Production and Characterization of Snacks Utilizing Composite Flour from Unripe Plantain (Musa paradisiaca), Breadfruit (Artocarpus altilis), and Cinnamon (Cinnamomum venum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Materials
2.2. Plantain Flour Processing
2.3. Cinnamon Powder Processing
2.4. Breadfruit Flour Processing
Production of Cookies
2.5. Formulation of Composite Flour from Plantain, Breadfruit, and Cinnamon
2.6. Proximate Composition Determination
2.7. Functional Property Determination
2.7.1. Bulk Density Measurements
2.7.2. Water Absorption Capacity Measurements
2.7.3. Oil Absorption Capacity Determination
2.7.4. Swelling Power and Solubility Index Measurements
2.8. Pasting Property Determination
2.9. Phytate Content Determination
2.10. Tannin Content Determination
2.11. Color Property Measurements
2.12. Sensory Evaluation
2.13. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Composite Flour from Plantain, Breadfruit, and Cinnamon
3.2. Functional Properties of Composite Flour from Plantain, Breadfruit, and Cinnamon
3.2.1. Color and Anti-Nutrient Properties of Flour Produced from Plantain, Breadfruit, and Cinnamon
3.2.2. Pasting Properties of Flours Produced from Plantain, Breadfruit, and Cinnamon
3.2.3. Proximate Composition of Cookies Produced from Plantain, Breadfruit, and Cinnamon Flour
3.2.4. Color Attributes of Cookies Produced from Plantain–Breadfruit–Cinnamon Flour
3.3. Sensory Properties of the Cookies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Páramo-Calderón, D.E.; Aparicio-Saguilán, A.; Aguirre-Cruz, A.; Carrillo-Ahumada, J.; Hernández-Uribe, J.P.; Acevedo-Tello, S.; Torruco-Uco, J.G. Tortilla added with Moringa oleífera flour: Physicochemical, texture properties and antioxidant capacity. LWT 2019, 100, 409–415. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Strosse, H.; Schoofs, H.; Panis, B.; André, E.; Reyniers, K.; Swennen, R. Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci. 2006, 170, 104–112. [Google Scholar] [CrossRef]
- Thingnam, S.S.; Lourembam, D.S.; Tongbram, P.S.; Lokya, V.; Tiwari, S.; Khan, M.K.; Thangjam, R. A perspective review on understanding drought stress tolerance in wild banana genetic resources of northeast India. Genes 2023, 14, 370. [Google Scholar] [CrossRef] [PubMed]
- Aurore, G.; Parfait, B.; Fahrasmane, L. Bananas- raw materials for making processed food products. Trends Food Sci. Technol. 2009, 20, 78–91. [Google Scholar] [CrossRef]
- Singh, R.; Kaushik, R.; Gosewade, S. Bananas as underutilized fruit having huge potential as raw materials for food and non-food processing industries: A brief review. Pharma Innov. J. 2018, 7, 574–580. [Google Scholar]
- Ibrahim, A.H. How to Start a Plantain Flour Mill in Nigeria. 2013. Available online: http://constantive.com/business/plantain-flour-mill-in-nigeria (accessed on 23 April 2023).
- Jayaraman, K.S.; Das Gupta, D.K. Handbook of Industrial Drying; Francis and Taylor Group LLC, CRC Press: New York, NY, USA, 2006; pp. 606–630. [Google Scholar]
- Pacho, H.; Spohrer, R.; Mei, Z.; Serdula, M.K. Evidence of the effectiveness of flour fortification programs on iron status and anemia: A systematic review. Nutr. Rev. 2015, 73, 780–795. [Google Scholar]
- Bakare, H.A.; Osundahunsi, O.F.; Adegunwa, M.O.; Olusanya, J.O. Batter rheology, baking, and sensory qualities of cake from blends of breadfruit and wheat flour. J. Culin. Sci. Technol. 2013, 11, 203–221. [Google Scholar] [CrossRef]
- Needham, A.M.L.W. Breadfruit (Artocarpus altilis): The Impact of Environment on Nutritional Composition and Implications for Hawaiʻi Communities. Ph.D. Thesis, University of Hawai’i, Hawaii, HI, USA, 2019. [Google Scholar]
- Lincoln, N.K.; Ragone, D.; Zerega, N.; Roberts-Nkrumah, L.B.; Merlin, M.; Jones, A.M. Grow us our daily bread: A review of breadfruit cultivation in traditional and Contemporary systems. Hortic. Rev. 2019, 46, 299–384. [Google Scholar]
- Souza, D.S.; Souza, J.D.R.P.; Coutinho, J.P.; Ferrao, S.P.B.; Sant’anna de Souza, T.; da Silva, A.A.L. Preparation of instant flour from the pulp of breadfruit (Artocarpus altilis)/Elaboracao de farinha instantanea a partir da polpa de fruta-pao (Artocarpusaltilis). Cienc. Rural 2012, 42, 1123–1130. [Google Scholar] [CrossRef]
- Bahado-Singh, P.S.; Wheatley, A.O.; Ahmad, M.H.; Morrison, E.S.A.; Asemota, H.N. Food processing methods influence the glycaemic indices of some commonly eaten West Indian carbohydrate-rich foods. Br. J. Nutr. 2016, 96, 476–481. [Google Scholar] [CrossRef]
- Liu, Y.; Ragone, D.; Murch, S.J. Breadfruit (Artocarpus altilis): A source of high-quality protein for food security and novel food products. Amino Acids 2015, 47, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Roberts-Nkrumah, L.B. An overview of breadfruit (Artocarpus altilis) in the Caribbean. I Int. Symp. Breadfruit Res. Dev. 2007, 757, 51–60. [Google Scholar] [CrossRef]
- Shen, Y.; Jia, L.-N.; Honma, N.; Hosono, T.; Ariga, T.; Seki, T. Beneficial Effects of Cinnamon on the Metabolic Syndrome, Inflammation, and Pain, and Mechanisms Underlying These Effects–A Review. J. Tradit. Complement. Med. 2012, 2, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Gruenwald, J.; Freder, J.; Armbruester, N. Cinnamon and health. Crit. Rev. Food Sci. Nutr. 2010, 50, 822–834. [Google Scholar] [CrossRef] [PubMed]
- Tulunay, M.; Aypak, C.; Yikilkan, H.; Gorpelioglu, S. Herbal medicine use among patients with chronic diseases. J. Intercult. Ethnopharmacol. 2015, 4, 217–220. [Google Scholar] [CrossRef]
- Kawatra, P.; Rajagopalan, R. Cinnamon: Mystic powers of a minute ingredient. Pharmacogn. Res. 2015, 7 (Suppl. 1), S1–S6. [Google Scholar] [CrossRef] [PubMed]
- Adegunwa, M.O.; Fafiolu, O.F.; Adebowale, A.A.; Bakare, H.A.; Alamu, E.O. Snack food from unripe plantain and orange vesicle composite flour: Nutritional and sensory properties. J. Culin. Sci. Technol. 2018, 17, 491–506. [Google Scholar] [CrossRef]
- Adegunwa, M.O.; Sanni, L.O.; Raji, R.A. Effect of Pre-treatment on Sweet Potato Flour for Cookies Production. Afr. J. Root Tuber Crops 2010, 8, 46–50. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Revision 2010; Association of Official Analytical Chemists: Washington, DC, USA, 2010. [Google Scholar]
- Akpapunam, M.A.; Markakis, P. Physicochemical and nutritional aspects of cowpea flour. J. Food Sci. 1981, 46, 972–973. [Google Scholar] [CrossRef]
- Adegunwa, M.O.; Adebowale, A.A.; Bakare, H.A.; Ovie, S.G. Compositional characteristics and functional properties of instant plantain-breadfruit flour. Int. J. Food Res. 2014, 1, 1–7. [Google Scholar]
- Sosulski, F.W. The Improvement of Protein Quality by Processing; Food and Agricultural Organization of the United Nations: New York, NY, USA, 1962. [Google Scholar]
- Takashi, S.; Sieb, P.A. Paste and gel properties of prime corn and wheat starches with and without native lipids. Cereal Chem. 1988, 65, 474–475. [Google Scholar]
- Alamu, E.O.; Maziya-Dixon, B.; Dixon, G.A. Evaluation of proximate composition and pasting properties of high-quality cassava flour (HQCF) from cassava genotypes (Manihot esculenta Crantz) of b-carotene-enriched roots. LWT Food Sci. Technol. 2017, 86, 501–506. [Google Scholar] [CrossRef]
- Shimelis, E.; Meaza, M.; Rakishit, S. Physicochemical properties, pasting behaviour and functional characteristics of flours and starches from improved bean (Phaseolus vulgaris L.) varieties grown in East Africa. CIGR E-J. 2006, 8, 1–18. [Google Scholar]
- ICS: 664.68; Nigerian Industrial Standard for Biscuits. Standard Organization of Nigeria: Abuja, Nigeria, 2007; pp. 1–8.
- Eleazu, C.; Okafor, P.N.; John, A.; Ezinne, A.; Ikpeama, I.; Eleazu, K. Chemical Composition, antioxidant activity, functional properties, and inhibitory action of unripe plantain (M. paradisiacae) flour. Afr. J. Biotechnol. 2011, 10, 16948–16952. [Google Scholar] [CrossRef]
- Nwabueze, M.O.; Titus, U.; Akobundu, N.T.; Iwe, E. Physical characteristics and acceptability of extruded African Breadfruit-Based snacks. J. Food Qual. 2008, 31, 142–155. [Google Scholar] [CrossRef]
- Padmashrre, T.S.; Vijayalashmi, L.; Puttaraj, S. Effect of traditional processing on the functional properties of cowpea (Vigna catjang) flour. J. Food Sci. Tech. 1987, 24, 221–225. [Google Scholar]
- Adegunwa, M.O.; Adelekan, E.O.; Adebowale, A.A.; Bakare, H.A.; Alamu, E.O. Evaluation of nutritional and functional properties of plantain (Musa paradisiaca L.) and tigernut (Cyperus esculentus L.) flour blends for food formulations. Cogent Chem. 2017, 3, 1383707. [Google Scholar] [CrossRef]
- Adebowale, A.A.; Sanni, S.A.; Oladapo, F.O. Chemical, functional, and sensory properties of instant yam breadfruits flour. Niger. Food J. 2008, 26, 2–12. [Google Scholar] [CrossRef]
- Ötles, S.; Ozgoz, S. Health effects of dietary fiber. Acta Sci. Polonorum. Technol. Aliment. 2014, 13, 191–202. [Google Scholar] [CrossRef]
- Barber, L.I.; Obinna-Echem, P.C. Nutrient Composition, Physical and Sensory Properties of Wheat-African Walnut Cookies. Sky J. Food Sci. 2016, 5, 024–030. [Google Scholar]
- Danbaba, N.; Maji, A.T. Physical and Pasting Properties of Ofada Rice (Oryza sativa L.) Varieties. Off. J. Niger. Inst. Food Sci. Technol. NIFOJ 2012, 30, 18–25. [Google Scholar] [CrossRef]
- Adeleke, R.O.; Odedeji, J.O. Functional properties of wheat and sweet potato flour blend. Pakistan J Nutr. 2010, 6, 535–538. [Google Scholar] [CrossRef]
- Noor Aziah, A.A.; Komathi, C.A. Acceptability attributes of crackers made from different types of composite flours. Intern. Food Res. 2009, 16, 479–482. [Google Scholar]
- Santa Cruz, N.M.; Zacarías Castillo, R. Tratamiento farmacológico para la diabetes mellitus. Revital Del Hosp. Gen. Dr. Man. Gea Gonzales 2002, 5, 1–2. [Google Scholar]
- Altan, A.; McCarthy, K.L.; Maskan, M. Evaluation of snack foods from barley tomato pomace blends by extrusion processing. J. Food Eng. 2008, 84, 231–242. [Google Scholar] [CrossRef]
- Aremu, M.O.; Basu, S.K.; Gyar, S.D.; Goyal, A.; Bhowmik, P.; Datta Banik, S. Proximate Composition and Functional Properties of Mushroom Flours from Ganoderma spp., Omphalotus olearius (DC.) Sing and Hebeloma mesophaeum (Pers.) Quél. Used in Nasarawa State, Nigeria. Malays. J. Nutr. 2009, 15, 233–241. [Google Scholar]
- Azeez, A.T.; Adegunwa, M.O.; Sobukola, O.P.; Onabanjo, O.O.; Adebowale, A.A. Evaluation of some quality attributes of noodles from unripe plantain and defatted sesame flour blends. J. Culin. Sci. Technol. 2015, 13, 303–329. [Google Scholar] [CrossRef]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a tool for measuring starch-related physiochemical properties in cereals: A review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Fadimu1, G.J. Lateef Oladimeji Sanni, AbdulRasaq Adebowale, Sarafadeen Kareem, Olajide Paul Sobukola, Olatundun Kajihausa, Abdulsam-Saghir, Bernard Siwoku, Aminat Akinsanya, Monilola Kudirat Adenekan. Effect of drying methods on the chemical composition, colour, functional and pasting properties of plantain (Musa parasidiaca) flour. Croat. J. Food Technol. Biotechnol. Nutr. 2018, 13, 38–43. [Google Scholar]
- Dhillon, B.; Chopra, N.; Rani, R.; Singh, A. Physico-nutritional and Sensory Properties of Cookies Formulated with Quinoa, Sweet Potato and Wheat flour blends. Curr. Res. Nutr. Food Sci. 2018, 6, 798–806. [Google Scholar]
- Ogunlakin, G.O.; Oke, M.O.; Babarinde, G.O.; Olatunbosu, D.G. Effect of drying methods on proximate composition and physico-chemical properties of cocoyam flour. Am. J. Food Technol. 2012, 7, 245–250. [Google Scholar] [CrossRef]
- Olaleye, O.A.; Onilude, A.A. Microbiological, Proximate Analysis and Sensory Evaluation of Baked Products from Blends of Wheat-Breadfruit flours. Afr. J. Food Agric. Nutr. Dev. 2008, 8, 193–203. [Google Scholar]
- Rosenau, T.; Hettegger, H. Synthesis by carbonate aminolysis and chiral recognition ability of cellulose 2,3-bis (3, 5-dimethylphenyl carbamate)-6-(α-phenylethyl carbamate) selectors. Cellulose 2023, 30, 153–168. [Google Scholar]
- Mepha, H.O.; Ebohs, L.; Nwaojigwa, S.U. Chemical composition, functional and baking properties of wheat plantain composite flours. Afr. J. Food Nutr. Deut. 2007, 7, 1–22. [Google Scholar]
- Agu, H.O.; Ayo, J.A.; Paul, A.M.; Folorunsho, F. Quality Characteristics of biscuits made from wheat and African breadfruit (Treculia africana). Niger. Food J. 2007, 25, 19–27. [Google Scholar] [CrossRef]
- Ukeyima, M.T.; Dendegh, T.A.; Okeke, P.C. Effect of Carrot Powder Addition on The Quality Attributes of Cookies Produced from Wheat and Soy Flour Blends. Asian Food Sci. J. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Adegunwa, M.O.; Bamidele, B.O.; Alamu, E.O.; Adebanjo, L.A. Production and Quality Evaluation of Cookies from Composite Flour of Unripe Plantain (Musa paradisiaca), Groundnut (Arachis hypogaea L.) and Cinnamon (Cinnamomum venum). J. Culin. Sci. Technol. 2019, 18, 413–427. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Ayedun, H.; Sanni, L.O. Chemical composition and functional properties of raw and roasted Nigerian beeniseed (Sesamum indicum) and Bambara groundnut (Vigna subterranean). Food Chem. 2008, 111, 277–282. [Google Scholar] [CrossRef]
- Giwa, E.O.; Abiodun, I.V. Quality characteristics of biscuits produced from composite flours of wheat and quality protein maize. Afr. J. Food Sci. 2010, 1, 116–119. [Google Scholar]
- Almasodi, A.S. Production and Evaluation of Some Bakery Products Containing Ginger Powder. J. Food Nutr. Res. 2018, 6, 205–215. [Google Scholar] [CrossRef]
- Mba, O.G.; Dumont, M.J.; Ngadi, M. Influence of palm oil, canola oil and blends on characteristics of fried plantain crisps. Br. Food J. 2015, 117, 1793–1807. [Google Scholar] [CrossRef]
- Sanni, O.L.; Adebowale, A.A.; Filani, T.A.; Oyewole, O.B.; Westby, A. Quality of flash and rotary dryer dried fufu flour. J. Food Agric. Environ. 2006, 4, 74–78. [Google Scholar]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef]
- Tran, P.T.; Simon, J.A.; Liskay, R.M. Interactions of Exo1p with components of MutLalpha in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2001, 98, 9760–9765. [Google Scholar] [CrossRef]
Samples | Plantain Flour (P) (%) | Breadfruit Flour (B) (%) | Cinnamon Flour (C) (%) |
---|---|---|---|
A | 100 | 0 | 0 |
B | 0 | 100 | 0 |
C | 65 | 30 | 5 |
D | 70 | 25 | 5 |
E | 75 | 20 | 5 |
F | 80 | 15 | 5 |
P:B:C Sample | Moisture Content (%) | Crude Fat (%) | Crude Ash (%) | Crude Fiber (%) | Crude Protein (%) | Carbohydrates (%) | Tannin mg/g | Phytate mg/g |
---|---|---|---|---|---|---|---|---|
100:0:0 | 9.56 ± 0.52 c | 10.98 ± 0.38 b | 6.37 ± 0.21 a | 6.62 ± 0.22 ab | 10.02 ± 0.54 b | 56.44 ± 0.04 c | 2.58 ± 0.00 b | 1.81 ± 0.14 a |
0:100:0 | 9.16 ± 0.49 c | 10.61 ± 0.36 b | 7.12 ± 0.24 b | 6.77 ± 0.23 abc | 9.70 ± 0.53 ab | 56.62 ± 0.07 s | 1.71 ± 0.00 a | 2.44 ± 0.09 b |
65:30:5 | 8.61 ± 0.46 c | 8.36 ± 0.28 a | 7.27 ± 0.24 bc | 6.54 ± 0.22 a | 8.38 ± 0.45 a | 60.83 ± 0.19 d | 3.21 ± 0.49 c | 1.57 ± 0.99 a |
70:25:5 | 8.45 b ± 0.45 c | 10.03 ± 0.34 b | 7.45 ± 0.25 bcd | 7.19 ± 0.24 bcd | 10.54 ± 0.57 bc | 56.32 ± 0.04 d | 3.56 ± 0.49 c | 2.10 ± 0.05 b |
75:20:5 | 7.37 ± 0.40 ab | 12.54 ± 0.43 c | 7.80 ± 0.26 cd | 7.31 ± 0.25 cd | 11.87 ± 0.64 cd | 53.09 ± 0.14 b | 3.71 ± 0.00 c | 3.25 ± 0.00 c |
80:15:5 | 7.13 ± 0.38 a | 12.92 ± 0.44 c | 7.94 ± 0.27 d | 7.52 ± 0.26 d | 12.62 ± 0.68 d | 51.84 ± 0.20 a | 3.98 ± 0.92 d | 3.35 ± 0.46 c |
P:B:C Sample | BD g/mL | WAC % | OAC % | SP % | SI % | DIS % |
---|---|---|---|---|---|---|
100:0:0 | 0.78 ± 0.00 e | 2.28 ± 0.01 d | 0.88 ± 0.02 a | 5.30 ± 0.01 e | 0.02 ± 0.00 a | 66.05 ± 0.07 f |
0:100:0 | 0.66 ± 0.00 a | 2.43 ± 0.01 e | 1.34 ± 0.02 e | 3.89 ± 0.02 a | 0.04 ± 0.00 d | 48.55 ± 0.04 a |
65:30:5 | 0.74 ± 0.00 b | 2.87 ± 0.01 f | 1.03 ± 0.02 b | 5.12 ± 0.02 d | 0.03 ± 0.00 c | 55.49 ± 0.13 b |
70:25:5 | 0.76 ± 0.00 c | 1.91 ± 0.02 a | 1.09 ± 0.00 c | 4.88 ± 0.01 c | 0.02 ± 0.00 b | 57.15 ± 0.06 c |
75:20:5 | 0.78 ± 0.00 d | 2.00 ± 0.01 b | 1.16 ± 0.02 d | 4.69 ± 0.03 b | 0.02 ± 0.00 a | 59.54 ± 0.16 d |
80:15:5 | 0.80 ± 0.00 f | 2.09 ± 0.01 c | 1.91 ± 0.02 f | 3.90 ± 0.03 a | 0.01 ± 0.00 a | 60.92 ± 0.06 e |
P:B:C Sample | L* | a* | b* | ∆E* |
100:0:0 | 86.73 ± 0.35 ab | 2.09 ± 0.00 ab | 15.88 ± 0.00 a | 21.21 ± 0.01 a |
0:100:0 | 93.36 ± 0.49 b | 0.70 ± 0.03 a | 19.47 ± 0.21 c | 22.83 ± 0.28 b |
65:30:5 | 84.92 ± 0.23 a | 2.29 ± 0.01 b | 16.00 ± 0.01 b | 21.99 ± 0.21 a |
70:25:5 | 85.19 ± 0.07 ab | 2.33 ± 0.00 b | 16.55 ± 0.02 b | 22.35 ± 0.21 b |
75:20:5 | 84.63 ± 0.00 a | 2.42 ± 0.00 b | 16.75 ± 0.00 b | 22.84 ± 0.00 b |
80:15:5 | 85.40 ± 0.28 ab | 2.26 ± 0.00 b | 16.62 ± 0.00 b | 22.31 ± 0.07 b |
P:B:C Samples | Peak Viscosity (RVU) | Trough Viscosity (RVU) | Breakdown Viscosity (RVU) | Final Viscosity (RVU) | Setback Viscosity (RVU) | Peak time (Min) | Pasting Temperature (°C) |
---|---|---|---|---|---|---|---|
100:0:0 | 383.86 ± 1.27 b | 27.76 ± 1.27 a | 132.38 ± 2.93 bc | 472.25 ± 0.57 a | 210.99 ± 1.13 a | 5.16 ± 0.57 a | 87.04 ± 0.07 c |
0:100:0 | 331.12 ± 0.85 a | 313.51 ± 2.94 bc | 49.20 ± 1.44 a | 561.04 ± 0.37 c | 244.23 ± 0.42 c | 5.40 ± 0.99 a | 84.54 ± 0.18 a |
65:30:5 | 415.72 ± 0.99 c | 314.92 ± 1.13 bc | 724.80 ± 64.35 a | 570.81 ± 5.23 b | 240.57 ± 2.41 c | 5.32 ± 0.11 a | 85.79 ± 0.99 b |
70:25:5 | 412.79 ± 1.41 c | 354.89 ± 6.67 c | 111.41 ± 0.66 b | 527.52 ± 1.27 b | 226.25 ± 0.57 b | 5.17 ± 0.04 a | 85.28 ± 0.04 b |
75:20:5 | 443.72 ± 4.95 d | 297.95 ± 0.85 b | 162.79 ± 0.59 c | 560.62 ± 5.94 c | 248.56 ± 3.52 c | 5.21 ± 0.08 a | 86.07 ± 0.14 b |
80:15:5 | 500.98 ± 9.62 e | 367.87 ± 0.74 c | 159.17 ± 5.12 b | 521.81 ± 0.99 b | 220.39 ± 0.98 b | 5.38 ± 0.28 b | 88.24 ± 0.28 c |
Samples P:B:C | Moisture Content (%) | Crude Fat (%) | Crude Ash (%) | Crude Fiber (%) | Crude Protein (%) | Carbohydrates (%) |
---|---|---|---|---|---|---|
100:0:0 | 7.65 ± 0.42 b | 18.99 ± 1.15 ab | 4.38 ± 0.15 b | 5.34 ± 0.22 b | 10.09 ± 0.74 ab | 53.58 ± 0.78 d |
0:100:0 | 6.19 ± 0.34 a | 17.08 ±1.04 ab | 3.10 ± 0.11 a | 3.62 ± 0.15 a | 10.99 ± 0.81 c | 59.03 ± 0.16 f |
65:30:5 | 7.99 ± 0.43 b | 16.06 ± 0.98 a | 4.26 ± 0.15 b | 5.52 ± 0.23 b | 8.80 ± 0.65 ab | 57.38 ± 0.18 e |
70:25:5 | 7.67 ± 0.42 b | 19.93 ±1.22 bc | 6.01 ± 0.20 c | 6.52 ± 0.27 c | 8.18 ± 0.60 a | 51.66 ± 0.13 c |
75:20:5 | 6.40 ± 0.35 a | 24.75 ± 1.51 d | 8.13 ± 0.28 e | 7.15 ± 0.30 d | 9.75 ± 0.72 abc | 43.82 ± 0.42 a |
80:15:5 | 7.00 ± 0.38 ab | 22.82 ± 1.40 cd | 7.23 ± 0.25 e | 7.09 ± 0.30 cd | 9.44 ± 0.69 abc | 46.44 ± 0.28 b |
Samples P:B:C | L* | a* | b* | ΔE* |
---|---|---|---|---|
100:0:0 | 27.89 ± 0.20 c | 4.82 ± 0.01 a | 13.94 ± 0.05 a | 15.69 ± 0.06 a |
0:100:0 | 33.28 ± 0.37 e | 6.10 ± 0.04 d | 22.75 ± 0.18 e | 24.87 ± 0.24 d |
65:30:5 | 26.55 ± 0.33 b | 5.5 ± 0.02 b | 15.84 ± 0.12 c | 17.84 ± 0.07 b |
70:25:5 | 29.37 ± 0.11 d | 5.49 b ± 0.11 b | 16.89 ± 0.18 d | 18.66 ± 0.20 c |
75:20:5 | 26.33 ± 0.44 b | 6.27 ± 0.07 d | 16.86 ± 0.26 d | 19.04 ± 0.20 c |
80:15:5 | 24.61 ± 0.54 a | 5.82 ± 0.09 c | 15.20 ± 0.45 b | 17.69 ± 0.31 b |
Samples P:B:C | Color | Taste | Aroma | Crunchiness | Texture | Overall Acceptability |
---|---|---|---|---|---|---|
100:0:0 | 6.62 ± 1.63 c | 7.33 ± 1.31 d | 6.85 ± 1.35 d | 7.04 ± 1.71 d | 7.04 ± 1.53 c | 7.33 ± 1.15 e |
0:100:0 | 6.61 ± 1.19 c | 5.42 ± 1.28 a | 5.66 ± 1.68 a | 6.23 ± 1.64 b | 6.80 ± 1.74 b | 6.80 ± 1.74 b |
65:30:5 | 6.85 ± 1.27 e | 6.71 ± 1.23 c | 6.04 ± 1.56 b | 7.28 ± 1.14 d | 6.95 ± 1.39 b | 7.09 ± 1.60 c |
70:25:5 | 5.90 ± 1.30 a | 6.14 ± 1.62 b | 5.71 ± 1.76 a | 6.09 ± 1.30 a | 6.38 ± 1.16 a | 6.52 ± 1.32 a |
75:20:5 | 6.71 ± 1.10 d | 6.80 ± 1.60 c | 6.28 ± 1.34 b | 6.38 ± 1.62 b | 6.61 ± 1.11 a | 7.52 ± 0.92 d |
80:15:5 | 6.47 ± 1.77 b | 6.76 ± 1.70 c | 6.71 ± 1.27 c | 6.71 ± 1.64 c | 7.09 ± 1.26 c | 7.38 ± 1.35 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adegunwa, M.O.; Ogungbesan, B.O.; Adekoya, O.A.; Akinloye, E.E.; Idowu, O.D.; Alamu, O.E. Production and Characterization of Snacks Utilizing Composite Flour from Unripe Plantain (Musa paradisiaca), Breadfruit (Artocarpus altilis), and Cinnamon (Cinnamomum venum). Foods 2024, 13, 852. https://doi.org/10.3390/foods13060852
Adegunwa MO, Ogungbesan BO, Adekoya OA, Akinloye EE, Idowu OD, Alamu OE. Production and Characterization of Snacks Utilizing Composite Flour from Unripe Plantain (Musa paradisiaca), Breadfruit (Artocarpus altilis), and Cinnamon (Cinnamomum venum). Foods. 2024; 13(6):852. https://doi.org/10.3390/foods13060852
Chicago/Turabian StyleAdegunwa, Mojisola Olanike, Busayo Olabisi Ogungbesan, Olasunkanmi Abdulganiu Adekoya, Ebunoluwa Eniola Akinloye, Oluwadolapo Daniel Idowu, and Oladeji Emmanuel Alamu. 2024. "Production and Characterization of Snacks Utilizing Composite Flour from Unripe Plantain (Musa paradisiaca), Breadfruit (Artocarpus altilis), and Cinnamon (Cinnamomum venum)" Foods 13, no. 6: 852. https://doi.org/10.3390/foods13060852