVR
3.4. Web Application
3.5. Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HS-GC/MS | Headspace Gas Chromatography with Mass Spectrometry |
ML | Machine Learning |
HS | Headspace |
GC | Gas Chromatography |
MS | Mass Spectrometry |
HCA | Hierarchical Cluster Analysis |
PCA | Principal Component Analysis |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
RF | Random Forest |
PLSR | Partial Least Squares Regression |
BBD | Box–Behnken Design |
RSM | Response Surface Methodology |
VOCs | Volatile Organic Compounds |
SVOCs | Semi-Volatile Organic Compounds |
TIS | Total Ion Spectra |
TIC | Total Ion Chromatogram |
SPME | Solid-Phase Microextraction |
TD | Thermal Desorption |
ASTM | American Society for Testing and Materials |
FDA | Food and Drug Administration |
ANOVA | Analysis of Variance |
CV | Coefficient of Variation |
ELM | Extreme Learning Machine |
m/z | Mass-to-Charge Ratio |
References
- Speight, J.G. Hydrocarbons from Petroleum. In Handbook of Industrial Hydrocarbon Processes; Elsevier: Amsterdam, The Netherlands, 2011; pp. 85–126. [Google Scholar] [CrossRef]
- Joshi, B.L.; Graf, R.; Gindra, S.; Vilgis, T.A. Effect of different derivatives of paraffin waxes on crystallization of eutectic mixture of cocoa butter-coconut oil. Curr. Res. Food Sci. 2021, 4, 784–799. [Google Scholar] [CrossRef]
- Cottom, W.P. Waxes. In Kirk-Othmer Encyclopedia of Chemical Technolog; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; p. 2301240503152020.a01. [Google Scholar] [CrossRef]
- Saber, O.; Hefny, N.; Al Jaafari, A.A. Improvement of physical characteristics of petroleum waxes by using nano-structured materials. Fuel Process. Technol. 2011, 92, 946–951. [Google Scholar] [CrossRef]
- Crause, J.; Nieuwoudt, I. Paraffin wax fractionation: State of the art vs. supercritical fluid fractionation. J. Supercrit. Fluids 2003, 27, 39–54. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Food Additives Permitted for Direct Addition to Food for Human Consumption; Code of Federal Regulations Title 21; FDA: Silver Spring, MD, USA, 2013; Volume 3, Part 172.
- U.S. Food and Drug Administration (FDA). Indirect Food Additives: Adjuvants, Production Aids, and Sanitizers; Code of Federal Regulations Title 21; FDA: Silver Spring, MD, USA, 2013; Volume 3, Part 178.
- Sánchez, J.; Tallafigo, M.F.; Gilarranz, M.A.; Rodríguez, F. Catalytic Hydrotreatment of Crude Waxes from Different Sources over a Ni–W/-Al2O3 Catalyst. Ind. Eng. Chem. Res. 2008, 47, 6854–6861. [Google Scholar] [CrossRef]
- Ancheyta, J.; Rana, M.S.; Furimsky, E. Hydroprocessing of heavy petroleum feeds: Tutorial. Catal. Today 2005, 109, 3–15. [Google Scholar] [CrossRef]
- Jones, D.S.J. Quality Control of Products in Petroleum Refining. In Handbook of Petroleum Processing; Treese, S.A., Pujadó, P.R., Jones, D.S.J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 649–683. [Google Scholar] [CrossRef]
- Paiva, R.; Wrona, M.; Nerín, C.; Veroneze, I.B.; Gavril, G.-L.; Cruz, S.A. Importance of profile of volatile and off-odors compounds from different recycled polypropylene used for food applications. Food Chem. 2021, 350, 129250. [Google Scholar] [CrossRef]
- ASTM Standard D1833; Standard Test Method for Odor of Petroleum Wax. ASTM International: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d1833-87r17.html (accessed on 15 March 2024).
- Men, H.; Fu, S.; Yang, J.; Cheng, M.; Shi, Y.; Liu, J. Comparison of SVM, RF and ELM on an Electronic Nose for the Intelligent Evaluation of Paraffin Samples. Sensors 2018, 18, 285. [Google Scholar] [CrossRef]
- Barea-Sepúlveda, M.; Duarte, H.; Aliaño-González, M.J.; Romano, A.; Medronho, B. Total Ion Chromatogram and Total Ion Mass Spectrum as Alternative Tools for Detection and Discrimination (A Review). Chemosensors 2022, 10, 465. [Google Scholar] [CrossRef]
- Soria, A.C.; García-Sarrió, M.J.; Sanz, M.L. Volatile sampling by headspace techniques. TrAC Trends Anal. Chem. 2015, 71, 85–99. [Google Scholar] [CrossRef]
- Xu, J.; Ouyang, G. Extraction: Solid-Phase Microextraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; p. B9780124095472146000. [Google Scholar] [CrossRef]
- Stauffer, E.; Dolan, J.A.; Newman, R. Gas Chromatography and Gas Chromatography—Mass Spectrometry. In Fire Debris Analysis; Elsevier: Amsterdam, The Netherlands, 2008; pp. 235–293. [Google Scholar] [CrossRef]
- Sigman, M.E.; Williams, M.R.; Castelbuono, J.A.; Colca, J.G.; Clark, C.D. Ignitable Liquid Classification and Identification Using the Summed-Ion Mass Spectrum. Instrum. Sci. Technol. 2008, 36, 375–393. [Google Scholar] [CrossRef]
- Waddell, E.E.; Frisch-Daiello, J.L.; Williams, M.R.; Sigman, M.E. Hierarchical Cluster Analysis of Ignitable Liquids Based on the Total Ion Spectrum. J. Forensic Sci. 2014, 59, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Adutwum, L.A.; Abel, R.J.; Harynuk, J. Total Ion Spectra versus Segmented Total Ion Spectra as Preprocessing Tools for Gas Chromatography—Spectrometry Data. J. Forensic Sci. 2018, 63, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Pavón, J.L.P.; Sánchez, M.d.N.; Pinto, C.G.; Laespada, M.E.F.; Cordero, B.M.; Peña, A.G. Strategies for qualitative and quantitative analyses with mass spectrometry-based electronic noses. TrAC Trends Anal. Chem. 2006, 25, 257–266. [Google Scholar] [CrossRef]
- Misolas, A.A.; Ferreiro-González, M.; Palma, M. Optimization of a carbon adsorption/HS-GC–MS method for ignitable liquids classification from fire debris. Microchem. J. 2024, 200, 110302. [Google Scholar] [CrossRef]
- Qiu, J.; Wu, Q.; Ding, G.; Xu, Y.; Feng, S. A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016, 2016, 67. [Google Scholar] [CrossRef]
- Sigman, M.E.; Williams, M.R.; Thurn, N.; Wood, T. Validation of ground truth fire debris classification by supervised machine learning. Forensic Chem. 2021, 26, 100358. [Google Scholar] [CrossRef]
- Sigman, M.E.; Williams, M.R. Chemometric applications in fire debris analysis. WIREs Forensic Sci. 2020, 2, e1368. [Google Scholar] [CrossRef]
- Janet, J.P.; Kulik, H.J. Machine Learning in Chemistry; American Chemical Society: Washington, DC, USA, 2020. [Google Scholar]
- Ferreiro-González, M.; Barbero, G.F.; Palma, M.; Ayuso, J.; Álvarez, J.A.; Barroso, C.G. Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints. Sensors 2017, 17, 2544. [Google Scholar] [CrossRef] [PubMed]
- Barea-Sepúlveda, M.; Ferreiro-González, M.; Calle, J.L.P.; Barbero, G.F.; Ayuso, J.; Palma, M. Comparison of different processing approaches by SVM and RF on HS-MS eNose and NIR Spectrometry data for the discrimination of gasoline samples. Microchem. J. 2022, 172, 106893. [Google Scholar] [CrossRef]
- Sigman, M.E.; Williams, M.R. Assessing evidentiary value in fire debris analysis by chemometric and likelihood ratio approaches. Forensic Sci. Int. 2016, 264, 113–121. [Google Scholar] [CrossRef]
- Allen, A.; Williams, M.R.; Thurn, N.A.; Sigman, M.E. Model Distribution Effects on Likelihood Ratios in Fire Debris Analysis. Separations 2018, 5, 44. [Google Scholar] [CrossRef]
- Martí, M.P.; Pino, J.; Boqué, R.; Busto, O.; Guasch, J. Determination of ageing time of spirits in oak barrels using a headspace–mass spectrometry (HS-MS) electronic nose system and multivariate calibration. Anal. Bioanal. Chem. 2005, 382, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Calvo, A.; Busto, O. Prediction of olive oil sensory descriptors using instrumental data fusion and partial least squares (PLS) regression. Talanta 2016, 155, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Durrett, L.R. Determination of Petroleum Wax Odor by Gas Chromatography. Anal. Chem. 1966, 38, 745–748. [Google Scholar] [CrossRef]
- Yuan, P.; Zhao, B.; Pang, C. Odor source analysis and process solutions for fully refined paraffin wax. Petrol. Refin. Eng. 2013, 43, 12–17. [Google Scholar]
- Palou, A.; Cruz, J.; Blanco, M.; Larraz, R.; Frontela, J.; Bengoechea, C.M.; González, J.M.; Alcalà, M. Characterization of the Composition of Paraffin Waxes on Industrial Applications. Energy Fuels 2014, 28, 956–963. [Google Scholar] [CrossRef]
- Barea-Sepúlveda, M.; Ferreiro-González, M.; Palma, M. Determination of Undesirable Volatile Organic Compounds in Petroleum-Derived Products by Thermal Desorption and Gas Chromatography-Mass Spectrometry Technique. Med. Sci. Forum 2021, 4, 49. [Google Scholar] [CrossRef]
- Wang, J.; Gao, D.; Wang, Z. Quality-grade evaluation of petroleum waxes using an electronic nose with a TGS gas sensor array. Meas. Sci. Technol. 2015, 26, 085005. [Google Scholar] [CrossRef]
- Keller, R. Aesthetics and Sensory Attributes of Waxes: The Chemistry and Technology of Waxes; Springer: Boston, MA, USA, 2001; pp. 1–9. Available online: https://link.springer.com/chapter/10.1007/978-1-4615-1247-9_1 (accessed on 15 March 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 15 March 2024).
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R Package Version 2.1.3. 2022. Available online: https://CRAN.R-project.org/package=cluster (accessed on 15 March 2024).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 15 March 2024).
- Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-93. 2022. Available online: https://CRAN.R-project.org/package=caret (accessed on 15 March 2024).
- Yan, Y. MLmetrics: Machine Learning Evaluation Metrics. R Package Version 1.1.1. 2016. Available online: https://CRAN.R-project.org/package=MLmetrics (accessed on 15 March 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Chang, W.; Cheng, J.; Allaire, J.; Xie, Y.; McPherson, J. Shiny: Web Application Framework for R. R Package Version 1.5.0. 2020. Available online: https://CRAN.R-project.org/package=shiny (accessed on 15 March 2024).
Variable | −1 | 0 | 1 |
---|---|---|---|
X1: Temperature (°C) | 100 | 120 | 140 |
X2: Agitation (rpm) | 250 | 500 | 750 |
X3: Sample quantity (g) | 0.2 | 0.4 | 0.6 |
Experiment | Factors | Response | |||
---|---|---|---|---|---|
X1 | X2 | X3 | Euclidean Distance | ||
Experimental | Predicted | ||||
1 | −1 | 0 | 1 | 0.056794 | 0.0495423 |
2 | 1 | −1 | 0 | 0.111667 | 0.103849 |
3 | −1 | −1 | 0 | 0.0546288 | 0.0542285 |
4 | 1 | 0 | −1 | 0.0695383 | 0.07679 |
5 | 1 | 1 | 0 | 0.105074 | 0.105474 |
6 | 1 | 0 | 1 | 0.1244 | 0.124565 |
7 | 0 | −1 | −1 | 0.0580481 | 0.0586143 |
8 | −1 | 1 | 0 | 0.0492514 | 0.0570693 |
9 | 0 | −1 | 1 | 0.0918902 | 0.0995423 |
10 | 0 | 1 | 1 | 0.0831786 | 0.0826123 |
11 | −1 | 0 | −1 | 0.0539537 | 0.0537878 |
12 | 0 | 1 | −1 | 0.0876625 | 0.0800104 |
13 | 0 | 0 | 0 | 0.0808236 | 0.0831342 |
14 | 0 | 0 | 0 | 0.0825085 | 0.0831342 |
15 | 0 | 0 | 0 | 0.0898495 | 0.0831342 |
16 | 0 | 0 | 0 | 0.0641407 | 0.0831342 |
17 | 0 | 0 | 0 | 0.0892545 | 0.0831342 |
18 | 0 | 0 | 0 | 0.0922287 | 0.0831342 |
Variable | Factor | Sum of Squares | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Temperature | X1 | 0.00480448 | 0.00480448 | 45.18 | 0.0011 |
Agitation | X2 | 0.00000997329 | 0.00000997329 | 0.09 | 0.7718 |
Sample quantity | X3 | 0.000947424 | 0.000947424 | 8.91 | 0.0306 |
Temperature: Temperature | X1X1 | 0.0000534923 | 0.0000534923 | 0.50 | 0.5099 |
Temperature: Agitation | X1X2 | 3.69418E−7 | 3.69418E−7 | 0.00 | 0.9553 |
Temperature: Sample quantity | X1X3 | 0.000676543 | 0.000676543 | 6.36 | 0.0530 |
Agitation: Agitation | X2X2 | 0.00000118999 | 0.00000118999 | 0.01 | 0.9199 |
Agitation: Sample quantity | X2X3 | 0.000367222 | 0.000367222 | 3.45 | 0.1223 |
Sample quantity: Sample quantity | X3X3 | 0.0000522889 | 0.0000522889 | 0.49 | 0.5145 |
5-Fold CV | Test Set | ||||
---|---|---|---|---|---|
Model | Hyperparameters | RMSE | R2 | RMSE | R2 |
PLSR | No. components = 7 | 9.797 | 0.9330 | 9.227 | 0.9328 |
RF | mtry = 167; No. trees = 100 | 10.37 | 0.9157 | 9.782 | 0.9327 |
RBF-SVR | C = 1024; γ = 128; ε = 0.1 | 7.127 | 0.9579 | 6.789 | 0.9667 |
Method | Merits | Disadvantages | Applications | Analysis Time | Solvents Used |
---|---|---|---|---|---|
HS-GC/MS with TIS and ML | High accuracy, comprehensive analysis, automated processing | Setup for ML algorithms and training data required | Quality control in industries like food-grade materials | Short to medium | None (direct analysis) |
ASTM D1833 | Standardized, simple implementation | Subjective, requires human panel, potential for inconsistency | Quality assessment in petroleum product industries | Short to medium | None (sensory analysis) |
Electronic Noses with Gas Sensors | Quick, real-time monitoring, portable | Sensor stability issues, limited compound detection range | Broad applications from food quality to environmental monitoring | Very short | None (sensor-based) |
GC/MS with TIC | Accurate for known compounds, reproducible | Limited detection of unknowns, complex setup and calibration | Detailed VOC analysis in chemical and environmental sciences | Medium to long | Varies with sample preparation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barea-Sepúlveda, M.; Calle, J.L.P.; Ferreiro-González, M.; Palma, M. Development of a Novel HS-GC/MS Method Using the Total Ion Spectra Combined with Machine Learning for the Intelligent and Automatic Evaluation of Food-Grade Paraffin Wax Odor Level. Foods 2024, 13, 1352. https://doi.org/10.3390/foods13091352
Barea-Sepúlveda M, Calle JLP, Ferreiro-González M, Palma M. Development of a Novel HS-GC/MS Method Using the Total Ion Spectra Combined with Machine Learning for the Intelligent and Automatic Evaluation of Food-Grade Paraffin Wax Odor Level. Foods. 2024; 13(9):1352. https://doi.org/10.3390/foods13091352
Chicago/Turabian StyleBarea-Sepúlveda, Marta, José Luis P. Calle, Marta Ferreiro-González, and Miguel Palma. 2024. "Development of a Novel HS-GC/MS Method Using the Total Ion Spectra Combined with Machine Learning for the Intelligent and Automatic Evaluation of Food-Grade Paraffin Wax Odor Level" Foods 13, no. 9: 1352. https://doi.org/10.3390/foods13091352
APA StyleBarea-Sepúlveda, M., Calle, J. L. P., Ferreiro-González, M., & Palma, M. (2024). Development of a Novel HS-GC/MS Method Using the Total Ion Spectra Combined with Machine Learning for the Intelligent and Automatic Evaluation of Food-Grade Paraffin Wax Odor Level. Foods, 13(9), 1352. https://doi.org/10.3390/foods13091352