Nutrient Composition of Four Dietary Patterns in Italy: Results from an Online Survey (the INVITA Study)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Energy, Macronutrient, Fiber, Water, and Alcohol Intakes
3.2. Micronutrient Intakes
3.3. Inadequate Intakes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baroni, L.; Goggi, S.; Battino, M. VegPlate: A Mediterranean-Based Food Guide for Italian Adult, Pregnant, and Lactating Vegetarians. J. Acad. Nutr. Diet. 2018, 118, 2235–2243. [Google Scholar] [CrossRef] [PubMed]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Agnoli, C.; Baroni, L.; Bertini, I.; Ciappellano, S.; Fabbri, A.; Papa, M.; Pellegrini, N.; Sbarbati, R.; Scarino, M.L.; Siani, V.; et al. Position Paper on Vegetarian Diets from the Working Group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1037–1052. [Google Scholar] [CrossRef] [PubMed]
- Eurispes. Risultati Del Rapporto Italia. 2024. Available online: https://eurispes.eu/news/risultati-del-rapporto-italia-2024/ (accessed on 27 May 2024).
- Lotti, S.; Napoletano, A.; Tristan Asensi, M.; Pagliai, G.; Giangrandi, I.; Colombini, B.; Dinu, M.; Sofi, F. Assessment of Mediterranean Diet Adherence and Comparison with Italian Dietary Guidelines: A Study of over 10,000 Adults from 2019 to 2022. Int. J. Food Sci. Nutr. 2024, 75, 336–343. [Google Scholar] [CrossRef] [PubMed]
- ISTAT Cause Di Morte in Italia—Anno. 2020. Available online: https://www.istat.it/it/archivio/284853 (accessed on 27 May 2024).
- Capodici, A.; Mocciaro, G.; Gori, D.; Landry, M.J.; Masini, A.; Sanmarchi, F.; Fiore, M.; Coa, A.A.; Castagna, G.; Gardner, C.D.; et al. Cardiovascular Health and Cancer Risk Associated with Plant Based Diets: An Umbrella Review. PLoS ONE 2024, 19, e0300711. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, Vegan Diets and Multiple Health Outcomes: A Systematic Review with Meta-Analysis of Observational Studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef] [PubMed]
- Oussalah, A.; Levy, J.; Berthezène, C.; Alpers, D.H.; Guéant, J.-L. Health Outcomes Associated with Vegetarian Diets: An Umbrella Review of Systematic Reviews and Meta-Analyses. Clin. Nutr. 2020, 39, 3283–3307. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, J. The Contribution of Vegetarian Diets to Health and Disease: A Paradigm Shift? Am. J. Clin. Nutr. 2003, 78, 502S–507S. [Google Scholar] [CrossRef] [PubMed]
- Barnard, N.D.; Alwarith, J.; Rembert, E.; Brandon, L.; Nguyen, M.; Goergen, A.; Horne, T.; do Nascimento, G.F.; Lakkadi, K.; Tura, A.; et al. A Mediterranean Diet and Low-Fat Vegan Diet to Improve Body Weight and Cardiometabolic Risk Factors: A Randomized, Cross-over Trial. J. Am. Coll. Nutr. 2021, 41, 127–139. [Google Scholar] [CrossRef]
- Filippin, D.; Sarni, A.R.; Rizzo, G.; Baroni, L. Environmental Impact of Two Plant-Based, Isocaloric and Isoproteic Diets: The Vegan Diet vs. the Mediterranean Diet. Int. J. Environ. Res. Public Health 2023, 20, 3797. [Google Scholar] [CrossRef]
- Gnagnarella, P.; Parpinel, M.; Salvini, S. Banca Dati di Composizione Degli Alimenti; Libreriauniversitaria.it: Limena, Italy, 2022; ISBN 88-335-9538-2. [Google Scholar]
- USDA FoodData Central. Available online: https://fdc.nal.usda.gov (accessed on 27 May 2024).
- Food and Agriculture Organization of the United Nations. Food Energy—Methods of Analysis and Conversion Factors. Report of a Technical Workshop, Chap. 3. Calculation of the Energy Content of Foods—Energy Conversion Factors; FAO: Rome, Italy, 2003. [Google Scholar]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2013; Chapter 13; p. 306. [Google Scholar]
- Greenfield, H.; Southgate, D.A.T. Food Composition Data. Available online: https://www.fao.org/uploads/media/Greenfield_and_shouthgate_2003_English_02.pdf (accessed on 27 May 2024).
- Società Italiana di Nutrizione Umana, SINU. Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana (LARN)—IV Revisione. Available online: https://sinu.it/tabelle-larn-2014/ (accessed on 27 May 2024).
- Rizzo, N.S.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G.E. Nutrient Profiles of Vegetarian and Nonvegetarian Dietary Patterns. J. Acad. Nutr. Diet. 2013, 113, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Lawson, I.; Wood, C.; Syam, N.; Rippin, H.; Dagless, S.; Wickramasinghe, K.; Amoutzopoulos, B.; Steer, T.; Key, T.J.; Papier, K. Assessing Performance of Contemporary Plant-Based Diets against the UK Dietary Guidelines: Findings from the Feeding the Future (FEED) Study. Nutrients 2024, 16, 1336. [Google Scholar] [CrossRef] [PubMed]
- Stenico, A.; Zarantonello, D.; Vittadello, F.; Kob, M. A Comprehensive Examination of Vegan Lifestyle in Italy. Nutrients 2023, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.G. Does Gender Influence Online Survey Participation? A Record-Linkage Analysis of University Faculty Online Survey Response Behavior. Available online: https://files.eric.ed.gov/fulltext/ED501717.pdf (accessed on 24 June 2024).
- Mariotti, F.; Gardner, C.D. Dietary Protein and Amino Acids in Vegetarian Diets—A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef] [PubMed]
- Clarys, P.; Deliens, T.; Huybrechts, I.; Deriemaeker, P.; Vanaelst, B.; De Keyzer, W.; Hebbelinck, M.; Mullie, P. Comparison of Nutritional Quality of the Vegan, Vegetarian, Semi-Vegetarian, Pesco-Vegetarian and Omnivorous Diet. Nutrients 2014, 6, 1318–1332. [Google Scholar] [CrossRef] [PubMed]
- Misra, D.; Berry, S.D.; Broe, K.E.; McLean, R.R.; Cupples, L.A.; Tucker, K.L.; Kiel, D.P.; Hannan, M.T. Does Dietary Protein Reduce Hip Fracture Risk in Elders? The Framingham Osteoporosis Study. Osteoporos. Int. 2011, 22, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.T.; Tucker, K.L.; Dawson-Hughes, B.; Cupples, L.A.; Felson, D.T.; Kiel, D.P. Effect of Dietary Protein on Bone Loss in Elderly Men and Women: The Framingham Osteoporosis Study. J. Bone Miner. Res. 2000, 15, 2504–2512. [Google Scholar] [CrossRef]
- Feskanich, D.; Willett, W.C.; Stampfer, M.J.; Colditz, G.A. Protein Consumption and Bone Fractures in Women. Am. J. Epidemiol. 1996, 143, 472–479. [Google Scholar] [CrossRef]
- Sellmeyer, D.E.; Stone, K.L.; Sebastian, A.; Cummings, S.R. A High Ratio of Dietary Animal to Vegetable Protein Increases the Rate of Bone Loss and the Risk of Fracture in Postmenopausal Women. Study of Osteoporotic Fractures Research Group. Am. J. Clin. Nutr. 2001, 73, 118–122. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein Intake and Exercise for Optimal Muscle Function with Aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef]
- Lim, M.T.; Pan, B.J.; Toh, D.W.K.; Sutanto, C.N.; Kim, J.E. Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 661. [Google Scholar] [CrossRef] [PubMed]
- Nunes, E.A.; Colenso-Semple, L.; McKellar, S.R.; Yau, T.; Ali, M.U.; Fitzpatrick-Lewis, D.; Sherifali, D.; Gaudichon, C.; Tomé, D.; Atherton, P.J.; et al. Systematic Review and Meta-Analysis of Protein Intake to Support Muscle Mass and Function in Healthy Adults. J. Cachexia Sarcopenia Muscle 2022, 13, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Lynch, H.; Dickinson, J.M.; Reed, K.E. No Difference between the Effects of Supplementing with Soy Protein versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Mangels, A.R.; Fresán, U.; Marsh, K.; Miles, F.L.; Saunders, A.V.; Haddad, E.H.; Heskey, C.E.; Johnston, P.; Larson-Meyer, E.; et al. The Safe and Effective Use of Plant-Based Diets with Guidelines for Health Professionals. Nutrients 2021, 13, 4144. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.D.; Hartle, J.C.; Garrett, R.D.; Offringa, L.C.; Wasserman, A.S. Maximizing the Intersection of Human Health and the Health of the Environment with Regard to the Amount and Type of Protein Produced and Consumed in the United States. Nutr. Rev. 2019, 77, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.L.; Doughty, K.N.; Geagan, K.; Jenkins, D.A.; Gardner, C.D. Perspective: The Public Health Case for Modernizing the Definition of Protein Quality. Adv. Nutr. 2019, 10, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High Compliance with Dietary Recommendations in a Cohort of Meat Eaters, Fish Eaters, Vegetarians, and Vegans: Results from the European Prospective Investigation into Cancer and Nutrition-Oxford Study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef] [PubMed]
- García-Maldonado, E.; Zapatera, B.; Alcorta, A.; Vaquero, M.P. Metabolic and Nutritional Biomarkers in Adults Consuming Lacto-Ovo Vegetarian, Vegan and Omnivorous Diets in Spain. A Cross-Sectional Study. Food Funct. 2023, 14, 1608–1616. [Google Scholar] [CrossRef]
- Metges, C.C.; Barth, C.A. Metabolic Consequences of a High Dietary-Protein Intake in Adulthood: Assessment of the Available Evidence. J. Nutr. 2000, 130, 886–889. [Google Scholar] [CrossRef]
- Mittendorfer, B.; Klein, S.; Fontana, L. A Word of Caution against Excessive Protein Intake. Nat. Rev. Endocrinol. 2020, 16, 59–66. [Google Scholar] [CrossRef]
- Lonnie, M.; Hooker, E.; Brunstrom, J.M.; Corfe, B.M.; Green, M.A.; Watson, A.W.; Williams, E.A.; Stevenson, E.J.; Penson, S.; Johnstone, A.M. Protein for Life: Review of Optimal Protein Intake, Sustainable Dietary Sources and the Effect on Appetite in Ageing Adults. Nutrients 2018, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Kitada, M.; Ogura, Y.; Monno, I.; Koya, D. The Impact of Dietary Protein Intake on Longevity and Metabolic Health. EBioMedicine 2019, 43, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Ahnen, R.T.; Jonnalagadda, S.S.; Slavin, J.L. Role of Plant Protein in Nutrition, Wellness, and Health. Nutr. Rev. 2019, 77, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Ardisson Korat, A.V.; Shea, M.K.; Jacques, P.F.; Sebastiani, P.; Wang, M.; Eliassen, A.H.; Willett, W.C.; Sun, Q. Dietary Protein Intake in Midlife in Relation to Healthy Aging—Results from the Prospective Nurses’ Health Study Cohort. Am. J. Clin. Nutr. 2024, 119, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Rodriguez, J.; Delgado-Velandia, M.; Ortolá, R.; Carballo-Casla, A.; García-Esquinas, E.; Rodríguez-Artalejo, F.; Sotos-Prieto, M. Plant-Based Diets and Risk of Frailty in Community-Dwelling Older Adults: The Seniors-ENRICA-1 Cohort. GeroScience 2023, 45, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Jakše, B.; Godnov, U.; Fras, Z.; Fidler Mis, N. Associations of Dietary Intake with Cardiovascular Risk in Long-Term “Plant-Based Eaters”: A Secondary Analysis of a Cross-Sectional Study. Nutrients 2024, 16, 796. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.E.L. Sugars and Health: A Review of Current Evidence and Future Policy. Proc. Nutr. Soc. 2017, 76, 400–407. [Google Scholar] [CrossRef]
- Bahari, H.; Pourreza, S.; Goudarzi, K.; Mirmohammadali, S.N.; Asbaghi, O.; Kolbadi, K.S.H.; Naderian, M.; Hosseini, A. The Effects of Pomegranate Consumption on Obesity Indices in Adults: A Systematic Review and Meta-Analysis. Food Sci. Nutr. 2024, 12, 641–660. [Google Scholar] [CrossRef]
- Kozłowska, A.; Szostak-Wegierek, D. Flavonoids--Food Sources and Health Benefits. Rocz. Panstw. Zakl. Hig. 2014, 65, 79–85. [Google Scholar] [PubMed]
- Dreher, M.L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, 10, 1833. [Google Scholar] [CrossRef]
- Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Li, A.; Xu, C.; Ma, J.; Wang, H.; Jiang, Z.; Hou, J. Comparative Analysis of Fecal Microbiota in Vegetarians and Omnivores. Nutrients 2023, 15, 2358. [Google Scholar] [CrossRef] [PubMed]
- Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.; Aulisa, G.; Marcon, D.; Rizzo, G. The Influence of Animal- or Plant-Based Diets on Blood and Urine Trimethylamine-N-Oxide (TMAO) Levels in Humans. Curr. Nutr. Rep. 2022, 11, 56–68. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Fahey, G.C.; Slavin, J.; van der Kamp, J.-W. Fibre Intake for Optimal Health: How Can Healthcare Professionals Support People to Reach Dietary Recommendations? BMJ 2022, 378, e054370. [Google Scholar] [CrossRef]
- Warensjö, E.; Byberg, L.; Melhus, H.; Gedeborg, R.; Mallmin, H.; Wolk, A.; Michaëlsson, K. Dietary Calcium Intake and Risk of Fracture and Osteoporosis: Prospective Longitudinal Cohort Study. BMJ 2011, 342, d1473. [Google Scholar] [CrossRef] [PubMed]
- Burckhardt, P. The Role of Low Acid Load in Vegetarian Diet on Bone Health: A Narrative Review. Swiss Med. Wkly. 2016, 146, w14277. [Google Scholar] [CrossRef]
- Galchenko, A.; Gapparova, K.; Sidorova, E. The Influence of Vegetarian and Vegan Diets on the State of Bone Mineral Density in Humans. Crit. Rev. Food Sci. Nutr. 2023, 63, 845–861. [Google Scholar] [CrossRef]
- Tong, T.Y.N.; Appleby, P.N.; Armstrong, M.E.G.; Fensom, G.K.; Knuppel, A.; Papier, K.; Perez-Cornago, A.; Travis, R.C.; Key, T.J. Vegetarian and Vegan Diets and Risks of Total and Site-Specific Fractures: Results from the Prospective EPIC-Oxford Study. BMC Med. 2020, 18, 353. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, D.L.; Beeson, W.L.; Knutsen, R.; Fraser, G.E.; Knutsen, S.F. Dietary Patterns and Hip Fracture in the Adventist Health Study 2: Combined Vitamin D and Calcium Supplementation Mitigate Increased Hip Fracture Risk among Vegans. Am. J. Clin. Nutr. 2021, 114, 488–495. [Google Scholar] [CrossRef]
- Hsu, E. Plant-Based Diets and Bone Health: Sorting through the Evidence. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 248–252. [Google Scholar] [CrossRef]
- Galchenko, A.; Rizzo, G.; Sidorova, E.; Skliar, E.; Baroni, L.; Visaggi, P.; Guidi, G.; de Bortoli, N. Bone Mineral Density Parameters and Related Nutritional Factors in Vegans, Lacto-Ovo-Vegetarians, and Omnivores: A Cross-Sectional Study. Front. Nutr. 2024, 11, 1390773. [Google Scholar] [CrossRef]
- Bickelmann, F.V.; Leitzmann, M.F.; Keller, M.; Baurecht, H.; Jochem, C. Calcium Intake in Vegan and Vegetarian Diets: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 10659–10677. [Google Scholar] [CrossRef] [PubMed]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and Adequacy of the Vegan Diet. A Systematic Review of the Evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Consultation. Human Vitamin and Mineral Requirements. Chapter 11, Calcium; FAO: Rome, Italy, 2001. [Google Scholar]
- Appleby, P.; Roddam, A.; Allen, N.; Key, T. Comparative Fracture Risk in Vegetarians and Nonvegetarians in EPIC-Oxford. Eur. J. Clin. Nutr. 2007, 61, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B. The Importance and Bioavailability of Phytoferritin-Bound Iron in Cereals and Legume Foods. Int. J. Vitam. Nutr. Res. 2007, 77, 152–157. [Google Scholar] [CrossRef]
- Lönnerdal, B. Soybean Ferritin: Implications for Iron Status of Vegetarians. Am. J. Clin. Nutr. 2009, 89, 1680S–1685S. [Google Scholar] [CrossRef]
- Lynch, S.; Pfeiffer, C.M.; Georgieff, M.K.; Brittenham, G.; Fairweather-Tait, S.; Hurrell, R.F.; McArdle, H.J.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Iron Review. J. Nutr. 2018, 148, S1001–S1067. [Google Scholar] [CrossRef]
- Zielińska-Dawidziak, M. Plant Ferritin—A Source of Iron to Prevent Its Deficiency. Nutrients 2015, 7, 1184–1201. [Google Scholar] [CrossRef]
- Haider, L.M.; Schwingshackl, L.; Hoffmann, G.; Ekmekcioglu, C. The Effect of Vegetarian Diets on Iron Status in Adults: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2018, 58, 1359–1374. [Google Scholar] [CrossRef] [PubMed]
- Mangels, A.R. Bone Nutrients for Vegetarians. Am. J. Clin. Nutr. 2014, 100 (Suppl. 1), 469S–475S. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Iron. EFSA J. 2015, 13, 4254. [Google Scholar] [CrossRef]
- World Health Organization. Nutritional Anaemias: Tools for Effective Prevention and Control; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Ems, T.; St Lucia, K.; Huecker, M.R. Biochemistry, Iron Absorption. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448204/#:~:text=Inhibitors%20of%20iron%20absorption%20include,demonstrated%20to%20inhibit%20iron%20absorption (accessed on 26 June 2024).
- Bao, W.; Rong, Y.; Rong, S.; Liu, L. Dietary Iron Intake, Body Iron Stores, and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. BMC Med. 2012, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Shahinfar, H.; Jayedi, A.; Shab-Bidar, S. Dietary Iron Intake and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Eur. J. Nutr. 2022, 61, 2279–2296. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Apekey, T.A.; Walley, J.; Kain, K. Ferritin Levels and Risk of Type 2 Diabetes Mellitus: An Updated Systematic Review and Meta-Analysis of Prospective Evidence. Diabetes Metab. Res. Rev. 2013, 29, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Hider, R.C.; Kong, X. Iron: Effect of Overload and Deficiency. In Interrelations between Essential Metal Ions and Human Diseases; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 229–294. ISBN 978-94-007-7500-8. [Google Scholar]
- Maret, W.; Sandstead, H.H. Zinc Requirements and the Risks and Benefits of Zinc Supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Davey, G.K.; Spencer, E.A.; Appleby, P.N.; Allen, N.E.; Knox, K.H.; Key, T.J. EPIC-Oxford: Lifestyle Characteristics and Nutrient Intakes in a Cohort of 33 883 Meat-Eaters and 31 546 Non Meat-Eaters in the UK. Public Health Nutr. 2003, 6, 259–269. [Google Scholar] [CrossRef]
- Deriemaeker, P.; Alewaeters, K.; Hebbelinck, M.; Lefevre, J.; Philippaerts, R.; Clarys, P. Nutritional Status of Flemish Vegetarians Compared with Non-Vegetarians: A Matched Samples Study. Nutrients 2010, 2, 770–780. [Google Scholar] [CrossRef]
- Schüpbach, R.; Wegmüller, R.; Berguerand, C.; Bui, M.; Herter-Aeberli, I. Micronutrient Status and Intake in Omnivores, Vegetarians and Vegans in Switzerland. Eur. J. Nutr. 2017, 56, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J. Health Effects of Vegan Diets. Am. J. Clin. Nutr. 2009, 89, 1627S–1633S. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Mokdad, A.H. Dietary Magnesium Intake in a National Sample of US Adults. J. Nutr. 2003, 133, 2879–2882. [Google Scholar] [CrossRef] [PubMed]
- Workinger, J.L.; Doyle, R.P.; Bortz, J. Challenges in the Diagnosis of Magnesium Status. Nutrients 2018, 10, 1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Masedunskas, A.; Willett, W.C.; Fontana, L. Vegetarian and Vegan Diets: Benefits and Drawbacks. Eur. Heart J. 2023, 44, 3423–3439. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Yeh, T.-L.; Shih, M.-C.; Tu, Y.-K.; Chien, K.-L. Dietary Sodium Intake and Risk of Cardiovascular Disease: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 2020, 12, 2934. [Google Scholar] [CrossRef] [PubMed]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Djukic, A. Folate-Responsive Neurologic Diseases. Pediatr. Neurol. 2007, 37, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Koeder, C.; Perez-Cueto, F.J.A. Vegan Nutrition: A Preliminary Guide for Health Professionals. Crit. Rev. Food Sci. Nutr. 2024, 64, 670–707. [Google Scholar] [CrossRef]
- Galchenko, A.V.; Ranjit, R. Vitamin A and Its Status in Vegetarians and Vegans. Probl. Biol. Med. Pharm. Chem. 2021, 24, 40–48. [Google Scholar] [CrossRef]
- Li, D.; Sinclair, A.J.; Mann, N.J.; Turner, A.; Ball, M.J. Selected Micronutrient Intake and Status in Men with Differing Meat Intakes, Vegetarians and Vegans. Asia Pac. J. Clin. Nutr. 2000, 9, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L.; Rich, S.; Rosenberg, I.; Jacques, P.; Dallal, G.; Wilson, P.W.; Selhub, J. Plasma Vitamin B-12 Concentrations Relate to Intake Source in the Framingham Offspring Study. Am. J. Clin. Nutr. 2000, 71, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Ranjit, R.; Galchenko, A.V. Vitamin B1 and Its Status in Vegetarians and Vegans. Probl. Biol. Med. Pharm. Chem. 2023, 26, 18–24. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. DRI Dietary Reference Intakes: Applications in Dietary Assessment. 4, Using the Estimated Average Requirement for Nutrient Assessment of Groups. Available online: https://www.ncbi.nlm.nih.gov/books/NBK222898/ (accessed on 27 May 2024).
- Chan, J.; Jaceldo-Siegl, K.; Fraser, G.E. Serum 25-Hydroxyvitamin D Status of Vegetarians, Partial Vegetarians, and Nonvegetarians: The Adventist Health Study-2. Am. J. Clin. Nutr. 2009, 89, 1686S–1692S. [Google Scholar] [CrossRef] [PubMed]
- WHO. Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 1 June 2024).
- Food and Agriculture; Organization of the United Nations. West African Food Composition Table. Available online: https://www.fao.org/4/i2698b/i2698b00.pdf (accessed on 1 June 2024).
- Elmadfa, I.; Meyer, A.L. Importance of Food Composition Data to Nutrition and Public Health. Eur. J. Clin. Nutr. 2010, 64, S4–S7. [Google Scholar] [CrossRef]
- Ocké, M.C.; Westenbrink, S.; Van Rossum, C.T.M.; Temme, E.H.M.; Van Der Vossen-Wijmenga, W.; Verkaik-Kloosterman, J. The Essential Role of Food Composition Databases for Public Health Nutrition—Experiences from the Netherlands. J. Food Compos. Anal. 2021, 101, 103967. [Google Scholar] [CrossRef]
Dietary Pattern | Included | Excluded |
---|---|---|
Meat Eater (ME) | all animal and plant foods | - |
Fish Eater (FE) | all plant foods, dairy, eggs, and fish | meat |
Lacto-Ovo Vegetarian (LOV) | all plant foods, dairy, and eggs | meat and fish |
VegaN (VN) | all plant foods | all animal foods |
Characteristics | Dietary Pattern | p-Value | |||
---|---|---|---|---|---|
ME n = 116 | FE n = 49 | LOV n = 116 | VN n = 189 | ||
Female gender, n (%) | 110 (94.8%) | 48 (98.0%) | 106 (91.4%) | 171 (90.5%) | 0.225 Chi-square |
Age (yrs), mean (SD) | 36.1 (11.7) | 37.6 (12.1) | 36.7 (12.1) | 38.4 (13.4) | 0.399 ANOVA |
BMI (kg/m2), mean (SD) | 22.2 (4.0) | 21.1 (3.0) | 21.9 (3.9) | 21.8 (3.8) | 0.353 ANOVA |
Menopause, n (%) (females only) | 14 (12.7%) | 10 (20.8%) | 16 (15.1%) | 37 (21.6%) | 0.212 Chi-square |
Age at menopause (yrs), mean (SD) | 49.9 (7.1) | 49.9 (5.4) | 49.1 (6.2) | 48.4 (4.5) | 0.757 ANOVA |
Dietary Patterns | |||||||
---|---|---|---|---|---|---|---|
Diet Components | U | ME n = 116 | FE n = 49 | LOV n = 116 | VN n = 189 | ANOVA p-Value | BONFERRONI’s Post Hoc a |
Total Energy | kcal | 1731 (423) | 1756 (450) | 1785 (444) | 1760 (412) | 0.820 | |
Energy (calculated) [17] | kcal | 1721 (422) | 1743 (457) | 1771 (442) | 1744 (409) | 0.849 | |
Total protein | g | 69.2 (20.6) | 65.2 (17.6) | 60.7 (15.4) | 63.5 (19.8) | 0.006 | ME vs. LOV: 0.004 |
%Energy protein | % | 16.4 (4.1) | 15.2 (3.2) | 13.9 (2.6) | 14.8 (3.8) | <0.001 | ME vs. LOV: <0.001 ME vs. VN: <0.001 |
Animal protein | g | 24.3 (21.2) | 8.7 (8.0) | 6.7 (7.7) | 0.2 (0.6) | <0.001 | ME vs. FE: <0.001 ME vs. LOV: <0.001 ME vs. VN: <0.001 FE vs. VN: <0.001 LOV vs. VN: <0.001 |
Plant protein | g | 44.9 (14.7) | 56.4 (16.0) | 54.0 (16.2) | 63.3 (19.9) | <0.001 | ME vs. FE: <0.001 ME vs. LOV: <0.001 ME vs. VN: <0.001 LOV vs. VN: <0.001 |
Total fat | g | 57.6 (22.0) | 58.1 (24.9) | 61.8 (26.7) | 57.4 (23.5) | 0.425 | |
%Energy fat | % | 29.7 (6.4) | 29.5 (8.0) | 30.6 (7.9) | 29.2 (8.3) | 0.495 | |
Animal fat | g | 17.2 (11.9) | 8.3 (7.5) | 9.0 (8.8) | 0.4 (1.2) | <0.001 | ME vs. FE: <0.001 ME vs. LOV: <0.001 ME vs. VN: <0.001 FE vs. VN: <0.001 LOV vs. VN: <0.001 |
Plant fat | g | 40.3 (21.5) | 49.7 (25.1) | 52.8 (26.0) | 56.9 (23.4) | <0.001 | ME vs. LOV: <0.001 ME vs. VN: <0.001 |
Total saturated fat | g | 17.0 (7.9) | 15.7 (8.9) | 16.5 (8.7) | 12.4 (6.5) | <0.001 | ME vs. VN: <0.001 LOV vs. VN: <0.001 |
Total monounsaturated fat | g | 24.0 (11.5) | 23.4 (11.3) | 26.6 (14.1) | 25.4 (13.2) | 0.351 | |
Total polyunsaturated fat | g | 11.1 (4.5) | 12.5 (5.1) | 12.5 (4.9) | 14.1 (5.5) | <0.001 | ME vs. VN: <0.001 LOV vs. VN: 0.033 |
Cholesterol | mg | 149.6 (113.3) | 85.1 (86.4) | 66.3 (78.1) | 2.7 (8.6) | <0.001 | ME vs. FE: <0.001 ME vs. LOV: <0.001 ME vs. VN: <0.001 FE vs. VN: <0.001 LOV vs. VN: <0.001 |
Total carbohydrate | g | 232 (65) | 240 (66) | 243 (59) | 243 (62) | 0.412 | |
%Energy carbohydrate | % | 53.9 (7.5) | 55.3 (8.0) | 55.5 (7.6) | 56.1 (7.6) | 0.117 | |
Starch | g | 154 (45) | 161 (51) | 163 (46) | 163 (52) | 0.452 | |
Soluble carbohydrate | g | 74 (33) | 74 (30) | 74 (28) | 72 (26) | 0.881 | |
%Energy sol. carbohydrate | % | 16.0 (5.1) | 15.7 (4.7) | 15.7 (4.7) | 15.6 (5.3) | 0.927 | |
Fiber | g | 29.1 (9.9) | 36.2 (11.9) | 34.3 (11.6) | 39.2 (12.9) | <0.001 | ME vs. FE: 0.003 ME vs. LOV: 0.006 ME vs. VN: <0.001 LOV vs. VN: 0.003 |
Water | g | 2408 (762) | 2347 (614) | 2302 (713) | 2452 (893) | 0.428 | |
Alcohol | g | 2.4 (4.8) | 1.8 (4.7) | 2.4 (4.9) | 2.1 (5.5) | 0.844 |
Dietary Patterns | |||||||
---|---|---|---|---|---|---|---|
Diet Components | U | ME n = 116 | FE n = 49 | LOV n = 116 | VN n = 189 | ANOVA p-Value | BONFERRONI’s Post Hoc a |
Iron | mg | 14.6 (4.5) | 17.1 (5.7) | 15.9 (5.5) | 17.9 (5.5) | <0.001 | ME vs. FE: 0.039 ME vs. VN: <0.001 LOV vs. VN: 0.009 |
Calcium | mg | 834 (278) | 824 (295) | 852 (284) | 873 (340) | 0.642 | |
Sodium | mg | 1910 (1108) | 1726 (870) | 2023 (1457) | 1481 (893) | <0.001 | ME vs. VN: 0.007 LOV vs. VN: <0.001 |
Potassium | mg | 3164 (1194) | 3355 (1117) | 3189 (1259) | 3639 (1323) | 0.003 | ME vs. VN: 0.009 |
Phosphorus | mg | 1174 (299) | 1187 (329) | 1117 (283) | 1160 (345) | 0.454 | |
Zinc | mg | 9.8 (11.4) | 10.0 (8.5) | 8.2 (2.1) | 8.6 (2.5) | 0.171 | |
Magnesium | mg | 335 (111) | 351 (111) | 345 (122) | 359 (126) | 0.375 | |
Vitamin B1 | mg | 1.4 (0.4) | 1.7 (1.0) | 1.6 (0.7) | 1.7 (0.8) | <0.001 | ME vs. FE: 0.033 ME vs. VN: <0.001 |
Vitamin B2 | mg | 1.5 (0.5) | 1.4 (0.5) | 1.3 (0.4) | 1.3 (0.4) | <0.001 | ME vs. VN: <0.001 |
Vitamin B3 | mg | 18.4 (8.3) | 16.5 (5.7) | 15.9 (6.9) | 17.8 (7.3) | 0.039 | |
Vitamin B12 | mcg | 2.65 (2.39) | 1.93 (2.50) | 0.88 (0.91) | 0.31 (0.50) | <0.001 | ME vs. FE: 0.037 ME vs. LOV: <0.001 ME vs. VN:<0.001 FE vs. LOV: <0.001 FE vs. VN: <0.001 LOV vs. VN: 0.01 |
Vitamin C | mg | 147 (90) | 154 (104) | 147 (86) | 170 (94) | 0.097 | |
Folate | mcg | 407 (143) | 469 (186) | 438 (159) | 501 (174) | <0.001 | ME vs. VN: <0.001 LOV vs. VN: 0.007 |
Retinol eq | mcg | 1006 (629) | 1021 (859) | 977 (670) | 984 (722) | 0.977 | |
Beta carotene eq | mcg | 5053 (3695) | 5534 (5123) | 5224 (4016) | 5865 (4337) | 0.359 |
LARN | ME | FE | LOV | VN | p-Value a | |
---|---|---|---|---|---|---|
BMI | ≤24.9 kg/m2 | 19.8% | 8.2% | 13.8% | 11.1% | 0.109 |
Protein b | AR (g/kg/d) 0.71 < 59 y; SDT 1.1 > 60 y | 6.9% | 8.2% | 12.1% | 11.1% | 0.525 |
Protein adjusted c | 3.4% | 4.1% | 11.2% | 9.5% | 0.086 | |
Total Fat | RI 20–35% totalEn | 19.0% | 20.4% | 22.4% | 22.8% | 0.871 |
Saturated Fat | SDT < 10% totalEn | 31.9% | 16.3% | 26.7% | 10.6% | <0.001 |
Cholesterol | SDT (mg/d) <300 | 10.3% | 4.1% | 1.7% | 0.0% | <0.001 |
Total Carbohydrate | RI 45–60% totalEn | 12.1% | 10.2% | 8.6% | 8.5% | 0.742 |
Soluble Carbohydrate | SDT < 15% totalEn | 55.2% | 57.1% | 54.3% | 49.7% | 0.695 |
Fiber | STD 12.6/1000 kcal, >25 g/d | 44.8% | 26.5% | 25.9% | 13.2% | <0.001 |
Water | AI (g/d) 2500 M; 2000 F | 28.4% | 32.7% | 37.1% | 34.4% | 0.557 |
Iron | AR (mg/d) 7 M; 10/6 F | 12.1% | 8.2% | 12.1% | 3.7% | 0.023 |
Calcium | AR (mg/d) 800 < 59 y; 1000 > 60 y | 47.4% | 59.2% | 49.1% | 51.3% | 0.561 |
Sodium | SDT (mg/d) 2000 < 59 y; 1600 > 60 y | 4.3% | 8.2% | 4.3% | 3.2% | 0.497 |
Zinc | AR (mg/d) 10 M; 8 F | 41.4% | 49.0% | 50.9% | 50.8% | 0.390 |
Magnesium | AR (mg/d) 170 | 1.7% | 0.0% | 3.4% | 2.6% | 0.559 |
Phosphorus | AR (mg/d) 580 | 2.6% | 0.0% | 0.9% | 0.5% | 0.303 |
Vitamin B1 | AR (mg/d) 1 M; 0.9 F | 11.2% | 10.2% | 7.8% | 3.7% | 0.074 |
Vitamin B2 | AR (mg/d) 1.3 M; 1.1 F | 24.1% | 28.6% | 33.6% | 40.7% | 0.023 |
Vitamin B3 | AR (mg/d) 14 | 31.0% | 36.7% | 44.8% | 28.6% | 0.027 |
Vitamin B12 | AR (mcg/d) 2.0 | 46.6% | 73.5% | 90.5% | 98.9% | <0.001 |
Vitamin C | AR (mg/d) 75 M; 60 F | 10.3% | 8.2% | 15.5% | 8.5% | 0.244 |
Folate | AR (mcg/d) 320 | 30.2% | 20.4% | 24.1% | 10.1% | <0.001 |
RE | AR (mcg/d) 500 M; 400 F | 10.3% | 22.4% | 12.1% | 19.0% | 0.072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baroni, L.; Bonetto, C.; Rizzo, G.; Galchenko, A.; Guidi, G.; Visaggi, P.; Savarino, E.; Zavoli, M.; de Bortoli, N. Nutrient Composition of Four Dietary Patterns in Italy: Results from an Online Survey (the INVITA Study). Foods 2024, 13, 2103. https://doi.org/10.3390/foods13132103
Baroni L, Bonetto C, Rizzo G, Galchenko A, Guidi G, Visaggi P, Savarino E, Zavoli M, de Bortoli N. Nutrient Composition of Four Dietary Patterns in Italy: Results from an Online Survey (the INVITA Study). Foods. 2024; 13(13):2103. https://doi.org/10.3390/foods13132103
Chicago/Turabian StyleBaroni, Luciana, Chiara Bonetto, Gianluca Rizzo, Alexey Galchenko, Giada Guidi, Pierfrancesco Visaggi, Edoardo Savarino, Martina Zavoli, and Nicola de Bortoli. 2024. "Nutrient Composition of Four Dietary Patterns in Italy: Results from an Online Survey (the INVITA Study)" Foods 13, no. 13: 2103. https://doi.org/10.3390/foods13132103
APA StyleBaroni, L., Bonetto, C., Rizzo, G., Galchenko, A., Guidi, G., Visaggi, P., Savarino, E., Zavoli, M., & de Bortoli, N. (2024). Nutrient Composition of Four Dietary Patterns in Italy: Results from an Online Survey (the INVITA Study). Foods, 13(13), 2103. https://doi.org/10.3390/foods13132103