Reduction of Alternaria Toxins via the Extrusion Processing of Whole-Grain Red Sorghum Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Grinding and Mixing
2.2. Extrusion Conditions
2.3. Chemicals and Reagents
2.4. Moisture Content
2.5. Sample Preparation for LC-MS/MS Analysis
2.6. LC-MS/MS Analysis
2.7. Expansion Ratio
2.8. Bulk Density of Extrudates
2.9. Texture Analysis
2.10. Water Absorption Index (WAI) and Water Solubility Index (WSI)
2.11. Statistical Analysis
2.11.1. Principal Component Analysis
2.11.2. Response Surface Methodology
2.11.3. Standard Score
3. Results
3.1. Evaluation of the LC-MS/MS Method
3.2. Determination of Alternaria Toxins’ Levels
3.3. Reduction of Alternaria Toxins due to Extrusion Processing
3.3.1. Principal Component Analysis
3.3.2. Response Surface Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Astoreca, A.; Emateguy, G.; Alconada, T. Fungal contamination and mycotoxins associated with sorghum crop: Its relevance today. Eur. J. Plant Pathol. 2019, 155, 381–392. [Google Scholar] [CrossRef]
- Khoddami, A.; Messina, V.; Vadabalija Venkata, K.; Farahnaky, A.; Blanchard, C.L.; Roberts, T.H. Sorghum in foods: Functionality and potential in innovative products. Crit. Rev. Food. Sci. 2023, 63, 1170–1186. [Google Scholar] [CrossRef]
- Ciacci, C.; Maiuri, L.; Caporaso, N.; Bucci, C.; Del Giudice, L.; Massardo, D.R.; Pontieri, P.; Di Fonzo, N.; Bean, S.R.; Ioerger, B.; et al. Celiac Disease: In Vitro and In Vivo Safety and Palatability of Wheat-Free Sorghum Food Products. Clin. Nutr. 2007, 26, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Pontieri, P.; Troisi, J.; Calcagnile, M.; Bean, S.R.; Tilley, M.; Aramouni, F.; Boffa, A.; Pepe, G.; Campiglia, P.; Del Giudice, F.; et al. Chemical Composition, Fatty Acid and Mineral Content of Food-Grade White, Red and Black Sorghum Varieties Grown in the Mediterranean Environment. Foods 2022, 11, 436. [Google Scholar] [CrossRef] [PubMed]
- Stefoska-Needham, A.; Beck, E.J.; Johnson, S.K.; Tapsell, L.C. Sorghum: An underutilized cereal whole grain with the potential to assist in the prevention of chronic disease. Food Rev. Int. 2015, 31, 401–437. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O. Cereal Grains: Properties, Processing, and Nutritional Attributes; CRC Press: Boca Raton, FL, USA, 2016; pp. 477–480. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 2011, 9, 2407–2504. [Google Scholar] [CrossRef]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Schaarschmidt, S.; Fauhl-Hassek, C. The fate of mycotoxins during the processing of wheat for human consumption. Compr. Rev. Food Sci. Food Saf. 2018, 17, 556–593. [Google Scholar] [CrossRef]
- Schaarschmidt, S.; Fauhl-Hassek, C. The fate of mycotoxins during secondary food processing of maize for human consumption. Compr. Rev. Food Sci. Food Saf. 2021, 20, 91–148. [Google Scholar] [CrossRef]
- Wan, J.; Bingcan, C.; Rao, J. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr. Rev. Food Sci. Food Saf. 2020, 19, 928–953. [Google Scholar] [CrossRef]
- Janić Hajnal, E.; Čolović, R.; Pezo, L.; Orčić, D.; Vukmirović, Đ.; Mastilović, J. Possibility of Alternaria toxins reduction by extrusion processing of whole wheat flour. Food Chem. 2016, 213, 784–790. [Google Scholar] [CrossRef]
- Janić Hajnal, E.; Babic, J.; Pezo, L.; Banjac, V.; Čolović, R.; Kos, J.; Krulj, J.; Pavsic-Vrtač, K.; Jakovac-Strajn, B. Effects of extrusion process on Fusarium and Alternaria mycotoxins in whole grain triticale flour. LWT-Food Sci. Technol. 2022, 155, 112926. [Google Scholar] [CrossRef]
- Grasso, S. Extruded snacks from industrial by-products: A review. Trends Food Sci. Technol. 2020, 99, 284–294. [Google Scholar] [CrossRef]
- Clark, P.M.; Behnke, K.C.; Poole, D.R. Effects of marker selection and mix time on the coefficient of variation (mix uniformity) of broiler feed. J. Appl. Poult. Res. 2007, 16, 464–470. [Google Scholar] [CrossRef]
- Kojić, J.; Ilić, N.; Kojić, P.; Pezo, L.; Banjac, V.; Krulj, J.; Bodroža Solarov, M. Multiobjective process optimization for betaine enriched spelt flour based extrudates. J. Food Process. Eng. 2019, 42, e12942. [Google Scholar] [CrossRef]
- ISO 712/2009; Cereals and Cereal Products—Determination of Moisture Content—Reference Method. ISO: Geneva, Switzerland, 2009.
- Topi, D.; Tavčar-Kalcher, G.; Pavšič-Vrtač, K.; Babič, J.; Jakovac-Strajn, B. Alternaria Mycotoxins in Grains from Albania: Alternariol, Alternariol Monomethyl Ether, Tenuazonic Acid and Tentoxin. World Mycotoxin J. 2019, 12, 89–99. [Google Scholar] [CrossRef]
- Babič, J.; Tavčar-Kalcher, G.; Celar, F.A.; Kos, K.; Knific, T.; Jakovac-Strajn, B. Occurrence of Alternaria and other toxins in cereal grains intended for animal feeding collected in Slovenia: A three-year study. Toxins 2021, 13, 304. [Google Scholar] [CrossRef]
- Ding, Q.; Ainsworth, P.; Tucker, G.; Marson, H. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. J. Food Eng. 2005, 66, 283–289. [Google Scholar] [CrossRef]
- Onwulata, C.I.; Smith, P.W.; Konstance, R.P.; Holsinger, V.H. Incorporation of whey products in extruded corn, potato or rice snacks. Food Res. Int. 2001, 34, 679–687. [Google Scholar] [CrossRef]
- Anderson, R.A.; Conway, H.F.; Peplinski, A.J. Gelatinization of corn grits by roll cooking, extrusion cooking and steaming. Starch-Starke, 1970, 22, 130–135. [Google Scholar] [CrossRef]
- STATISTICA (Data Analysis Software System), V14.0.0.15; TIBCO Stat-Soft Inc.: Tulsa, OK, USA, 2020.
- Singha, P.; Muthukumarappan, K. Effects of processing conditions on the system parameters during single screw extrusion of blend containing apple pomace. J. Food Process. Eng. 2017, 40, e12513. [Google Scholar] [CrossRef]
- Janić Hajnal, E.; Mastilović, J.; Bagi, F.; Orčić, D.; Budakov, D.; Kos, J.; Savić, Z. Effect of wheat milling process on the distribution of Alternaria toxins. Toxins 2019, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- EURL-MP-Guidance doc_003 (Version 1.2) Guidance Document on Performance Criteria (Draft 29th September, 2023). Available online: https://www.wur.nl/en/show/03.-eurlmp-guidance-document-performance-criteria-draft-29.09.2022.htm (accessed on 1 November 2023).
- Kristiawan, M.; Chaunier, L.; Sandoval, A.J.; Della Valle, G. Extrusion—Cooking and expansion. In Breakfast Cereals and How They Are Made, 3rd ed.; Perdon, A.A., Schonauer, S.L., Poutanen, K., Eds.; AACC International Press: Totnes, UK, 2020; pp. 141–167. [Google Scholar]
- Llopart, E.E.; Drago, S.R.; De Greef, D.M.; Torres, R.L.; González, R.J. Effects of extrusion conditions on physical and nutritional properties of extruded whole grain red sorghum (Sorghum spp.). Int. J. Food Sci. Nutr. 2014, 65, 34–41. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, B.; Singh, A.; Sharma, S.; Kidwai, M.K. Effect of extrusion processing on techno-functional properties, textural properties, antioxidant activities, in vitro nutrient digestibility and glycemic index of sorghum–chickpea-based extruded snacks. J. Texture Stud. 2023, 54, 706–719. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Singh, B.; Singh, A. Sorghum–mung bean combination snacks: Effect of extrusion temperature and moisture on chemical, functional, and nutritional characteristics. Legum. Sci. 2023, 5, e186. [Google Scholar] [CrossRef]
- Altan, A.; Mccarthy, K.L.; Maskan, M. Twin-screw extrusion of barley-grape pomade blends: Extrudate characteristics and determination of optimum processing conditions. J. Food Eng. 2008, 89, 24–32. [Google Scholar] [CrossRef]
- Altan, A.; Mccarthy, K.L.; Maskan, M. Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. J. Food Eng. 2008, 84, 231–242. [Google Scholar] [CrossRef]
- Pardhi, S.D.; Singh, B.; Nayik, G.A.; Dar, B.N. Evaluation of functional properties of extruded snacks developed from brown rice grits by using response surface methodology. J. Saudi Soc. Agric. Sci. 2019, 18, 7–16. [Google Scholar] [CrossRef]
- Filli, K.B.; Nkama, I.; Jideani, V.A.; Abubakar, U.M. Application of response surface methodology for the evaluation of proximate composition and functionality of millet-soybean fura extrudates. Wudpecker J. Food Technol. 2013, 1, 74–92. Available online: https://api.semanticscholar.org/CorpusID:53339595 (accessed on 5 November 2023).
- Sacchetti, G.; Pittia, P.; Pinnavaia, G.G. The effect of extrusion temperature and drying-tempering on both the kinetics of hydration and the textural changes in extruded ready-to-eat breakfast cereals during soaking in semi-skimmed milk. Int. J. Food Sci. Technol. 2005, 40, 655–663. [Google Scholar] [CrossRef]
- Meng, X.; Threinen, D.; Hansen, M.; Driedger, D. Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack. Food Res. Int. 2010, 43, 650–658. [Google Scholar] [CrossRef]
- Dar, A.H.; Sharma, H.K.; Kumar, N. Effect of extrusion temperature on the microstructure, textural and functional attributes of carrot pomace-based extrudates. J. Food Process. Preserv. 2014, 38, 212–222. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Kolasa, A.; Mościcki, L. Influence of Buckwheat Addition on Physical Properties, Texture and Sensory Characteristics of Extruded Corn Snacks. Pol. J. Food Nutr. Sci. 2013, 63, 239–244. [Google Scholar] [CrossRef]
- Oikonomou, N.A.; Krokida, M.K. Water absorption index and water solubility index prediction for extruded food products. Int. J. Food. Prop. 2012, 15, 157–168. [Google Scholar] [CrossRef]
Experimental Factor | Factor’s Level | ||
---|---|---|---|
(Low) | (Center) | (High) | |
Screw speed (RPM) | 400 | 600 | 800 |
Moisture content (%) | 12 | 15 | 18 |
Analytes | Spiking Level (µg/kg) * | R (%) ** of Whole-Grain Red Sorghum Flour | R (%) ** of Extruded Product |
---|---|---|---|
AOH | 12.5–100 | 90.1 | 102 |
AME | 6.25–50 | 95.3 | 102 |
TeA | 6.25–50 | 99.1 | 98.7 |
TEN | 6.25–50 | 100 | 97.8 |
Analytes | Spiking Level (µg/kg) | Repeatability (n = 6) RSDr (%) | Within-Laboratory Reproducibility (n = 3 × 6) RSDwR (%) | Repeatability (n = 6) RSDr (%) | Within-Laboratory Reproducibility (n = 3 × 6) RSDwR (%) |
---|---|---|---|---|---|
Whole-grain sorghum flour | Extruded product | ||||
AOH | 12.5 | 9.76 | 15.7 | 11.8 | 12.9 |
25.0 | 9.67 | 12.4 | 9.31 | 9.96 | |
50.0 | 9.53 | 12.0 | 9.44 | 9.76 | |
100 | 8.05 | 9.16 | 8.3 | 8.5 | |
AME | 6.25 | 10.0 | 14.4 | 10.0 | 14.4 |
12.5 | 9.45 | 13.1 | 9.45 | 13.1 | |
25.0 | 5.73 | 7.69 | 5.73 | 7.69 | |
50.0 | 5.11 | 6.82 | 5.11 | 6.82 | |
TeA | 6.25 | 9.74 | 12.6 | 10.8 | 13.4 |
12.5 | 9.10 | 10.9 | 7.94 | 10.8 | |
25.0 | 7.43 | 9.80 | 7.04 | 9.20 | |
50.0 | 7.28 | 9.30 | 4.05 | 5.33 | |
TEN | 6.25 | 6.98 | 10.1 | 8.53 | 12.2 |
12.5 | 3.55 | 4.00 | 6.16 | 10.9 | |
25.0 | 2.73 | 3.85 | 4.85 | 9.34 | |
50.0 | 2.62 | 3.50 | 3.91 | 8.33 |
Process Responses | Product Responses | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | M | SS | T | P | SME | Torque | t | rAOH | rAME | rTeA | rTEN | ER | BD | H | CLD | NoCP | CAG | WAI | WSI | Score |
1 | 18 | 400 | 136 | 2.65 | 83.5 | 114 | 13 | 61.4 | 75.0 | 5.45 | 55.4 | 1.88 | 0.318 | 23.9 | 61.8 | 4.48 | 17.9 | 5.71 | 8.73 | 0.536 |
2 | 18 | 600 | 144 | 1.25 | 99.6 | 88.0 | 10 | 60.6 | 71.3 | 4.55 | 56.7 | 2.02 | 0.278 | 21.6 | 60.3 | 5.70 | 17.2 | 3.82 | 11.8 | 0.302 |
3 | 18 | 800 | 153 | 0.16 | 112 | 99.0 | 8 | 61.1 | 74.9 | 3.14 | 55.7 | 2.15 | 0.222 | 18.5 | 53.6 | 6.35 | 12.9 | 4.44 | 15.7 | 0.423 |
6 | 15 | 400 | 159 | 4.03 | 104 | 134 | 12 | 62.1 | 77.5 | 3.56 | 52.5 | 2.68 | 0.145 | 15.4 | 61.7 | 18.4 | 16.8 | 4.72 | 20.0 | 0.613 |
5 | 15 | 600 | 165 | 1.78 | 117 | 99.0 | 9.4 | 62.0 | 76.1 | 8.76 | 51.4 | 2.84 | 0.115 | 16.3 | 60.7 | 20.7 | 15.3 | 4.55 | 22.4 | 0.689 |
4 | 15 | 800 | 166 | 1.28 | 130 | 114 | 8.5 | 60.9 | 80.0 | 6.89 | 54.7 | 2.97 | 0.090 | 17.6 | 55.3 | 19.6 | 12.1 | 4.69 | 26.1 | 0.619 |
7 | 12 | 400 | 168 | 6.23 | 132 | 163 | 9.5 | 61.4 | 76.4 | 12.1 | 50.8 | 3.58 | 0.065 | 11.8 | 56.3 | 41.8 | 14.4 | 5.40 | 30.1 | 0.681 |
8 | 12 | 600 | 176 | 4.81 | 140 | 117 | 7.7 | 60.7 | 78.2 | 7.91 | 45.7 | 3.63 | 0.055 | 9.53 | 52.8 | 56.8 | 13.6 | 5.81 | 31.1 | 0.405 |
9 | 12 | 800 | 177 | 3.04 | 152 | 123 | 5.6 | 60.6 | 71.1 | 8.75 | 43.1 | 3.76 | 0.048 | 12.1 | 51.6 | 50.7 | 10.9 | 5.42 | 30.5 | 0.156 |
M | M2 | SS | SS2 | M × SS | Error | R2 | |
---|---|---|---|---|---|---|---|
df | 1 | 1 | 1 | 1 | 1 | 3 | |
T | 1290.7 *** | 37. 6 | 181.5 * | 6.7 | 16.0 | 17.8 | 0.989 |
P | 1673.3 ** | 87.1 | 1184.4 ** | 16.2 | 12.3 | 38.7 | 0.987 |
SME | 2799.4 *** | 13.9 | 917.6 *** | 0.0 | 18.1 | 6.2 | 0.998 |
Torque | 1706.9 ** | 4.3 | 932.5 ** | 1101.4 ** | 146.4 * | 42.9 | 0.989 |
t | 11.2 ** | 2.0 | 25.6 ** | 0.3 | 0.3 | 0.6 | 0.984 |
rAOH | 0.0 | 1.0 | 0.9 | 0.0 | 0.1 | 0.6 | 0.773 |
rAME | 3.3 | 22.7 | 1.3 | 0.8 | 6.6 | 35.3 | 0.495 |
rTeA | 40.8 | 0.7 | 1.0 | 0.4 | 0.3 | 25.0 | 0.632 |
rTEN | 133.1 * | 5.1 | 4.5 | 1.1 | 15.8 | 15.3 | 0.913 |
ER | 4.0 *** | 0.0 | 0.9 *** | 0.0 | 0.0 | 0.0 | 0.999 |
BD | 0.1 *** | 0.1 *** | 0.1 *** | 0.0 | 0.1 ** | 0.0 | 0.999 |
H | 154.8 ** | 0.1 | 1.5 | 1.1 | 8.2 | 10.5 | 0.940 |
CLD | 37.6 * | 19.5 * | 61.6 * | 3.1 | 3.0 | 5.6 | 0.957 |
NoCP | 2938.1 *** | 130.6 | 24.1 | 34.3 | 12.6 | 46.6 | 0.985 |
CAG | 13.6 ** | 0.1 | 29.4 *** | 2.9 * | 0.5 | 0.5 | 0.990 |
WAI | 1.2 | 0.4 | 0.3 | 0.2 | 0.4 | 1.1 | 0.702 |
WSI | 511.8 *** | 4.5 | 30.6 ** | 0.0 | 10.8* | 2.6 | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janić Hajnal, E.; Babič, J.; Pezo, L.; Banjac, V.; Filipčev, B.; Miljanić, J.; Kos, J.; Jakovac-Strajn, B. Reduction of Alternaria Toxins via the Extrusion Processing of Whole-Grain Red Sorghum Flour. Foods 2024, 13, 255. https://doi.org/10.3390/foods13020255
Janić Hajnal E, Babič J, Pezo L, Banjac V, Filipčev B, Miljanić J, Kos J, Jakovac-Strajn B. Reduction of Alternaria Toxins via the Extrusion Processing of Whole-Grain Red Sorghum Flour. Foods. 2024; 13(2):255. https://doi.org/10.3390/foods13020255
Chicago/Turabian StyleJanić Hajnal, Elizabet, Janja Babič, Lato Pezo, Vojislav Banjac, Bojana Filipčev, Jelena Miljanić, Jovana Kos, and Breda Jakovac-Strajn. 2024. "Reduction of Alternaria Toxins via the Extrusion Processing of Whole-Grain Red Sorghum Flour" Foods 13, no. 2: 255. https://doi.org/10.3390/foods13020255
APA StyleJanić Hajnal, E., Babič, J., Pezo, L., Banjac, V., Filipčev, B., Miljanić, J., Kos, J., & Jakovac-Strajn, B. (2024). Reduction of Alternaria Toxins via the Extrusion Processing of Whole-Grain Red Sorghum Flour. Foods, 13(2), 255. https://doi.org/10.3390/foods13020255