Sourdough Bread Quality: Facts and Factors
Abstract
:1. Introduction
2. SD Market Dynamics
3. SD Fermentation Compared to Yeast Fermentation
3.1. Improves Nutritional Properties and Human Health
3.1.1. Increasing Availability of Nutrients
3.1.2. Reducing Phytate Content
3.1.3. Degradation of Anti-Nutritional Factors
3.1.4. Probiotics and Postbiotics in SD: The Impact on Human Health
3.1.5. Availability of Dietary Fiber
3.1.6. Increasing Resistant Starch
3.1.7. Digestibility and Lowering the Glycemic Index (GI)
3.1.8. Reducing FODMAPs
3.1.9. Lowering Acrylamide
3.1.10. Antioxidant Activity
3.2. Protein Properties and Functionality Change
3.3. Starch Properties and Behavior
3.4. Volatile Compounds
3.5. Negative Aspects of SD-Fermented Bread
4. Factors Influencing the Quality of SD and SD Bread
4.1. Fermentation Process: Time, Temperature, and SD Type
4.2. Flour Particle Size
4.3. Protein Content and Quality
4.4. Starch Properties and Composition
4.5. Dietary Fiber Composition
5. Application of SD Technology to Unconventional Cereal Flour and Non-Flour Ingredients
6. Potential Usage/Market of Frozen SD
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavan, R.S.; Chavan, S.R. Sourdough Technology-A Traditional Way for Wholesome Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2011, 10, 169–182. [Google Scholar] [CrossRef]
- Ripari, V.; Cecchi, T.; Berardi, E. Microbiological Characterisation and Volatiles Profile of Model, Ex-Novo, and Traditional Italian White Wheat Sourdoughs. Food Chem. 2016, 205, 297–307. [Google Scholar] [CrossRef]
- Ripari, V.; Gänzle, M.G.; Berardi, E. Evolution of Sourdough Microbiota in Spontaneous Sourdoughs Started with Different Plant Materials. Int. J. Food Microbiol. 2016, 232, 35–42. [Google Scholar] [CrossRef]
- Fekri, A.; Abedinzadeh, S.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Considering Sourdough from a Biochemical, Organoleptic, and Nutritional Perspective. J. Food Compos. Anal. 2024, 125, 105853. [Google Scholar] [CrossRef]
- Martín-Garcia, A.; Riu-Aumatell, M.; López-Tamames, E. Influence of Process Parameters on Sourdough Microbiota, Physical Properties and Sensory Profile. Food Rev. Int. 2023, 39, 334–348. [Google Scholar] [CrossRef]
- Pérez-Alvarado, O.; Zepeda-Hernández, A.; Garcia-Amezquita, L.E.; Requena, T.; Vinderola, G.; García-Cayuela, T. Role of Lactic Acid Bacteria and Yeasts in Sourdough Fermentation during Breadmaking: Evaluation of Postbiotic-like Components and Health Benefits. Front. Microbiol. 2022, 13, 969460. [Google Scholar] [CrossRef]
- Warburton, A.E. Influence of Sourdough Fermentation on Flavour Formation and Perception in Sourdough Bread. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2021. [Google Scholar]
- Das, S.; Pegu, K.; Arya, S.S. Functional Sourdough Millet Bread Rich in Dietary Fibre -an Optimization Study Using Fuzzy Logic Analysis. Bioact. Carbohydrates Diet. Fibre 2021, 26, 100279. [Google Scholar] [CrossRef]
- Gong, L.; Cao, W.; Chi, H.; Wang, J.; Zhang, H.; Liu, J.; Sun, B. Whole Cereal Grains and Potential Health Effects: Involvement of the Gut Microbiota. Food Res. Int. 2018, 103, 84–102. [Google Scholar] [CrossRef]
- Heiniö, R.L.; Noort, M.W.J.; Katina, K.; Alam, S.A.; Sozer, N.; de Kock, H.L.; Hersleth, M.; Poutanen, K. Sensory Characteristics of Wholegrain and Bran-Rich Cereal Foods—A Review. Trends Food Sci. Technol. 2016, 47, 25–38. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Z.; Guo, X.; Wang, F.; Huang, J.; Sun, B.; Wang, X. Sourdough Improves the Quality of Whole-Wheat Flour Products: Mechanisms and Challenges—A Review. Food Chem. 2021, 360, 130038. [Google Scholar] [CrossRef]
- Seal, C.J.; Thielecke, F. Health Benefits and Recommendations for Daily Whole Grain Intake. Cereal Foods World 2018, 63, 103–106. [Google Scholar] [CrossRef]
- Mordor Intelligence Research & Advisory. Sourdough Market Size & Share Analysis—Growth Trends & Forecasts (2024–2029). Available online: https://www.mordorintelligence.com/industry-reports/sourdough-market (accessed on 25 March 2024).
- De Vuyst, L.; Comasio, A.; Kerrebroeck, S.V. Sourdough Production: Fermentation Strategies, Microbial Ecology, and Use of Non-Flour Ingredients. Crit. Rev. Food Sci. Nutr. 2023, 63, 2447–2479. [Google Scholar] [CrossRef]
- Liu, A.; Su, S.; Sun, Y.; Li, Q.; Li, J.; Hu, K.; Zhao, N.; He, L.; Chen, S.; Liu, S. Enhancing the Highland Barley-Wheat Dough Network Structure and Bread Quality Using Freeze-Dried Sourdough Powder with Inulin as a Protectant. LWT 2024, 191, 115599. [Google Scholar] [CrossRef]
- De Vuyst, L.; Van Kerrebroeck, S.; Leroy, F. Microbial Ecology and Process Technology of Sourdough Fermentation. Adv. Appl. Microbiol. 2017, 100, 49–160. [Google Scholar] [CrossRef]
- Böcker, G.; Stolz, P.; Hammes, W.P. Neue Erkenntnisse Zum Ökosystem Sauerteig Und Zur Physiologie Der Sauerteigtypischen Stämme Lactobacillus Sanfrancisco Aund Lactobacillus Pontis. Getreide Mehl und Brot 1995, 49, 370–374. [Google Scholar]
- Real Sourdough. Natural Products You Make at Home. Cultures for Health. Available online: http://www.culturesforhealth.com/ (accessed on 17 July 2023).
- San Martino. Available online: http://www.ilovesanmartino.it/ (accessed on 16 July 2023).
- Siepmann, F.B.; Ripari, V.; Waszczynskyj, N.; Spier, M.R. Overview of Sourdough Technology: From Production to Marketing. Food Bioprocess Technol. 2018, 11, 242–270. [Google Scholar] [CrossRef]
- Akamine, I.T.; Mansoldo, F.R.P.; Vermelho, A.B. Probiotics in the Sourdough Bread Fermentation: Current Status. Fermentation 2023, 9, 90. [Google Scholar] [CrossRef]
- Gong, L.; Wen, T.; Wang, J. Role of the Microbiome in Mediating Health Effects of Dietary Components. J. Agric. Food Chem. 2020, 68, 12820–12835. [Google Scholar] [CrossRef]
- Dongmo Nsogning, S.; Kollmannsberger, H.; Fischer, S.; Becker, T. Exploration of High-Gravity Fermentation to Improve Lactic Acid Bacteria Performance and Consumer’s Acceptance of Malt Wort-Fermented Beverages. Int. J. Food Sci. Technol. 2018, 53, 1753–1759. [Google Scholar] [CrossRef]
- Ribet, L.; Dessalles, R.; Lesens, C.; Brusselaers, N.; Durand-Dubief, M. Nutritional Benefits of Sourdoughs: A Systematic Review. Adv. Nutr. 2023, 14, 22–29. [Google Scholar] [CrossRef]
- Arora, K.; Ameur, H.; Polo, A.; Di Cagno, R.; Rizzello, C.G.; Gobbetti, M. Thirty Years of Knowledge on Sourdough Fermentation: A Systematic Review. Trends Food Sci. Technol. 2021, 108, 71–83. [Google Scholar] [CrossRef]
- Fang, L.; Wang, W.; Dou, Z.; Chen, J.; Meng, Y.; Cai, L.; Li, Y. Effects of Mixed Fermentation of Different Lactic Acid Bacteria and Yeast on Phytic Acid Degradation and Flavor Compounds in Sourdough. LWT 2023, 174, 114438. [Google Scholar] [CrossRef]
- Montemurro, M.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Investigation of the Nutritional, Functional and Technological Effects of the Sourdough Fermentation of Sprouted Flours. Int. J. Food Microbiol. 2019, 302, 47–58. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-Parabiotics: The New Horizons in Microbial Biotherapy and Functional Foods. Microb. Cell Fact. 2020, 19, 168. [Google Scholar] [CrossRef]
- Buddrick, O.; Jones, O.A.H.; Hughes, J.G.; Kong, I.; Small, D.M. The Effect of Fermentation and Addition of Vegetable Oil on Resistant Starch Formation in Wholegrain Breads. Food Chem. 2015, 180, 181–185. [Google Scholar] [CrossRef]
- Fernández-Peláez, J.; Paesani, C.; Gómez, M. Sourdough Technology as a Tool for the Development of Healthier Grain-Based Products: An Update. Agronomy 2020, 10, 1962. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Portincasa, P.; Montemurro, M.; di Palo, D.M.; Lorusso, M.P.; de Angelis, M.; Bonfrate, L.; Genot, B.; Gobbetti, M. Sourdough Fermented Breads Are More Digestible than Those Started with Baker’s Yeast Alone: An in Vivo Challenge Dissecting Distinct Gastrointestinal Responses. Nutrients 2019, 11, 2954. [Google Scholar] [CrossRef]
- Demirkesen-Bicak, H.; Arici, M.; Yaman, M.; Karasu, S.; Sagdic, O. Effect of Different Fermentation Condition on Estimated Glycemic Index, in Vitro Starch Digestibility, and Textural and Sensory Properties of Sourdough Bread. Foods 2021, 10, 514. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Verni, M.; Koivula, H.; Montemurro, M.; Seppa, L.; Kemell, M.; Katina, K.; Coda, R.; Gobbetti, M. Influence of Fermented Faba Bean Flour on the Nutritional, Technological and Sensory Quality of Fortified Pasta. Food Funct. 2017, 8, 860–871. [Google Scholar] [CrossRef]
- Siepmann, F.B.; Sousa de Almeida, B.; Waszczynskyj, N.; Spier, M.R. Influence of Temperature and of Starter Culture on Biochemical Characteristics and the Aromatic Compounds Evolution on Type II Sourdough and Wheat Bread. LWT 2019, 108, 199–206. [Google Scholar] [CrossRef]
- Boakye, P.G.; Okyere, A.Y.; Annor, G.A. Reduction of FODMAPs and Amylase-Trypsin Inhibitors in Wheat: A Review. Food Hydrocoll. Health 2023, 3, 100117. [Google Scholar] [CrossRef]
- Nasiri Esfahani, B.; Kadivar, M.; Shahedi, M.; Soleimanian-Zad, S. Reduction of Acrylamide in Whole-Wheat Bread by Combining Lactobacilli and Yeast Fermentation. Food Addit. Contam.–Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 1904–1914. [Google Scholar] [CrossRef]
- Pétel, C.; Onno, B.; Prost, C. Sourdough Volatile Compounds and Their Contribution to Bread: A Review. Trends Food Sci. Technol. 2017, 59, 105–123. [Google Scholar] [CrossRef]
- Warburton, A.; Silcock, P.; Eyres, G.T. Impact of Sourdough Culture on the Volatile Compounds in Wholemeal Sourdough Bread. Food Res. Int. 2022, 161, 111885. [Google Scholar] [CrossRef]
- Nordlund, E.; Katina, K.; Mykkänen, H.; Poutanen, K. Distinct Characteristics of Rye and Wheat Breads Impact on Their in Vitro Gastric Disintegration and in Vivo Glucose and Insulin Responses. Foods 2016, 5, 24. [Google Scholar] [CrossRef]
- de Toro-Martín, J.; Arsenault, B.J.; Després, J.P.; Vohl, M.C. Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome. Nutrients 2017, 9, 913. [Google Scholar] [CrossRef]
- Kulathunga, J.; Whitney, K.; Simsek, S. Impact of Starter Culture on Biochemical Properties of Sourdough Bread Related to Composition and Macronutrient Digestibility. Food Biosci. 2023, 53, 102640. [Google Scholar] [CrossRef]
- Li, Q.; Loponen, J.; Gänzle, M.G. Characterization of the Extracellular Fructanase FruA in Lactobacillus Crispatus and Its Contribution to Fructan Hydrolysis in Breadmaking. J. Agric. Food Chem. 2020, 68, 8637–8647. [Google Scholar] [CrossRef]
- Menezes, L.A.A.; Molognoni, L.; de Sá Ploêncio, L.A.; Costa, F.B.M.; Daguer, H.; Dea Lindner, J.D. Use of Sourdough Fermentation to Reducing FODMAPs in Breads. Eur. Food Res. Technol. 2019, 245, 1183–1195. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Hussain, R.; Kubow, S.; Sadiq, F.A.; Huang, W.; Imran, M. Sourdough Bread: A Contemporary Cereal Fermented Product. J. Food Process. Preserv. 2019, 43, e13883. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Losito, I.; Facchini, L.; Katina, K.; Palmisano, F.; Gobbetti, M.; Coda, R. Degradation of Vicine, Convicine and Their Aglycones during Fermentation of Faba Bean Flour. Sci. Rep. 2016, 6, 32452. [Google Scholar] [CrossRef]
- De Pasquale, I.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Nutritional and Functional Effects of the Lactic Acid Bacteria Fermentation on Gelatinized Legume Flours. Int. J. Food Microbiol. 2020, 316, 108426. [Google Scholar] [CrossRef]
- Bartkiene, E.; Lele, V.; Ruzauskas, M.; Domig, K.J.; Starkute, V.; Zavistanaviciute, P.; Bartkevics, V.; Pugajeva, I.; Klupsaite, D.; Juodeikiene, G.; et al. Lactic Acid Bacteria Isolation from Spontaneous Sourdough and Their Characterization Including Antimicrobial and Antifungal Properties Evaluation. Microorganisms 2020, 8, 64. [Google Scholar] [CrossRef]
- Grootaert, C.; Van Den Abbeele, P.; Marzorati, M.; Broekaert, W.F.; Courtin, C.M.; Delcour, J.A.; Verstraete, W.; Van De Wiele, T. Comparison of Prebiotic Effects of Arabinoxylan Oligosaccharides and Inulin in a Simulator of the Human Intestinal Microbial Ecosystem. FEMS Microbiol. Ecol. 2009, 69, 231–242. [Google Scholar] [CrossRef]
- Salden, B.N.; Troost, F.J.; Wilms, E.; Truchado, P.; Vilchez-Vargas, R.; Pieper, D.H.; Jáuregui, R.; Marzorati, M.; van de Wiele, T.; Possemiers, S.; et al. Reinforcement of Intestinal Epithelial Barrier by Arabinoxylans in Overweight and Obese Subjects: A Randomized Controlled Trial: Arabinoxylans in Gut Barrier. Clin. Nutr. 2018, 37, 471–480. [Google Scholar] [CrossRef]
- Schioldan, A.G.; Gregersen, S.; Hald, S.; Bjørnshave, A.; Bohl, M.; Hartmann, B.; Holst, J.J.; Stødkilde-Jørgensen, H.; Hermansen, K. Effects of a Diet Rich in Arabinoxylan and Resistant Starch Compared with a Diet Rich in Refined Carbohydrates on Postprandial Metabolism and Features of the Metabolic Syndrome. Eur. J. Nutr. 2018, 57, 795–807. [Google Scholar] [CrossRef]
- Han, J.; Wu, J.; Liu, X.; Shi, J.; Xu, J. Physiological Effects of Resistant Starch and Its Applications in Food: A Review. Food Prod. Process. Nutr. 2023, 5, 48. [Google Scholar] [CrossRef]
- Eleazu, C.O. The Concept of Low Glycemic Index and Glycemic Load Foods as Panacea for Type 2 Diabetes Mellitus; Prospects, Challenges and Solutions. Afr. Health Sci. 2016, 16, 468–479. [Google Scholar] [CrossRef]
- Arora, R.; Chandel, A.K. Unlocking the Potential of Low FODMAPs Sourdough Technology for Management of Irritable Bowel Syndrome. Food Res. Int. 2023, 173, 113425. [Google Scholar] [CrossRef]
- Pejcz, E.; Lachowicz-Wiśniewska, S.; Nowicka, P.; Wojciechowicz-Budzisz, A.; Harasym, J. Enhancing Bread’s Benefits: Investigating the Influence of Boosted Native Sourdough on FODMAP Modulation and Antioxidant Potential in Wheat Bread. Foods 2023, 12, 3552. [Google Scholar] [CrossRef]
- Pejcz, E.; Spychaj, R.; Gil, Z. Technological Methods for Reducing the Content of Fructan in Wheat Bread. Foods 2019, 8, 663. [Google Scholar] [CrossRef]
- Loponen, J.; Gänzle, M.G. Use of Sourdough in Low FODMAP Baking. Foods 2018, 7, 96. [Google Scholar] [CrossRef]
- Ziegler, J.U.; Steiner, D.; Longin, C.F.H.; Würschum, T.; Schweiggert, R.M.; Carle, R. Wheat and the Irritable Bowel Syndrome–FODMAP Levels of Modern and Ancient Species and Their Retention during Bread Making. J. Funct. Foods 2016, 25, 57–266. [Google Scholar] [CrossRef]
- Nachi, I.; Fhoula, I.; Smida, I.; Ben Taher, I.; Chouaibi, M.; Jaunbergs, J.; Bartkevics, V.; Hassouna, M. Assessment of Lactic Acid Bacteria Application for the Reduction of Acrylamide Formation in Bread. LWT 2018, 92, 435–441. [Google Scholar] [CrossRef]
- Canesin, M.R.; Cazarin, C.B.B. Nutritional Quality and Nutrient Bioaccessibility in Sourdough Bread. Curr. Opin. Food Sci. 2021, 40, 81–86. [Google Scholar] [CrossRef]
- Rosa, N.N.; Barron, C.; Gaiani, C.; Dufour, C.; Micard, V. Ultra-Fine Grinding Increases the Antioxidant Capacity of Wheat Bran. J. Cereal Sci. 2013, 57, 84–90. [Google Scholar] [CrossRef]
- Nutter, J.; Saiz, A.I.; Iurlina, M.O. Microstructural and Conformational Changes of Gluten Proteins in Wheat-Rye Sourdough. J. Cereal Sci. 2019, 87, 91–97. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J.; Yang, S.; Feng, J.; Jia, F.; Zhang, C. Protein Degradation in Wheat Sourdough Fermentation with Lactobacillus Plantarum M616. Interdiscip. Sci.-Comput. Life Sci. 2015, 7, 205–210. [Google Scholar] [CrossRef]
- Pei, F.; Sun, L.; Fang, Y.; Yang, W.; Ma, G.; Ma, N.; Hu, Q. Behavioral Changes in Glutenin Macropolymer Fermented by Lactobacillus Plantarum LB-1 to Promote the Rheological and Gas Production Properties of Dough. J. Agric. Food Chem. 2020, 68, 3585–3593. [Google Scholar] [CrossRef]
- Scazzina, F.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Sourdough Bread: Starch Digestibility and Postprandial Glycemic Response. J. Cereal Sci. 2009, 49, 419–421. [Google Scholar] [CrossRef]
- Pico, J.; Bernal, J.; Gómez, M. Wheat Bread Aroma Compounds in Crumb and Crust: A Review. Food Res. Int. 2015, 75, 200–215. [Google Scholar] [CrossRef]
- Corona, O.; Alfonzo, A.; Ventimiglia, G.; Nasca, A.; Francesca, N.; Martorana, A.; Moschetti, G.; Settanni, L. Industrial Application of Selected Lactic Acid Bacteria Isolated from Local Semolinas for Typical Sourdough Bread Production. Food Microbiol. 2016, 59, 43–56. [Google Scholar] [CrossRef]
- Aponte, M.; Boscaino, F.; Sorrentino, A.; Coppola, R.; Masi, P.; Romano, A. Volatile Compounds and Bacterial Community Dynamics of Chestnut-Flour-Based Sourdoughs. Food Chem. 2013, 141, 2394–2404. [Google Scholar] [CrossRef]
- Aplevicz, K.S.; Ogliari, P.J.; Sant’Anna, E.S. Influence of Fermentation Time on Characteristics of Sourdough Bread. Brazilian J. Pharm. Sci. 2013, 49, 233–239. [Google Scholar] [CrossRef]
- Casado, A.; Álvarez, A.; González, L.; Fernández, D.; Marcos, J.L.; Tornadijo, M.E. Effect of Fermentation on Microbiological, Physicochemical and Physical Characteristics of Sourdough and Impact of Its Use on Bread Quality. Czech J. Food Sci. 2017, 35, 496–506. [Google Scholar] [CrossRef]
- Arendt, E.K.; Ryan, L.A.M.; Dal Bello, F. Impact of Sourdough on the Texture of Bread. Food Microbiol. 2007, 24, 165–174. [Google Scholar] [CrossRef]
- Plessas, S.; Trantallidi, M.; Bekatorou, A.; Kanellaki, M.; Nigam, P.; Koutinas, A.A. Immobilization of Kefir and Lactobacillus Casei on Brewery Spent Grains for Use in Sourdough Wheat Bread Making. Food Chem. 2007, 105, 187–194. [Google Scholar] [CrossRef]
- Liu, A.; Jia, Y.; Zhao, L.; Gao, Y.; Liu, G.; Chen, Y.; Zhao, G.; Xu, L.; Shen, L.; Liu, Y.; et al. Diversity of Isolated Lactic Acid Bacteria in Ya’an Sourdoughs and Evaluation of Their Exopolysaccharide Production Characteristics. LWT 2018, 95, 17–22. [Google Scholar] [CrossRef]
- Pang, J.; Guan, E.; Yang, Y.; Li, M.; Bian, K. Effects of Wheat Flour Particle Size on Flour Physicochemical Properties and Steamed Bread Quality. Food Sci. Nutr. 2021, 9, 4691–4700. [Google Scholar] [CrossRef]
- Liu, C.; Li, L.; Hong, J.; Zheng, X.; Bian, K.; Sun, Y.; Zhang, J. Effect of Mechanically Damaged Starch on Wheat Flour, Noodle and Steamed Bread Making Quality. Int. J. Food Sci. Technol. 2014, 49, 253–260. [Google Scholar] [CrossRef]
- Leon, E.; Piston, F.; Aouni, R.; Shewry, P.R.; Rosell, C.M.; Martin, A.; Barro, F. Pasting Properties of Transgenic Lines of a Commercial Bread Wheat Expressing Combinations of HMW Glutenin Subunit Genes. J. Cereal Sci. 2010, 51, 344–349. [Google Scholar] [CrossRef]
- Cai, J.; Cai, C.; Man, J.; Zhou, W.; Wei, C. Structural and Functional Properties of C-Type Starches. Carbohydr. Polym. 2014, 101, 289–300. [Google Scholar] [CrossRef]
- Lin, S.; Gao, J.; Jin, X.; Wang, Y.; Dong, Z.; Ying, J.; Zhou, W. Whole-Wheat Flour Particle Size Influences Dough Properties, Bread Structure and: In Vitro Starch Digestibility. Food Funct. 2020, 11, 3610–3620. [Google Scholar] [CrossRef]
- Cano, A.; Jiménez, A.; Cháfer, M.; Gónzalez, C.; Chiralt, A. Effect of Amylose:Amylopectin Ratio and Rice Bran Addition on Starch Films Properties. Carbohydr. Polym. 2014, 111, 543–555. [Google Scholar] [CrossRef]
- Malegori, C.; Grassi, S.; Ohm, J.B.; Anderson, J.; Marti, A. GlutoPeak Profile Analysis for Wheat Classification: Skipping the Refinement Process. J. Cereal Sci. 2018, 79, 73–79. [Google Scholar] [CrossRef]
- Niu, M.; Hou, G.; Lee, B.; Chen, Z. Effects of Fine Grinding of Millfeeds on the Quality Attributes of Reconstituted Whole-Wheat Flour and Its Raw Noodle Products. LWT 2014, 57, 58–64. [Google Scholar] [CrossRef]
- Le Bleis, F.; Chaunier, L.; Chiron, H.; Della Valle, G.; Saulnier, L. Rheological Properties of Wheat Flour Dough and French Bread Enriched with Wheat Bran. J. Cereal Sci. 2015, 65, 167–174. [Google Scholar] [CrossRef]
- Majzoobi, M.; Pashangeh, S.; Farahnaky, A.; Eskandari, M.H.; Jamalian, J. Effect of Particle Size Reduction, Hydrothermal and Fermentation Treatments on Phytic Acid Content and Some Physicochemical Properties of Wheat Bran. J. Food Sci. Technol. 2014, 51, 2755–2761. [Google Scholar] [CrossRef]
- Demirkesen, I.; Mert, B.; Sumnu, G.; Sahin, S. Rheological Properties of Gluten-Free Bread Formulations. J. Food Eng. 2010, 96, 295–303. [Google Scholar] [CrossRef]
- Bonomi, F.; Iametti, S.; Mamone, G.; Ferranti, P. The Performing Protein: Beyond Wheat Proteomics? Cereal Chem. 2013, 90, 358–366. [Google Scholar] [CrossRef]
- Pazoki Ghouhe, F.; Naghipour, F.; Faraji, A. Investigating on the Effect of Using Sourdough Made from Hard and Soft Wheat Flour on Physicochemical and Sensory Characteristics of Baguette Bread. J. Food Sci. Technol. 2019, 16, 77–89. [Google Scholar]
- Wieser, H.; Koehler, P.; Scherf, K.A. Chemistry of Wheat Gluten Proteins: Qualitative Composition. Cereal Chem. 2023, 100, 23–35. [Google Scholar] [CrossRef]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Saa, D.T.; Di Silvestro, R.; Nissen, L.; Dinelli, G.; Gianotti, A. Effect of Sourdough Fermentation and Baking Process Severity on Bioactive Fiber Compounds in Immature and Ripe Wheat Flour Bread. LWT 2018, 89, 322–328. [Google Scholar] [CrossRef]
- Bender, D.; Regner, M.; D’Amico, S.; Jäger, H.; Tömösközi, S.; Schoenlechner, R. Effect of Differently Extracted Arabinoxylan on Gluten-Free Sourdough-Bread Properties. J. Food Qual. 2018, 2018, 5719681. [Google Scholar] [CrossRef]
- Ngo, D.H.; Vo, T.S. An Updated Review on Pharmaceutical Properties of Gamma-Aminobutyric Acid. Molecules 2019, 24, 2678. [Google Scholar] [CrossRef] [PubMed]
- Iorga, B. Functionality and Characterization of Intermediate Wheatgrass in Spontaneous Fermentation and End Product Quality. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2024. [Google Scholar]
- Škrobot, D.; Dapčević-Hadnađev, T.; Tomić, J.; Maravić, N.; Popović, N.; Jovanov, P.; Hadnađev, M. Techno-Functional Performance of Emmer, Spelt and Khorasan in Spontaneously Fermented Sourdough Bread. Foods 2022, 11, 3927. [Google Scholar] [CrossRef]
- Vaz Patto, M.C.; Amarowicz, R.; Aryee, A.N.A.; Boye, J.I.; Chung, H.J.; Martín-Cabrejas, M.A.; Domoney, C. Achievements and Challenges in Improving the Nutritional Quality of Food Legumes. Crit. Rev. Plant Sci. 2015, 34, 105–143. [Google Scholar] [CrossRef]
- Coda, R.; Varis, J.; Verni, M.; Rizzello, C.G.; Katina, K. Improvement of the Protein Quality of Wheat Bread through Faba Bean Sourdough Addition. LWT 2017, 82, 296–302. [Google Scholar] [CrossRef]
- Nouska, C.; Hatzikamari, M.; Matsakidou, A.; Biliaderis, C.G.; Lazaridou, A. Enhancement of Textural and Sensory Characteristics of Wheat Bread Using a Chickpea Sourdough Fermented with a Selected Autochthonous Microorganism. Foods 2023, 12, 3112. [Google Scholar] [CrossRef]
- Comasio, A.; Van Kerrebroeck, S.; De Vuyst, L. Lemon Juice and Apple Juice Used as Source of Citrate and Malate, Respectively, Enhance the Formation of Buttery Aroma Compounds and/or Organic Acids during Type 2 and Type 3 Sourdough Productions Performed with Companilactobacillus Crustorum LMG 23699. Int. J. Food Microbiol. 2021, 339, 109020. [Google Scholar] [CrossRef] [PubMed]
- Nutter, J.; Fritz, R.; Saiz, A.I.; Iurlina, M.O. Effect of Honey Supplementation on Sourdough: Lactic Acid Bacterial Performance and Gluten Microstructure. LWT 2017, 77, 119–125. [Google Scholar] [CrossRef]
- Minervini, F.; Celano, G.; Lattanzi, A.; De Angelis, M.; Gobbetti, M. Added Ingredients Affect the Microbiota and Biochemical Characteristics of Durum Wheat Type-I Sourdough. Food Microbiol. 2016, 60, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Future Market Insights. Frozen Dough Market Outlook from 2024 to 2034. Available online: https://www.futuremarketinsights.com/reports/frozen-dough-market (accessed on 25 March 2024).
- Pepe, O.; Anastasio, M.; Villani, F. Improvement of Frozen Dough Stability Using a Cryoresistant Yeast Strain and Refreshment. Cereal Chem. 2005, 82, 239–241. [Google Scholar] [CrossRef]
- Lattanzi, A.; Minervini, F.; Gobbetti, M. Assessment of Comparative Methods for Storing Type-I Wheat Sourdough. LWT 2014, 59, 948–955. [Google Scholar] [CrossRef]
- Minervini, F.; Pinto, D.; Di Cagno, R.; De Angelis, M.; Gobbetti, M. Scouting the Application of Sourdough to Frozen Dough Bread Technology. J. Cereal Sci. 2011, 54, 296–304. [Google Scholar] [CrossRef]
Obligately Heterofermentative | Facultatively Heterofermentative | Obligately Homofermentative | Yeast |
---|---|---|---|
Lb. acidifarinae | Lb. alimentarius | Lb. acidophilus | S. cerevisiae |
Lb. brevis | Lb. buchneri | Lb. amylolyticus | S. bayanus |
Lb. buchneri | Lc. Lactis | Lb. amylophilus | K. exigua |
Lb. cellobiosus | Lb. paracasei | Lb. amylovorus | K. humilis |
Lb. crustorum | Lb. kimchi | Lb. bulgaricus | K. servazzi |
Lb. curvatus | Lb. paralimentarius | Lb. farciminsis | K. exigua |
Lb. fermentum | Lb. pentosus | Lb. johnsonii | Pi. kudriavzevii |
Lb. frumenti | Lb. plantarum | Le. lactis | T. delbrueckii |
Lb. fructivorans | Lb. sakei | Lb. heilongjiangensis | Wi. anomalus |
Lb. hammesii | Lb. casei | Lb. crustorum | Pi. kudriavzevii |
Lb. hilgardii | Lb. rhamnosus | Lb. amylovorus | C. tropicalis |
Lb. homohiochi | Lb. xianfangensis | Lb. crispatus | C. glabrata |
Lb. namurensis | Le. holzapfelii | Lb. delbrueckii | C. krusei |
Lb. nantensis | P. acidilactici | Lb. reuteri | C. pelicullosa |
Lb. panis | P. pentosaceus | Lb. nodensis | Y. keelungensis |
Lb. reuteri | Lb. helveticus | T. delbrueckii | |
Lb. parabuchneri | Lb. salivarius | R. mucilaginosa | |
Lb. rossiae | Lb. gallinarum | ||
Lb. sanfranciscensis | Lb. mindensis | ||
Lb. secaliphilus | E. durans | ||
Lb. siliginis | E. faecalis | ||
Lb. spicheri | E. faecium | ||
Lb. zymae | P. parvulus | ||
Le. citreum | |||
Le. gelidum | |||
Le. mesenteroides | |||
W. cibaria | |||
W. confuse | |||
W. viridescens |
Flour Type | Application of SD | Country of Commercialization |
---|---|---|
Wheat | Bread | Italy, Germany, Argentina, Spain, France and Brazil (in Brazil partnership with Vallens), France, Belgium Mexico, Spain, Morocco, and Brazil |
Bread and pizza | France and France and Brazil (in Brazil’s partnership with Vallens) | |
Bakery products in general | USA, France, Italy, Germany, Belgium, France and Brazil (in Brazil partnership with Vallens), France, Belgium, Mexico, Spain, Morocco, and Brazil | |
French bread; San Francisco bread; pancake and waffle mix | USA, France, and Brazil (in Brazil’s partnership with Vallens) | |
San Francisco bread and bakery products in general (culture from New Zealand, France, and Italy) | New Zealand | |
Whole wheat | Bakery products in general | USA, France, France, Belgium, Mexico, Spain, Morocco, and Brazil |
Bread | France and Brazil (in Brazil’s partnership with Vallens) | |
Rye | Bread | Germany, France, and Brazil (in Brazil’s partnership with Vallens) |
Bakery products in general (culture from New Zealand and France) | USA, New Zealand, Germany, Belgium, France, Belgium, Mexico, Spain, Morocco, and Brazil |
Aspect | Yeast Fermentation | SD Fermentation | Reference |
---|---|---|---|
Nutrient availability | Limited mineral bioavailability; minerals often remain inaccessible for digestion. | Enhanced mineral bioavailability; increases the bioavailability of iron by 10% and zinc by 25%. Produces more fermentable sugars like sorbitol and mannitol. Boosts vitamin B12, folate, and riboflavin. | [21,22,23,24] |
Phytate content | Reduces phytic acid by up to 56%. | Can degrade phytic acid by up to 96.6%, significantly increasing mineral bioavailability. | [25,26] |
Anti-Nutritional factors | Less effective at breaking down anti-nutritional factors (ANFs). | More effective; reduces raffinose, condensed tannins, trypsin inhibitors, and saponins significantly. | [25,27] |
Postbiotic compounds | Does not produce significant levels of postbiotics. | Rich in postbiotics like short-chain fatty acids (SCFAs), β-glucan, and peptidoglycan, which provide anti-inflammatory and anti-tumor effects. | [6,21,28] |
Pathogen inhibition | Does not produce compounds that significantly inhibit pathogens. | Produces bacteriocins and biosurfactants that inhibit pathogenic microorganisms and prevent biofilm formation. | [6,21,28] |
Dietary fiber | Limited increase in dietary fiber availability. | Significantly increases dietary fiber availability and produces prebiotic components like arabinoxylan-oligosaccharides (AXOSs). | [22,27] |
Resistant starch | Less effective at increasing resistant starch content. | Increases resistant starch by 89% to 120%. Low pH and LAB enzymes modify starch structure, making it more resistant to digestion. | [29,30] |
Digestibility | Yeast bread has lower digestibility with slower gastric emptying and oro-cecal transit time. | SD bread has superior digestibility with higher nutritional indices, faster gastric emptying, and quicker oro-cecal transit time | [31] |
Higher levels of rapidly digestible starch (RDS) | Reduces rapidly digestible starch (RDS) by approximately half compared to yeast fermentation | [32] | |
Less efficient protein digestion and breakdown. | Increases protein digestion efficiency by 16%; modifies gluten protein structure, leading to different rheological characteristics. | [33,34] | |
Glycemic index (GI) | Higher GI; can cause rapid spikes in blood sugar levels. | Lower GI; leads to gradual glucose absorption, quicker gastric emptying, activation of satiety hormones, and increased resistant starch. | [24] |
FODMAPs | Less effective at reducing FODMAPs. | More effective; reduces FODMAPs, especially fructans, significantly. Produces mannitol from fructose and other sugars. | [35] |
Acrylamide | Higher acrylamide levels due to the Maillard reaction during baking. | Lower acrylamide levels due to the low pH environment inhibiting its synthesis. | [36] |
Antioxidant activity | Lower antioxidant activity. | Higher antioxidant activity; increases the levels of extractable phenolic compounds and free ferulic acid. | [26] |
Starch properties | Lower impact on starch hydrolysis; faster staling due to starch retrogradation. | Higher starch hydrolysis; slows down starch retrogradation and delays bread staling. Organic acids and EPSs maintain softer crumb and moisture retention. | [11] |
Volatile compounds | Produces fewer volatile compounds; primarily alcohol, esters, and some aroma-active compounds. | Produces a higher count of volatile compounds; enriched aroma and unique flavor. Generates acids, alcohols, aldehydes, esters, and ketones. | [3,4,37,38] |
FODMAP-Measured Group | Fermentation Type | Level of Reduction (%) | Increase (%) | Reference |
---|---|---|---|---|
Fructans | SD | 65 | - | [41] |
Fructans | SD | 65–70 | - | [42] |
Fructans | SD | 69–75 | - | [35] |
Fructans | Yeast | 56 | [35] | |
Fructans | Yeast | <50 | - | [42] |
Fructose + glucose | SD | 69–82 | - | [43] |
Raffinose | SD | 69 | - | [35] |
Nystose + stachyose | SD | 0–86 | - | [43] |
Nystose + stachyose | Yeast | 0 | - | [43] |
Sorbitol + mannitol | SD | - | 172–1000 | [35] |
Sorbitol + mannitol | Yeast | - | 0–67 | [43] |
Raffinose + kestose | SD | - | 114–120 | [35] |
Raffinose + kestose | Yeast | - | 0–133 | [35] |
Mannitol | SD | - | 550 | [35] |
Mannitol | Yeast | - | 0 | [35] |
Group | Volatile Compound | Odor | Range Concentration (ppm) | Percent Threshold in Water (ppm) | References |
---|---|---|---|---|---|
Aldehydes | Hexanal | Fresh, green, fatty, aldehydic, grass, leafy, fruity, sweaty | 0.00–0.14 | 0.0045–0.005 | [2,66] |
Heptanal | Fatty, rancid, citrus, malty, aldehydic, grass, fresh, green, ozone | 0.00–0.03 | 0.003 | [20,37,67] | |
Octanal | Fatty, aldehydic | - | 0.0007 | [37,66] | |
Acetaldehyde | Pungent, aldehydic, floral, fruity | 0.00–0.49 | 0.015–0.12 | [2,3] | |
2-Methylbutanal | Musty, cocoa, coffee, nut, malty, fruity, sweet, roasted | - | 0.001 | [38] | |
Benzaldehyde | Almond, strong, sharp, sweet, bitter, cherry | 0.00–0.26 | 0.35–3.5 | [37,66] | |
Nonanal | Aldehydic, rose, waxy, citrus, orange, floral | 0.00–0.34 | 0.001 | [20] | |
3-Methylbutanal | Ethereal, aldehydic, chocolate, Peach, fatty, sour, roasted bread, fruity, fermented, corn flakes | - | 0.0002–0.002 | [37,38] | |
2-Nonenal | Fatty, green, aldehydic, citrus, waxy | 0.00–0.34 | 0.00008–0.0001 | [66] | |
Alcohols | Ethanol | Strong, alcohol, ethereal, medicinal | 0.00–15.70 | 100.00 | [20,67] |
Isobutyl alcohol | Alcoholic | 0.00–5.75 | - | [20] | |
1-Hexanol | Herbal, ethereal, oil, alcohol, green, fruity, sweet, woody, floral | 0.00–1.04 | 2.50 | [67] | |
1-Nonanol | Floral, rose, orange, fresh, clean, fatty, oily | - | 0.05 | [2,3,37] | |
1-Heptanol | Green, musty, leaf, woody, peony, violet, grass, sweet | - | 0.003 | [20,37] | |
1-Octanol | Waxy, green, orange, aldehydic, rose, mushroom, citrus | 0.01–0.72 | 0.11–0.13 | [67] | |
1-Pentanol | Oil, sweet, balsamine, chemical mint | 0.05–0.37 | 4.00 | [66] | |
Phenylethyl alcohol | Floral | 0.00–0.30 | - | [2,3] | |
Phenol | Phenol, plastic, rubber | - | - | [20] | |
3-Methyl-1-butanol | Balsamic, alcoholic, malty | 0.33–38.83 | - | [66] | |
Esters | Methyl acetate | Ethereal, sweet, fruity, solvent, wine, cognac, rum | - | - | [20] |
Ethyl acetate | Ethereal | 0.00–23.35 | [20] | ||
Ethyl lactate | Fruity, butter, caramel, green | 0.01–1.72 | 14.00 | [37,66] | |
Ethyl octanoate | Sweet, soap, fresh, fruity, wine, Waxy, apricot, banana | 0.00–0.44 | - | [66] | |
Octyl acetate | Green, earthy, mushroom, herbal, waxy | - | [20] | ||
Ketones | 3-Hydroxy-2-butanone (acetoin) | Caramel, butter, yogurt, cream | 0.02–1.42 | - | [20,66] |
2,3Butanedione | Butter, caramel | 0.00–0.81 | - | [67] | |
2-Pentanone | Sweet, fruity, ethereal, wine, banana, woody | - | 70.00 | [37,38] | |
2-Octanone | Earthy, grass, woody, soap | - | 0.05 | [38] | |
Acids | Formic acid | Acrid, vinegar, formyl | - | 450.00 | [37] |
Lactic acid | Slight, not unpleasant odor | 0.00–0.03 | [20] | ||
Acetic acid | Sour, acid, pungent, sharp Vinegar | 0.00–3.2 | [2,3,66] | ||
Hexanoic acid | Fatty, sour, sweaty, cheesy | 0.00–0.02 | 3.00 | [66] | |
Heptanoic acid | Cheese, fatty, sweaty | - | [20] | ||
Octanoic acid | Octanoic acid, cheese, fatty, sweaty, soapy, waxy, vegetable | - | 3.00 | [20] | |
Isobutyric acid | Sweaty, butter, fatty, sour, rancid | - | [20] | ||
Isovaleric acid | Sweaty | [20] | |||
Benzoic acid | Faint balsam, urine | - | - | [38] | |
Propanoic acid | Cheesy, acidic, vinegar, acrid, rancid | - | 20.00 | [38] | |
Butanoic acid | Acetic, butter, fruity, sweet, sour, sharp | - | 0.24 | [38] | |
Pentanoic acid | Acidic, sweat, rancid, stinky, putrid | - | 3.00 | [38] | |
Furans | 2-Acetylfuran | Sweet, balsamine, almond, cocoa, caramel, coffee, burnt | - | 10.00 | [37,38] |
Furfural | Almond, bread-like, soil, burnt roasted, sweet, toasted, rancid | 0.00–0.19 | 3.00–23.00 | [67] | |
2-Penthylfuran | Fruity, mushroom, raw nuts, Butter, green bean, floral, earthy | - | [20] | ||
Alkanes | Limonene | Citrus | 0.00–0.32 | - | [66] |
Decane | Alkane | - | - | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.A.; Islam, S. Sourdough Bread Quality: Facts and Factors. Foods 2024, 13, 2132. https://doi.org/10.3390/foods13132132
Islam MA, Islam S. Sourdough Bread Quality: Facts and Factors. Foods. 2024; 13(13):2132. https://doi.org/10.3390/foods13132132
Chicago/Turabian StyleIslam, Md Ahmadul, and Shahidul Islam. 2024. "Sourdough Bread Quality: Facts and Factors" Foods 13, no. 13: 2132. https://doi.org/10.3390/foods13132132
APA StyleIslam, M. A., & Islam, S. (2024). Sourdough Bread Quality: Facts and Factors. Foods, 13(13), 2132. https://doi.org/10.3390/foods13132132