Effect of Pretreatments on the Chemical, Bioactive and Physicochemical Properties of Cinnamomum camphora Seed Kernel Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Sample Pretreatment
2.3. Preparation and Purification of Ethanol Extracts
2.4. Yield Calculation
2.5. Appearance
2.5.1. Scanning Electron Microscopy (SEM)
2.5.2. Color Parameter Determination
2.6. Phytochemical Composition Determination
2.6.1. Total Phenolic Content
2.6.2. Total Flavonoid Content
2.6.3. Total Saponins Content
2.7. HPLC-ESI-QTOF-MS2 Analysis
2.8. Identification of Volatile Compounds
2.9. Measurement of In Vitro Antioxidant Activities
2.9.1. DPPH Radical Scavenging Activity
2.9.2. ABTS Radical Scavenging Activity
2.9.3. Ferric Reducing Antioxidant Power (FRAP)
2.9.4. Cupric Ion Reducing Activity (CUPRAC)
2.10. Identification of Volatile Compounds
2.10.1. Emulsion Preparation
2.10.2. Appearance Analysis
2.10.3. Measurement of Lipid Peroxide Value (POV)
2.10.4. Measurement of 2-Thiobabituric Acid-Reactive Substances (TBARS) Content
2.10.5. Measurement of Droplet Size and Zeta Potential
2.11. Statistical Analysis
3. Results and Discussion
3.1. Extraction Efficiency
3.2. Appearance
3.3. Bioactive Compounds
3.4. UHPLC-ESI-QTOF-MS2
3.5. Volatile Compounds Composition
3.6. Antioxidant Capacities
3.7. Lipid Antioxidant Assay
3.7.1. Emulsion Appearance
3.7.2. POV
3.7.3. TBARS Value
3.7.4. Droplet Size and Zeta Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaithiyalingam, M.; Sumathi, D.L.; Sabarathinam, S. Isolation and in silico study of curcumin from Curcuma longa and its anti-diabetic activity. Appl. Biochem. Biotechnol. 2022, 195, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, C.; Peng, Z.; Sun, H. Feasibility study on early identification of freshness decay of fresh-cut kiwifruit during cold chain storage by Fourier transform-near infrared spectroscopy combined with chemometrics. J. Food Sci. 2022, 87, 3138–3150. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Bazer, F.W.; Lim, W.; Song, G. The O-methylated isoflavone, formononetin, inhibits human ovarian cancer cell proliferation by sub G0/G1 cell phase arrest through PI3K/AKT and ERK1/2 inactivation. J. Cell. Biochem. 2018, 119, 7377–7387. [Google Scholar] [CrossRef] [PubMed]
- Sehrawat, R.; Rathee, P.; Akkol, E.K.; Khatkar, S.; Lather, A.; Redhu, N.; Khatkar, A. Phenolic acids-Versatile natural moiety with numerous biological applications. Curr. Top. Med. Chem. 2022, 22, 1472–1484. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xie, C.; Zhan, T.; Li, L.; Liu, S.; Huang, Y.; Huang, S. Genome-wide identification and functional characterization of the trans-isopentenyl diphosphate synthases gene family in Cinnamomum camphora. Front. Plant Sci. 2021, 12, 708697. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Gong, X.; Zeng, Z.; Xia, J.; Ma, M.; Zhao, J.; Gong, D. Geographic pattern of variations in chemical composition and nutritional value of Cinnamomum camphora seed kernels from China. Foods 2023, 12, 2630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yan, X.; Wu, S.; Ma, M.; Yu, P.; Gong, D.; Zeng, Z. Ethanol extracts from Cinnamomum camphora seed kernel: Potential bioactivities as affected by alkaline hydrolysis and simulated gastrointestinal digestion. Food Res. Int. 2020, 137, 109363. [Google Scholar] [CrossRef]
- Zhu, Q.; Yang, Y.; Zeng, Z.; Peng, T.; Yan, X.; Zhao, J.; Gong, D. Effect of processing method on chemical composition, physicochemical property, antioxidant activity and volatile compound of Cinnamomum camphora seed kernel oil. Ind. Crops Prod. 2023, 201, 116907. [Google Scholar] [CrossRef]
- Zhang, G.; Yan, X.; Xia, J.; Zhao, J.; Ma, M.; Yu, P.; Zeng, Z. Assessment of the effect of ethanol extracts from Cinnamomum camphora seed kernel on intestinal inflammation using simulated gastrointestinal digestion and a Caco-2/RAW264.7 co-culture system. Food Funct. 2021, 12, 9197–9210. [Google Scholar] [CrossRef]
- Yan, X.; Liang, S.; Peng, T.; Zhang, G.; Zeng, Z.; Yu, P.; Deng, S. Influence of phenolic compounds on physicochemical and functional properties of protein isolate from Cinnamomum camphora seed kernel. Food Hydrocoll. 2020, 102, 105612. [Google Scholar] [CrossRef]
- Rani, H.; Sharma, S.; Bala, M. Technologies for extraction of oil from oilseeds and other plant sources in retrospect and prospects: A review. J. Food Process Eng. 2021, 44, 13851. [Google Scholar] [CrossRef]
- Vovk, H.; Karnpakdee, K.; Ludwig, R.; Nosenko, T. Enzymatic pretreatment of plant cells for oil extraction. Food Technol. Biotechnol. 2023, 61, 160–178. [Google Scholar] [CrossRef] [PubMed]
- Mat Yusoff, M.; Gordon, M.H.; Niranjan, K. Aqueous enzyme assisted oil extraction from oilseeds and emulsion de-emulsifying methods: A review. Trends Food Sci. Technol. 2015, 41, 60–82. [Google Scholar] [CrossRef]
- Jaski, J.M.; Abrantes, K.K.B.; Zanqui, A.B.; Stevanato, N.; da Silva, C.; Barão, C.E.; Cardozo-Filho, L. Simultaneous extraction of sunflower oil and active compounds from olive leaves using pressurized propane. Curr. Res. Food Sci. 2022, 5, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.M.; Guedes, J.A.C.; de Brito, E.S.; Ferreira, S.R.S. Valorization of tamarind seeds using high-pressure extraction methods to obtain rich fractions in fatty acid and phenolic compounds. J. Supercrit. Fluids 2022, 183, 105556. [Google Scholar] [CrossRef]
- Junyusen, T.; Chatchavanthatri, N.; Liplap, P.; Junyusen, P.; Phan, V.M.; Nawong, S. Effects of extraction processes on the oxidative stability, bioactive phytochemicals, and antioxidant activity of crude rice bran oil. Foods 2022, 11, 1143. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wan, D.; Peng, T.; Yang, Y.; Wen, X.; Yan, X.; Zeng, Z. Acute oral toxicity and genotoxicity test and evaluation of Cinnamomum camphora seed kernel oil. Foods 2023, 12, 293. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.B.; Li, Y.J.; Ma, S.Y.; Jiang, J.H.; Liu, H.M.; Cai, X.S.; Wang, X.D. Effects of cold-pressing conditions on physicochemical and functional properties of cold-pressed tigernut oil and starch isolated from press-cake. Int. J. Food Sci. Technol. 2021, 57, 662–675. [Google Scholar] [CrossRef]
- Shi, L.K.; Zheng, L.; Liu, R.J.; Chang, M.; Jin, Q.Z.; Wang, X.G. Chemical characterization, oxidative stability, and in vitro antioxidant capacity of sesame oils extracted by supercritical and subcritical techniques and conventional methods: A comparative study using chemometrics. Eur. J. Lipid Sci. Technol. 2017, 120, 1700326. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, P.; Huang, J.; Yang, B.; Ma, M.; Yu, P.; Deng, S. Antioxidant, antidiabetic and identification of phenolic constituents from Potentilla discolor Bge. Eur. Food Res. Technol. 2020, 246, 2007–2016. [Google Scholar] [CrossRef]
- Zhao, J.; Peng, T.; Liang, S.; Ma, M.; Zeng, Z.; Yu, P.; Deng, S. Antibacterial activity and action mechanism of microencapsulated dodecyl gallate with methyl-β-cyclodextrin. Food Control 2020, 109, 106953. [Google Scholar] [CrossRef]
- Athira, K.; Sooraj, N.P.; Jaishanker, R.; Kumar, V.S.; Sajeev, C.R.; Pillai, M.S.; Govind, A.; Dadhwal, V.K. Quantitative representation of floral colors. Color Res. Appl. 2019, 44, 426–432. [Google Scholar] [CrossRef]
- Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R. Sideritis galatica Bornm.: A source of multifunctional agents for the management of oxidative damage, Alzheimer’s’s and diabetes mellitus. J. Funct. Foods 2014, 11, 538–547. [Google Scholar] [CrossRef]
- Yan, X.; Gao, Y.; Liu, S.; Zhang, G.; Zhao, J.; Cheng, D.; Gong, D. Covalent modification by phenolic extract improves the structural properties and antioxidant activities of the protein isolate from Cinnamomum camphora seed kernel. Food Chem. 2021, 352, 129377. [Google Scholar] [CrossRef]
- He, J.; Wu, X.; Yu, Z. Microwave pretreatment of camellia (Camellia oleifera Abel.) seeds: Effect on oil flavor. Food Chem. 2021, 364, 130388. [Google Scholar] [CrossRef]
- Pham, L.B.; Wang, B.; Zisu, B.; Adhikari, B. Covalent modification of flaxseed protein isolate by phenolic compounds and the structure and functional properties of the adducts. Food Chem. 2019, 293, 463–471. [Google Scholar] [CrossRef]
- Song, J.; Seol, N.G.; Kim, M.J.; Lee, J. Riboflavin phototransformation on the changes of antioxidant capacities in phenolic compounds. J. Food Sci. 2016, 81, C1914–C1920. [Google Scholar] [CrossRef] [PubMed]
- Atere, T.G.; Akinloye, O.A.; Ugbaja, R.N.; Ojo, D.A.; Dealtry, G. In vitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf. Food Sci. Hum. Wellness 2018, 7, 266–272. [Google Scholar] [CrossRef]
- Cheng, C.; Yu, X.; McClements, D.J.; Huang, Q.; Tang, H.; Yu, K.; Deng, Q. Effect of flaxseed polyphenols on physical stability and oxidative stability of flaxseed oil-in-water nanoemulsions. Food Chem. 2019, 301, 125207. [Google Scholar] [CrossRef]
- Khoozani, A.A.; Bekhit, A.E.-D.A.; Birch, J. Effects of different drying conditions on the starch content, thermal properties and some of the physicochemical parameters of whole green banana flour. Int. J. Biol. Macromol. 2019, 130, 938–946. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Abushelaibi, A.; Alam, A. Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: A detailed review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1125–1140. [Google Scholar] [CrossRef]
- Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.-B.; Wierenga, P.A.; Gruppen, H. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds. Food Chem. 2009, 117, 160–168. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, G.; Zhao, J.; Ma, M.; Bao, X.; Zeng, Z.; Gong, D. Influence of phenolic compounds on the structural characteristics, functional properties and antioxidant activities of Alcalase-hydrolyzed protein isolate from Cinnamomum camphora seed kernel. LWT 2021, 148, 111799. [Google Scholar] [CrossRef]
- Li, J.; Sun, D.; Qian, L.; Liu, Y. Subcritical butane extraction of wheat germ oil and its deacidification by molecular distillation. Molecules 2016, 21, 1675. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Sitohy, M.Z.; Moersel, J.-T. Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: Impact of processing on composition and quality of oil and meal. Eur. Food Res. Technol. 2007, 226, 1445–1458. [Google Scholar] [CrossRef]
- Liu, H.; Wu, B.; Liu, Y.; Huang, M.; Xu, Y. A discussion on printing color difference tolerance by CIEDE2000 color difference formula. Appl. Mech. Mater. 2013, 262, 96–99. [Google Scholar] [CrossRef]
- Guerrini, L.; Maioli, F.; Picchi, M.; Zanoni, B.; Parenti, A.; Canuti, V. Kinetic modeling of a Sangiovese wine’s chemical and physical parameters during one-year aging in different tank materials. Eur. Food Res. Technol. 2022, 248, 1525–1539. [Google Scholar] [CrossRef]
- Llaudy, M.D.C.; Canals, R.; González-Manzano, S.; Canals, J.M.; Santos-Buelga, C.; Zamora, F. Influence of micro-oxygenation treatment before oak aging on phenolic compounds composition, astringency, and color of red wine. J. Agric. Food Chem. 2006, 54, 4246–4252. [Google Scholar] [CrossRef]
- Nehmeh, M.; Rodriguez-Donis, I.; Cavaco-Soares, A.; Evon, P.; Gerbaud, V.; Thiebaud-Roux, S. Bio-refinery of oilseeds: Oil extraction, secondary metabolites separation towards protein meal valorisation—A review. Processes 2022, 10, 841. [Google Scholar] [CrossRef]
- Coklar, H.; Akbulut, M.; Kilinc, S.; Yildirim, A.; Alhassan, I. Effect of freeze, oven and microwave pretreated oven drying on color, browning index, phenolic compounds and antioxidant activity of hawthorn (Crataegus orientalis) fruit. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 449–456. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, W.; Zhao, T.; Li, F.; Zhang, M.; Li, J.; Yang, L. Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry. Food Chem. 2016, 194, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, J.; Lu, Y.; Zhao, S.; Yu, Q.; Wang, X.; Jiang, Y. Uncovering potential anti-neuroinflammatory components of Modified Wuziyanzong Prescription through a target-directed molecular docking fingerprint strategy. J. Pharm. Biomed. Anal. 2018, 156, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Devkota, K.P.; Lenta, B.N.; Wansi, J.D.; Sewald, N. Antibacterial constituents from Leucosceptrum canum. Phytochem. Lett. 2010, 3, 24–28. [Google Scholar] [CrossRef]
- Materska, M.; Konopacka, M.; Rogoliński, J.; Ślosarek, K. Antioxidant activity and protective effects against oxidative damage of human cells induced by X-radiation of phenolic glycosides isolated from pepper fruits Capsicum annuum L. Food Chem. 2015, 168, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Mochizuki, M.; Okada, M.; Hiramitsu, M.; Morimitsu, Y.; Osawa, T. Isolation of antioxidative phenolic glucosides from lemon juice and their suppressive effect on the expression of blood adhesion molecules. Biosci. Biotechnol. Biochem. 2014, 71, 1911–1919. [Google Scholar] [CrossRef] [PubMed]
- Ayers, S.; Zink, D.L.; Mohn, K.; Powell, J.S.; Brown, C.M.; Murphy, T.; Singh, S.B. Flavones from Struthiola argentea with anthelmintic activity in vitro. Phytochemistry 2008, 69, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Sun, H.; Zhang, L.; Hou, H.; Zhang, L.; Zhao, F.; Li, J. Isocorydine targets the drug-resistant cellular side population through PDCD4-related apoptosis in hepatocellular carcinoma. Mol. Med. 2012, 18, 1136–1146. [Google Scholar] [CrossRef]
- Zahari, A.; Ablat, A.; Omer, N.; Nafiah, M.A.; Sivasothy, Y.; Mohamad, J.; Awang, K. Ultraviolet-visible study on acid-base equilibria of aporphine alkaloids with antiplasmodial and antioxidant activities from Alseodaphne corneri and Dehaasia longipedicellata. Sci. Rep. 2016, 6, 21517. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, Q.; Lu, Y.; Li, Y.; Li, T.; Zhou, B.; Qiao, L. Effect of purslane (Portulaca oleracea L.) extract on anti-browning of fresh-cut potato slices during storage. Food Chem. 2019, 283, 445–453. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Yang, J.; Yang, C.; Guo, M. Screening and characterisation of potential antioxidant, hypoglycemic and hypolipidemic components revealed in Portulaca oleracea via multi-target affinity ultrafiltration LC-MS and molecular docking. Phytochem. Anal. 2021, 33, 272–285. [Google Scholar] [CrossRef]
- Gomes, D.A.; Joubert, A.M.; Visagie, M.H. In vitro effects of papaverine on cell proliferation, reactive oxygen species, and cell cycle progression in cancer cells. Molecules 2021, 26, 6388. [Google Scholar] [CrossRef] [PubMed]
- Tamada, K.; Nakajima, S.; Ogawa, N.; Inada, M.; Shibasaki, H.; Sato, A.; Tanuma, S. Papaverine identified as an inhibitor of high mobility group box 1/receptor for advanced glycation end-products interaction suppresses high mobility group box 1-mediated inflammatory responses. Biochem. Biophys. Res. Commun. 2019, 511, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhai, R.; Li, Y.; Yuan, X.; Liu, Z.-H.; Jin, M. Understanding the structural characteristics of water-soluble phenolic compounds from four pretreatments of corn stover and their inhibitory effects on enzymatic hydrolysis and fermentation. Biotechnol. Biofuels 2020, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.-N.; Sun, B.-G.; Tian, D.-T.; Qu, W.-Y. Analysis of volatile compounds in traditional smoke-cured bacon (CSCB) with different fiber coatings using SPME. Food Chem. 2008, 110, 233–238. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Q.; Liu, Y.; Huang, J.; Wang, X.; Mao, W.; Wang, S. Changes in volatile compounds of peanut oil during the roasting process for production of aromatic roasted peanut oil. J. Food Sci. 2011, 76, C404–C412. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.Q.; Liu, W.Y.; Xi, W.P.; Cao, D.; Zhang, H.J.; Ding, M.; Huang, K.X. Comparison of volatile compounds of hot-pressed, cold-pressed and solvent-extracted flaxseed oils analyzed by SPME-GC/MS combined with electronic nose: Major volatiles can be used as markers to distinguish differently processed oils. Eur. J. Lipid Sci. Technol. 2014, 117, 320–330. [Google Scholar] [CrossRef]
- Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florêncio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208. [Google Scholar] [CrossRef]
- Lucas-Gonzalez, R.; Navarro-Coves, S.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M. Assessment of polyphenolic profile stability and changes in the antioxidant potential of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion. Ind. Crops Prod. 2016, 94, 774–782. [Google Scholar] [CrossRef]
- Peschel, W.; Dieckmann, W.; Sonnenschein, M.; Plescher, A. High antioxidant potential of pressing residues from evening primrose in comparison to other oilseed cakes and plant antioxidants. Ind. Crops Prod. 2007, 25, 44–54. [Google Scholar] [CrossRef]
- Zamani-Ghaleshahi, A.; Rajabzadeh, G.; Ezzatpanah, H.; Ghavami, M. Biopolymer coated nanoliposome as enhanced carrier system of perilla oil. Food Biophys. 2020, 15, 273–287. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Sun, Y.; Wang, C.; Guo, M. Fabrication and characterization of a cannabidiol-loaded emulsion stabilized by a whey protein-maltodextrin conjugate and rosmarinic acid complex. J. Dairy Sci. 2022, 105, 6431–6446. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Murtaza, A.; Iqbal, A.; Fu, J.; Ali, S.W.; Iqbal, M.A.; Hu, W. Eugenol emulsions affect the browning processes, and microbial and chemical qualities of fresh-cut Chinese water chestnut. Food Biosci. 2020, 38, 100716. [Google Scholar] [CrossRef]
- Taghvaei, M.; Jafari, S.M.; Mahoonak, A.S.; Nikoo, A.M.; Rahmanian, N.; Hajitabar, J.; Meshginfar, N. The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil. LWT-Food Sci. Technol. 2014, 56, 124–130. [Google Scholar] [CrossRef]
- da Costa, G.B.; Fernandes, D.D.S.; Gomes, A.A.; de Almeida, V.E.; Veras, G. Using near infrared spectroscopy to classify soybean oil according to expiration date. Food Chem. 2016, 196, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.-J.; Yang, D.; Shin, J.-A.; Kim, S.-J.; Hong, S.-T.; Lee, J.H.; Lee, K.-T. Oxidative comparison of emulsion systems from fish oil-based structured lipid versus physically blended lipid with purple-fleshed sweet potato (Ipomoea batatas L.) extracts. J. Agric. Food Chem. 2011, 60, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Vaisali, C.; Belur, P.D.; Regupathi, I. Comparison of antioxidant properties of phenolic compounds and their effectiveness in imparting oxidative stability to sardine oil during storage. LWT-Food Sci. Technol. 2016, 69, 153–160. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Zhang, X.; Qu, Z.; Gao, Y.; Li, Q.; Yu, X. Mechanism, indexes, methods, challenges, and perspectives of edible oil oxidation analysis. Crit. Rev. Food Sci. Nutr. 2021, 63, 4901–4915. [Google Scholar] [CrossRef]
- Vandemoortele, A.; Heynderickx, P.M.; Leloup, L.; De Meulenaer, B. Kinetic modeling of malondialdehyde reactivity in oil to simulate actual malondialdehyde formation upon lipid oxidation. Food Res. Int. 2021, 140, 110063. [Google Scholar] [CrossRef]
- Tong, Q.; Yi, Z.; Ma, L.; Tan, Y.; Chen, X.; Cao, X.; Li, X. Polysaccharide-dependent depletion strategy to fabricate pickering emulsion gels. Food Hydrocoll. 2023, 145, 109175. [Google Scholar] [CrossRef]
- Bock, A.; Kieserling, H.; Rohn, S.; Steinhäuser, U.; Drusch, S. Impact of phenolic acid derivatives on β-Lactoglobulin stabilized oil-water-interfaces. Food Biophys. 2022, 17, 508–522. [Google Scholar] [CrossRef]
- Naji-Tabasi, S.; Emadzadeh, B.; Kadkhodaee, R. Effects of pectin and xanthan gum on induced-flocculation phenomenon in an acidic model emulsion system. J. Dispers. Sci. Technol. 2018, 40, 256–263. [Google Scholar] [CrossRef]
- Udomrati, S.; Cheetangdee, N.; Gohtani, S.; Surojanametakul, V.; Klongdee, S. Emulsion stabilization mechanism of combination of esterified maltodextrin and Tween 80 in oil-in-water emulsions. Food Sci. Biotechnol. 2019, 29, 387–392. [Google Scholar] [CrossRef] [PubMed]
SE | AE | CP | SCFE | |
---|---|---|---|---|
Purified extract weight (g) | 1.823 ± 0.007 c | 2.613 ± 0.097 b | 1.592 ± 0.030 d | 3.654 ± 0.121 a |
Purified extract yield (%) | 0.91 ± 0.00 c | 1.31 ± 0.05 b | 0.80 ± 0.02 d | 1.83 ± 0.06 a |
SE | CP | AE | SCFE | |
---|---|---|---|---|
SE | - | |||
CP | 10.55 | - | ||
AE | 16.50 | 8.16 | - | |
SCFE | 12.11 | 8.97 | 10.36 | - |
SE | AE | CP | SCFE | |
---|---|---|---|---|
Total phenols content (mg GAE/g dw) | 346.88 ± 3.30 c | 347.13 ± 4.13 c | 359.25 ± 0.56 b | 370.76 ± 1.59 a |
Total flavonoid content (mg RE/g dw) | 303.06 ± 7.04 c | 370.36 ± 8.06 a | 350.12 ± 16.17 a | 337.90 ± 5.68 ab |
Total saponin content (mg Rb1E/g dw) | 49.26 ± 2.53 a | 29.50 ± 2.22 c | 15.19 ± 2.23 d | 37.61 ± 2.29 b |
Peaks | Rt (min) | Error (ppm) | Type of Compound | [M-H]- (m/z) | MS/MS (m/z) | Peak Area Percentage | Tentative Identification | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|
SE | CP | AE | SCFE | ||||||||
1 | 7.017 | 0.4 | Flavonoid | 477.1626 | 179.0568, 221.0678, 315.1101 | 1.10 | 1.39 | 0.92 | 0.45 | Isorhamnetin-3-O-β-D-glucoside | [24] |
2 | 7.754 | 0.5 | Flavonoid | 923.3467 | 315.1090, 461.1683, 631.2275 | 4.69 | 6.49 | 3.45 | 4.75 | 3-[(6-deoxy-α-L-mannopyranosyl)oxy]-5,7-dihydroxy-2-(4′-methoxy)-6,7,8-trihydroxy-4H-1-benzopyran-4-one dimers | - |
3 | 8.229 | 0.4 | Phenolic acid | 341.0882 | 135.0450, 179.0349, 326.0873 | 0.65 | 0.50 | 0.73 | 0.55 | Caffeic acid 4-O-glucoside | [24] |
4 | 8.809 | 0.9 | Phenolic acid | 711.2209 | 193.0505, 355.1044, 401.1102 | 4.02 | 4.47 | 5.15 | 4.79 | 5-(3,5-dihydroxy-1-(2′-carboxyl)-butyl)-phenyl β-D-glucopyranosiduronic acid dirhamnoside | - |
5 | 9.114 | 0.8 | Phenolic acid | 771.2403 | 223.0606, 385.1142, 431.1201, 589.2062 | 3.19 | 5.09 | 5.77 | 7.57 | Sinapoylglucose dimers | [10,24] |
6 | 9.325 | 1.1 | Flavonoid | 341.0871 | 238.8910, 293.1234, 326.1390 | 1.62 | 2.35 | 1.43 | 2.05 | 7,3′,4′,5′-tetramethoxyflavone | - |
7 | 10.542 | 0.0 | Alkaloid | 1409.6588 | 340.1563, 386.1617, 727.3298, 1068.4936 | 13.90 | 14.53 | 13.89 | 13.30 | Isocorydine hydrochloride tetramers | - |
8 | 10.977 | 1.2 | Alkaloid | 663.1973 | 340.1568, 386.1618 | 2.80 | 2.85 | 3.08 | 3.94 | Isocorydine hydrochloride diglucoside | - |
9 | 13.085 | 1.2 | Alkaloid | 206.0825 | 119.0502, 163.0404 | 0.42 | 0.24 | 0.35 | 0.18 | N-acetyl-L-phenylalanine | - |
10 | 13.313 | −0.1 | Alkaloid | 338.1406 | 167.0513, 209.0611, 237.0574, 265.0520, 323.1178 | 9.82 | 8.62 | 7.13 | 9.99 | Papaverine | [7,9,10] |
Phenolic compounds | 15.28 | 20.29 | 17.45 | 20.17 | |||||||
Alkaloids | 26.94 | 26.24 | 24.44 | 27.41 | |||||||
Total | 42.22 | 46.53 | 41.89 | 47.58 |
No. | Groups | Compounds | Formula | m/z | CP | SE | AE | SCFE |
---|---|---|---|---|---|---|---|---|
1 | Esters | 1,3-Benzodioxole-5-carboxylic acid methyl ester | C9H8O4 | 149 | nd | nd | 0.022 ± 0.000 | nd |
2 | 2-Propyn-1-ol acetate | C5H6O2 | 98 | nd | nd | nd | 10.533 ± 0.035 | |
3 | Acetic acid hydroxy-ethyl ester | C4H8O3 | 104 | nd | nd | nd | 7.306 ± 0.026 | |
4 | Benzoic acid 4-methoxy-methyl ester | C9H10O3 | 166 | nd | nd | nd | 0.045 ± 0.000 | |
5 | Decanoic acid methyl ester | C11H22O2 | 186 | 0.029 ± 0.016 ab | 0.120 ± 0.088 a | 0.035 ± 0.017 ab | 0.034 ± 0.021 ab | |
6 | Dodecanoic acid methyl ester | C13H26O2 | 214 | 0.025 ± 0.007 b | 0.434 ± 0.020 a | 0.024 ± 0.002 b | 0.017 ± 0.007 bc | |
7 | isocyanato-methane | C2H3NO | 56.1 | nd | 1.393 ± 0.007 | nd | nd | |
8 | Oxalic acid allyl isobutyl ester | C9H14O4 | 186 | 8.792 ± 0.046 b | nd | 6.673 ± 0.271 c | 26.415 ± 0.092 a | |
9 | Phthalic acid 3,5-dimethylphenyl 4-formylphenyl ester | C23H18O5 | 374 | nd | nd | nd | 0.016 ± 0.005 | |
10 | p-Toluic acid 4-cyanophenyl ester | C15H11NO2 | 237 | nd | 0.003 ± 0.001 | nd | nd | |
11 | α-Amino-γ-butyrolactone | C4H7NO2 | 101 | nd | nd | 10.497 ± 0.427 | nd | |
12 | Acids | Propanoic acid anhydride | C6H10O3 | 130 | nd | nd | 14.222 ± 0.578 | nd |
13 | Ketones | 3-Pentanone | C5H10O | 86 | nd | 18.781 ± 0.086 b | 48.413 ± 1.967 a | nd |
14 | 5-Hydroxy-4-methyl-6-hepten-3-one | C8H14O2 | 142 | 38.398 ± 0.209 | nd | nd | nd | |
15 | 2-(formyloxy)-1-phenyl-ethanone | C9H8O3 | 164 | 0.002 ± 0.000 b | 0.006 ± 0.001 a | 0.003 ± 0.000 a | 0.001 ± 0.000 c | |
16 | Hydrocarbons | 1,3-Dioxolane | C3H6O2 | 73 | nd | nd | 0.004 ± 0.000 | nd |
17 | 2-methyl butane | C5H12 | 57.1 | nd | 77.774 ± 0.358 | nd | nd | |
18 | Methyl-cyclopentane | C6H12 | 84 | 1.792 ± 0.450 a | nd | 1.150 ± 0.401 a | 0.957 ± 0.002 ab | |
19 | Ethane | C2H6 | 30.1 | nd | nd | nd | 1.283 ± 0.424 | |
20 | Ethylene | C2H4 | 28 | 0.905 ± 0.005 | nd | nd | nd | |
21 | 3-methyl-pentane | C6H14 | 86 | 0.202 ± 0.001 b | nd | 0.424 ± 0.017 a | nd | |
22 | 2-methyl-1-nitro-propane | C4H9NO2 | 103 | nd | 0.181 ± 0.111 | nd | nd | |
23 | Alcohols | 5,5-dioxide 3,5-Dithiahexanol | C4H10O3S2 | 170 | nd | 0.485 ± 0.323 b | 1.036 ± 0.715 a | nd |
24 | α-[1-(ethylmethylamino)ethyl]-benzenemethanol | C12H19NO | 193 | nd | nd | nd | 13.702 ± 0.047 | |
25 | Aldehydes | 2-Propenal | C3H4O | 56.1 | nd | 0.823 ± 0.004 b | nd | 1.132 ± 0.005 a |
26 | 2,2-dimethyl-propanal | C5H10O | 86 | 7.998 ± 0.043 c | nd | 10.824 ± 0.440 a | 8.709 ± 0.031 b | |
27 | Heterocyclics | 5-Hydroxy-7-methoxy-2-methyl-3-phenyl-4-chromenone | C17H14O4 | 282 | nd | nd | nd | 0.003 ± 0.000 |
28 | 5-Methyl-2-(2-methyl-2-tetrahydrofuryl)tetrahydrofuran | C10H18O2 | 170 | nd | nd | nd | 0.021 ± 0.000 | |
29 | Others | Butanenitrile | C4H7N | 69 | nd | nd | nd | 7.886 ± 0.028 |
30 | Bis(1,1-dimethylethyl)-diazene | C8H18N2 | 142 | 13.289 ± 0.070 | nd | nd | nd | |
31 | Hydrazine | H4N2 | 32 | 27.566 ± 0.151 a | nd | nd | 21.940 ± 0.278 b | |
32 | Hydrogen azide | HN3 | 43.1 | nd | nd | 6.672 ± 2.349 | nd |
SE | AE | CP | SCFE | |
---|---|---|---|---|
DPPH radical (mg Trolox/g dw) | 200.58 ± 1.82 a | 203.22 ± 2.82 a | 158.19 ± 10.97 b | 200.00 ± 1.52 a |
ABTS radical (mg Trolox/g dw) | 607.95 ± 5.77 c | 618.90 ± 11.54 c | 656.52 ± 14.09 b | 702.24 ± 19.18 a |
FRAP (mg Trolox/g dw) | 1296.33 ± 45.81 a | 1326.33 ± 49.85 a | 1336.08 ± 48.87 a | 1328.38 ± 47.04 a |
CUPRAC (mg Trolox/g dw) | 1205.28 ± 7.99 c | 1225.78 ± 14.42 c | 1418.12 ± 2.99 b | 1455.41 ± 16.94 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Wang, Z.; Zhang, M.; Yan, X.; Xia, J.; Zhao, J.; Yang, Y.; Gao, X.; Wu, Q.; Gong, D.; et al. Effect of Pretreatments on the Chemical, Bioactive and Physicochemical Properties of Cinnamomum camphora Seed Kernel Extracts. Foods 2024, 13, 2064. https://doi.org/10.3390/foods13132064
Wang P, Wang Z, Zhang M, Yan X, Xia J, Zhao J, Yang Y, Gao X, Wu Q, Gong D, et al. Effect of Pretreatments on the Chemical, Bioactive and Physicochemical Properties of Cinnamomum camphora Seed Kernel Extracts. Foods. 2024; 13(13):2064. https://doi.org/10.3390/foods13132064
Chicago/Turabian StyleWang, Pengbo, Zhixin Wang, Manqi Zhang, Xianghui Yan, Jiaheng Xia, Junxin Zhao, Yujing Yang, Xiansi Gao, Qifang Wu, Deming Gong, and et al. 2024. "Effect of Pretreatments on the Chemical, Bioactive and Physicochemical Properties of Cinnamomum camphora Seed Kernel Extracts" Foods 13, no. 13: 2064. https://doi.org/10.3390/foods13132064
APA StyleWang, P., Wang, Z., Zhang, M., Yan, X., Xia, J., Zhao, J., Yang, Y., Gao, X., Wu, Q., Gong, D., Yu, P., & Zeng, Z. (2024). Effect of Pretreatments on the Chemical, Bioactive and Physicochemical Properties of Cinnamomum camphora Seed Kernel Extracts. Foods, 13(13), 2064. https://doi.org/10.3390/foods13132064