Unveiling the Potential of Lactic Acid Bacteria from Serbian Goat Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cheese Manufacture and Sampling
2.2. Microbial Isolation and Identification
2.3. Safety Evaluation
2.3.1. Hemolytic Activity
2.3.2. Resistance to Antibiotics
2.4. Technological Features
2.4.1. Growth in the Presence of Methylene Blue
2.4.2. Proteolytic Activity of Tested LAB
2.4.3. Milk Acidification and Curd Formation
2.4.4. Diacetyl Production
2.4.5. Biogenic Amine Production
2.4.6. Detection of Antagonistic Potential
2.4.7. Biofilm Formation Assay and Quantification
3. Results and Discussion
3.1. Enumeration, Isolation, and Identification
3.2. Safety Evaluation
3.3. Technological Features
3.3.1. Growth in Methylene Blue
3.3.2. Proteolytic Activity
3.3.3. Milk Acidification and Curd Formation
3.3.4. Diacetyl Production
3.3.5. Biogenic Amine Production
3.3.6. Antagonistic Potential
3.3.7. Biofilm Formation Ability of Tested LAB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- LKaisy, A.; Al-Saadi, J.S.; Al-Rikabi, A.K.J.; Altemimi, A.B.; Hesarinejad, M.A.; Abedelmaksoud, T.G. Exploring the health benefits and functional properties of goat milk proteins. Food Sci. Nutr. 2023, 11, 5641–5656. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Jeanjulien, C.; Siddique, A. Factors Affecting Sensory Quality of Goat Milk Cheeses: A Review. Adv. Dairy. Res. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Pazzola, M.; Amalfitano, N.; Bittante, G.; Dettori, M.L.; Vacca, G.M. Composition, coagulation properties, and predicted cheesemaking traits of bulk goat milk from different farming systems, breeds, and stages of production. J. Dairy. Sci. 2022, 105, 6724–6738. [Google Scholar] [CrossRef] [PubMed]
- Hayaloglu, A.A.; Tolu, C.; Yasar, K.; Sahingil, D. Volatiles and sensory evaluation of goat milk cheese Gokceada as affected by goat breeds (Gokceada and Turkish Saanen) and starter culture systems during ripening. J. Dairy. Sci. 2013, 96, 2765–2780. [Google Scholar] [CrossRef] [PubMed]
- Pazzola, M.; Stocco, G.; Dettori, M.L.; Bittante, G.; Vacca, G.M. Effect of goat milk composition on cheesemaking traits and daily cheese production. J. Dairy. Sci. 2019, 102, 3947–3955. [Google Scholar] [CrossRef] [PubMed]
- Aleksic, B.; Udovicki, B.; Kovacevic, J.; Miloradovic, Z.; Djekic, I.; Miocinovic, J.; Tomic, N.; Smigic, N. Microbiological Assessment of Dairy Products Produced by Small-Scale Dairy Producers in Serbia. Foods 2024, 13, 1456. [Google Scholar] [CrossRef]
- Muruzović, M.Ž.; Mladenović, K.G.; Žugić-Petrović, T.D.; Čomić, L.R. Characterization of lactic acid bacteria isolated from traditionally made Serbian Cheese and evaluation of their antagonistic potential against Enterobacteriaceae. J. Food Process. Preserv. 2018, 42, e13577. [Google Scholar] [CrossRef]
- Terzić-Vidojević, A.; Veljović, K.; Tolinački, M.; Živković, M.; Lukić, J.; Lozo, J.; Fira, Đ.; Jovčić, B.; Strahinić, I.; Begović, J.; et al. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries—Technological and probiotic properties. Food Res. Int. 2020, 136, 109494. [Google Scholar] [CrossRef]
- Muruzović, M.Ž.; Mladenović, K.G.; Djilas, M.D.; Stefanović, O.D.; Čomić, L.R. In vitro evaluation of antimicrobial potential and ability of biofilm formation of autochthonous Lactobacillus spp. and Lactococcus spp. isolated from traditionally made cheese from Southeastern Serbia. J. Food Process. Preserv. 2018, 42, e13776. [Google Scholar] [CrossRef]
- Mladenović, K.G.; Grujović, M.Ž.; Kocić-Tanackov, S.D.; Bulut, S.; Iličić, M.; Degenek, J.; Semedo-Lemsaddek, T. Serbian Traditional Goat Cheese: Physico-Chemical, Sensory, Hygienic and Safety Characteristics. Microorganisms 2022, 10, 90. [Google Scholar] [CrossRef]
- Costanzo, N.; Ceniti, C.; Santoro, A.; Clausi, M.T.; Casalinuovo, F. Foodborne Pathogen Assessment in Raw Milk Cheeses. Int. J. Food Sci. 2020, 2020, 3616713. [Google Scholar] [CrossRef] [PubMed]
- Kure, C.F.; Skaar, I. The fungal problem in cheese industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Sionek, B.; Szydłowska, A.; Küçükgöz, K.; Kołożyn-Krajewska, D. Traditional and New Microorganisms in Lactic Acid Fermentation of Food. Fermentation 2023, 9, 1019. [Google Scholar] [CrossRef]
- Barreto Pinilla, C.M.; da Silva Oliveira, W.; de Oliveira Garcia, A.; Spadoti, L.M.; Redruello, B.; Del Rio, B.; Alvarez, M.A.; Torres Silva, E.A.A. Brazilian indigenous nonstarter lactic acid bacteria enhance the diversification of volatile compounds in short-aged cheese. Lett. Appl. Microbiol. 2024, 77, ovae036. [Google Scholar] [CrossRef] [PubMed]
- Ahansaz, N.; Tarrah, A.; Pakroo, S.; Corich, V.; Giacomini, A. Lactic Acid Bacteria in Dairy Foods: Prime Sources of Antimicrobial Compounds. Fermentation 2023, 9, 964. [Google Scholar] [CrossRef]
- Grujović, M.; Mladenović, K.G.; Semedo-Lemsaddek, T.; Laranjo, M.; Stefanović, O.D.; Kocić-Tanackov, S.D. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1537–1567. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chan, S.H.J.; Chen, J.; Solem, C.; Jensen, P.R. Systems Biology—A Guide for Understanding and Developing Improved Strains of Lactic Acid Bacteria. Front. Microbiol. 2019, 10, 876. [Google Scholar] [CrossRef] [PubMed]
- Biadała, A.; Szablewski, T.; Cegielska-Radziejewska, R.; Lasik-Kurdyś, M.; Adzahan, N.M. The Evaluation of Activity of Selected Lactic Acid Bacteria for Bioconversion of Milk and Whey from Goat Milk to Release Biomolecules with Antibacterial Activity. Molecules 2023, 28, 3696. [Google Scholar] [CrossRef]
- Picon, A.; Garde, S.; Ávila, M.; Nuñez, M. Microbiota dynamics and lactic acid bacteria biodiversity in raw goat milk cheeses. Int. Dairy. J. 2016, 58, 14–22. [Google Scholar] [CrossRef]
- Coelho, M.C.; Malcata, F.X.; Silva, C.C.G. Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions. Foods 2022, 11, 2276. [Google Scholar] [CrossRef]
- Caggianiello, G.; Kleerebezem, M.; Spano, G. Exopolysaccharides produced by lactic acid bacteria: From health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol. 2016, 100, 3877–3886. [Google Scholar] [CrossRef] [PubMed]
- Aunsbjerg, S.D.; Honoré, A.H.; Marcussen, J.; Ebrahimi, P.; Vogensen, F.K.; Benfeldt, C.; Skov, T.; Knøchel, S. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. Int. J. Food Microbiol. 2015, 194, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Olasupo, N.A.; Fitzgerald, D.J.; Gasson, M.J.; Narbad, A. Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Lett. Appl. Microbiol. 2003, 37, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, A.; López, R.L.; Abriouel, H.; Valdivia, E.; Omar, N.B. Application of Bacteriocins in the Control of Foodborne Pathogenic and Spoilage Bacteria. Crit. Rev. Biotechnol. 2008, 28, 125–152. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, P.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Antimicrobial antagonists against food pathogens: A bacteriocin perspective. Curr. Opin. Food Sci. 2015, 2, 51–57. [Google Scholar] [CrossRef]
- Júnior, W.; Ferrari, Í.; Viana de Souza, J.; Silva, C.; Costa, M.; Dias, F. Characterization and evaluation of lactic acid bacteria isolated from goat milk. Food Control 2015, 53, 96–103. [Google Scholar] [CrossRef]
- Sudarsini, B.; Venkateswarulu, T.C.; Krupanidhi, S.; Sumalatha, B.; Indira, M. Advancing Fermented Food Products: Exploring Bioprocess Technologies and Overcoming Challenges. Food Bioprocess. Technol. 2023. [Google Scholar] [CrossRef]
- Rodríguez-Alonso, P.; Fernández-Otero, C.; Centeno, J.A.; Garabal, J.I. Antibiotic resistance in lactic acid bacteria and Micrococcaceae/Staphylococcaceae isolates from artisanal raw milk cheeses, and potential implications on cheese making. J. Food Sci. 2009, 74, M284–M293. [Google Scholar] [CrossRef] [PubMed]
- Erginkaya, Z.; Turhan, E.U.; Tatlı, D. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products. Iran. J. Vet. Res. 2018, 19, 53–56. [Google Scholar]
- Mathur, S.; Singh, R. Antibiotic resistance in food lactic acid bacteria--a review. Int. J. Food Microbiol. 2005, 105, 281–295. [Google Scholar] [CrossRef]
- Novella-Rodríguez, S.; Veciana-Nogués, M.T.; Roig-Sagués, A.X.; Trujillo-Mesa, A.J.; Vidal-Carou, M.C. Influence of starter and nonstarter on the formation of biogenic amine in goat cheese during ripening. J. Dairy. Sci. 2002, 85, 2471–2478. [Google Scholar] [CrossRef] [PubMed]
- Renes, E.; Diezhandino, I.; Fernández, D.; Ferrazza, R.E.; Tornadijo, M.E.; Fresno, J.M. Effect of autochthonous starter cultures on the biogenic amine content of ewe’s milk cheese throughout ripening. Food Microbiol. 2014, 44, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.K.; Raslan, A.A.; Elbadry, S.; El-Ghareeb, W.R.; Mulla, Z.S.; Bin-Jumah, M.; Abdel-Daim, M.M.; Darwish, W.S. Levels of biogenic amines in cheese: Correlation to microbial status, dietary intakes, and their health risk assessment. Env. Sci. Pollut. Res. Int. 2020, 27, 44452–44459. [Google Scholar] [CrossRef]
- Furukawa, S. Studies on formation, control and application of biofilm formed by food related microorganisms. Biosci. Biotechnol. Biochem. 2015, 79, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef]
- Olanbiwoninu, A.A.; Popoola, B.M. Biofilms and their impact on the food industry. Saudi J. Biol. Sci. 2023, 30, 103523. [Google Scholar] [CrossRef]
- Somers, E.B.; Johnson, M.E.; Wong, A.C. Biofilm formation and contamination of cheese by nonstarter lactic acid bacteria in the dairy environment. J. Dairy. Sci. 2001, 84, 1926–1936. [Google Scholar] [CrossRef] [PubMed]
- Mannu, L.; Riu, G.; Comunian, R.; Fozzi, M.; Scintu, M. A preliminary study of lactic acid bacteria in whey starter culture and industrial Pecorino Sardo ewes’ milk cheese: PCR-identification and evolution during ripening. Int. Dairy. J. 2002, 12, 17–26. [Google Scholar] [CrossRef]
- ISO 6887-5:2020; Microbiology of the food chain—Preparation of test samples, initial suspension and decimal dilutions for microbiological examination. Part 5: Specific rules for the preparation of milk and milk products. Available online: https://www.iso.org/standard/71502.html (accessed on 6 June 2024).
- Kandler, O.; Weiss, N. Genus Lactobacillus Beijerinck 1901. In Bergey’s Manual of Systematic Bacteriology; Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G., Eds.; Lactic acid streptococci; Williams and Wilkins, Baltimore: Baltimore, Maryland, 1986; Volume 2, pp. 1209–1243. [Google Scholar]
- Mundt, J.O. Lactic acid streptococci. In Bergey’s Manual of Systematic Bacteriology, Sneath; Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G., Eds.; Lactic acid streptococci; Williams and Wilkins, Baltimore: Baltimore, Maryland, 1986; Volume 2, pp. 1064–1071. [Google Scholar]
- Mundt, J.O. Enterococci. In Bergey’s Manual of Systematic Bacteriology; Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G., Eds.; Lactic acid Streptococci; Williams and Wilkins: Baltimore, MD, USA, 1986; Volume 2, pp. 1063–1065. [Google Scholar]
- Prescot, L.M.; Harley, J.P.; Klein, D.A. Microbiology; Wm. C. Brown Publishers: London, UK, 1996; pp. 685–688. [Google Scholar]
- Buxton, R. Blood Agar Plates and Hemolysis Protocols; American Society for Microbiology: Washington, DC, USA, 2005. [Google Scholar]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Muruzović, M.Ž.; Mladenović, K.G.; Stefanović, O.D.; Vasić, S.M.; Čomić, L.R. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J. Food Drug Anal. 2016, 24, 539–547. [Google Scholar] [CrossRef]
- Harrigan, W.F.; McCance, M.E. Laboratory Methods in Food and Dairy Microbiology; Academic Press: London, UK, 1976. [Google Scholar]
- Moreno-Arribas, M.V.; Polo, M.C.; Jorganes, F.; Muñoz, R. Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 2003, 84, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Tagg, J.R.; McGiven, A.R. Assay system for bacteriocins. Appl. Microbiol. 1971, 21, 943. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000, 54, 49–79. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Vuković, D.; Hola, V.; Bonaventura, G.d.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Grujović, M.Ž.; Mladenović, K.G.; Žugić-Petrović, T.D.; Čomić, L.R. Assessment of the antagonistic potential and ability of biofilm formation of enterococcus spp. Isolated from Serbian cheese. Vet. Arh. 2019, 89, 653–667. [Google Scholar] [CrossRef]
- Stepanovic, S.; Vukovic, D.; Dakic, I.; Savic, B.; Svabic-Vlahovic, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Begovic, J.; Brandsma, J.B.; Jovcic, B.; Tolinacki, M.; Veljovic, K.; Meijer, W.; Topisirovic, L. Analysis of dominant lactic acid bacteria from artisanal raw milk cheeses produced on the mountain Stara Planina, Serbia. Arch. Biol. Sci. 2011, 63, 11–20. [Google Scholar] [CrossRef]
- Terzic-Vidojevic, A.; Tolinacki, M.; Nikolic, M.; Veljovic, K.; Jovanovic, S.; Macej, O.; Topisirovic, L. Artisanal Vlasina Raw Goat’s Milk Cheese: Evaluation and Selection of Autochthonous Lactic Acid Bacteria as Starter Cultures. Food Technol. Biotechnol. 2013, 51, 554–563. [Google Scholar]
- Muruzović, M.Ž.; Mladenović, K.G.; Čomić, L.R. In vitro evaluation of resistance to environmental stress by planktonic and biofilm form of lactic acid bacteria isolated from traditionally made cheese from Serbia. Food Biosci. 2018, 23, 54–59. [Google Scholar] [CrossRef]
- Guinee, T.; Fox, P.F. Salt in Cheese: Physical, Chemical and Biological Aspects. Cheese Chem. Phys. Microbiol. 2004, 1, 207–259. [Google Scholar] [CrossRef]
- Nguyen, P.-T.; Nguyen-Thi, T.-U.; Nguyen, H.-T.; Pham, M.-N.; Nguyen, T.-T. Halophilic lactic acid bacteria—Play a vital role in the fermented food industry. Folia Microbiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Ruas-Madiedo, P.; Gueimonde, M.; Margolles, A.; de los Reyes-Gavilán, C.G.; Salminen, S. Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J. Food Prot. 2006, 69, 2011–2015. [Google Scholar] [CrossRef] [PubMed]
- De Santis, D.; Giacinti, G.; Chemello, G.; Frangipane, M.T. Improvement of the Sensory Characteristics of Goat Milk Yogurt. J. Food Sci. 2019, 84, 2289–2296. [Google Scholar] [CrossRef] [PubMed]
- Powell, I.B.; Broome, M.C.; Limsowtin, G.K.Y. Cheese | Starter Cultures: General Aspects. In Encyclopedia of Dairy Sciences (Second Edition), 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 552–558. [Google Scholar]
- Nikolic, M.; Terzic-Vidojevic, A.; Jovcic, B.; Begovic, J.; Golic, N.; Topisirovic, L. Characterization of lactic acid bacteria isolated from Bukuljac, a homemade goat’s milk cheese. Int. J. Food Microbiol. 2008, 122, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.d.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; et al. EFSA Panel on Additives Products or Substances used in Animal Feed Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, e05206. [Google Scholar] [CrossRef] [PubMed]
- Uroić, K.; Nikolić, M.G.; Kos, B.; Pavunc, A.L.; Beganović, J.; Lukić, J.; Jovčić, B.; Filipić, B.; Miljković, M.S.; Golić, N.; et al. Probiotic Properties of Lactic Acid Bacteria Isolated from Croatian Fresh Soft Cheese and Serbian White Pickled Cheese. Food Technol. Biotechnol. 2014, 52, 232–241. [Google Scholar]
- Leite, A.M.O.; Miguel, M.A.L.; Peixoto, R.S.; Ruas-Madiedo, P.; Paschoalin, V.M.F.; Mayo, B.; Delgado, S. Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. J. Dairy. Sci. 2015, 98, 3622–3632. [Google Scholar] [CrossRef]
- Abele, C.; Ahuja, C. The methylene blue reduction test as a measure of estimating the bacterial content of milk to determine its suitability for pasteurization or as a basic of grading. J. Food Prot. 1945, 8, 67–69. [Google Scholar]
- Kieliszek, M.; Pobiega, K.; Piwowarek, K.; Kot, A.M. Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021, 26, 1858. [Google Scholar] [CrossRef]
- Kondrotiene, K.; Zavistanaviciute, P.; Aksomaitiene, J.; Novoslavskij, A.; Malakauskas, M. Lactococcus lactis in Dairy Fermentation—Health-Promoting and Probiotic Properties. Fermentation 2024, 10, 16. [Google Scholar] [CrossRef]
- Lim, Y.H.; Foo, H.L.; Loh, T.C.; Mohamad, R.; Abdullah, N. Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements. J. Anim. Sci. Biotechnol. 2019, 10, 15. [Google Scholar] [CrossRef]
- Konkit, M.; Kim, W. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products. J. Dairy. Sci. 2016, 99, 4999–5007. [Google Scholar] [CrossRef] [PubMed]
- Pessione, E.; Cirrincione, S. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines. Front. Microbiol. 2016, 7, 876. [Google Scholar] [CrossRef] [PubMed]
- Fraga, M.; Schein, K.; Giacaman, S.; Zunino, P.; Techera, s.B.C. Antimicrobial properties of lactic acid bacteria isolated from Uruguayan artisan cheese. CiÊNcia E Tecnol. De. Aliment. 2013, 33, 801. [Google Scholar] [CrossRef]
- Yuan, L.; Sadiq, F.A.; Wang, N.; Yang, Z.; He, G. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Crit. Rev. Food Sci. Nutr. 2020, 61, 3876–3891. [Google Scholar] [CrossRef] [PubMed]
- Mgomi, F.C.; Yang, Y.-r.; Cheng, G.; Yang, Z.-q. Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm 2023, 5, 100118. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, E.S.; Song, K.J.; Kim, B.M.; Ham, J.S.; Oh, M.H. Development of Desiccation-Tolerant Probiotic Biofilms Inhibitory for Growth of Foodborne Pathogens on Stainless Steel Surfaces. Foods 2022, 11, 831. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial Biofilms in the Food Industry-A Comprehensive Review. Int. J. Env. Res. Public. Health 2021, 18, 2014. [Google Scholar] [CrossRef] [PubMed]
- Speranza, B.; Liso, A.; Russo, V.; Corbo, M.R. Evaluation of the Potential of Biofilm Formation of Bifidobacterium longum subsp. infantis and Lactobacillus reuteri as Competitive Biocontrol Agents Against Pathogenic and Food Spoilage Bacteria. Microorganisms 2020, 8, 177. [Google Scholar] [CrossRef]
- Diaz, M.; Ladero, V.; Del Rio, B.; Redruello, B.; Fernández, M.; Martin, M.C.; Alvarez, M.A. Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products. Front. Microbiol. 2016, 7, 591. [Google Scholar] [CrossRef]
- Pérez Ibarreche, M.; Castellano, P.; Vignolo, G. Evaluation of anti-Listeria meat borne Lactobacillus for biofilm formation on selected abiotic surfaces. Meat Sci. 2014, 96, 295–303. [Google Scholar] [CrossRef] [PubMed]
Origin | Day of Ripening | MRS Agar | M17 Agar | BEA Agar |
---|---|---|---|---|
Goat milk a | - | (1.9 ± 0.3) × 103 | (2 ± 0.4) × 103 | (9.6 ± 0.1) × 102 |
Goat cheese b | 0 | (3.2 ± 0.1) × 104 | (7.6 ± 0.3) × 104 | (5.6 ± 0.2) × 103 |
7th | (2.04 ± 0.8) × 107 | (3.8 ± 0.7) × 109 | (7 ± 0.2) × 108 | |
14th | (1.5 ± 0.7) × 1010 | (1.13 ± 0.6) × 1012 | (9 ± 0.2) × 109 | |
21st | (7.2 ± 0.2) × 109 | (2.56 ± 0.5) × 1011 | (4 ± 0.1) × 106 | |
28th | (2.4 ± 0.5) × 107 | (2.1 ± 0.1) × 106 | (2.6 ± 0.1) × 106 |
Species | E. faecalis | E. faecium | E. hirae | Lactococcus lactis Subsp. lactis | L. paracasei | L. plantarum | L. plantarum LP 299v | E. faecalis ATCC 29211 | |
---|---|---|---|---|---|---|---|---|---|
Biochemical characteristics | Morphology | cocci | cocci | cocci | cocci | rods | rods | rods | cocci |
Production of exopolysaccharides | - | - | - | - | +- (31) | +- (27) | + | - | |
Growth at 15 °C | + | + | + | + | + | + | + | + | |
Growth at 45 °C | + | + | + | - | - | - | - | + | |
Growth at 4% of NaCl | + | + | + | + | + | + | + | + | |
Growth at 6.5% of NaCl | + | + | + | +- (5) | - | + | + | + | |
Growth at 8% of NaCl | + | + | + | - | - | - | - | + | |
Growth at pH 3.5 | +- (8) | +- (3) | - | - | + | + | + | - | |
Growth at pH 4 | + | + | + | + | + | + | + | + | |
Growth at pH 6.5 | + | + | + | + | + | + | + | + | |
Growth at pH 7.5 | + | + | + | + | + | + | + | + | |
Hydrolysis of arginine | + | + | + | - | - | - | - | + | |
Hydrolysis of esculin | + | + | + | + | - | + | + | + | |
Hippurate hydrolysis | + | + | + | n.d. | n.d. | n.d. | n.d. | + | |
Black zone on bile esculin agar | + | + | + | - | - | - | - | - | |
Utilization of citrate | - | - | - | +- (11) | +- (31) | +- (22) | - | - | |
Production of CO2 | - | - | - | - | - | - | - | - | |
MALDI-TOF score | 2.26 to 2.45 | 2.21 to 2.31 | 2.03 to 2.21 | 2.14 to 2.16 | 2.10 to 2.23 | 2.06 to 2.12 | n.d. | n.d. |
Origin | Day of Isolation | Species | Total Number of Isolates | |||||
---|---|---|---|---|---|---|---|---|
E. faecalis | E. faecium | E. hirae | Lactococcus lactis Subsp. lactis | L. paracasei | L. plantarum | |||
Goat milk | - | 8 | n.d. | n.d. | 12 | 3 | / | 23 |
Goat cheese | 0 | 11 | n.d. | v | 14 | 5 | 3 | 33 |
7th | 5 | n.d. | n.d. | 14 | 13 | 8 | 40 | |
14th | 4 | 3 | 18 | 16 | 11 | 52 | ||
21st | 6 | 6 | 2 | 22 | 8 | 8 | 52 | |
28th | 15 | 4 | 7 | 9 | 1 | 2 | 38 | |
Total number of isolates | 49 | 13 | 9 | 89 | 46 | 32 | 238 |
Species | Ampicillin | Tetracycline | Gentamicin | Streptomycin | Vancomycin |
---|---|---|---|---|---|
L. lactis subsp. lactis | 0.097–3.12 | 0.097–4.68 | 0.39–50 | 0.78–50 | 0.097–6.24 |
L. paracasei | 0.195–3.12 | 0.195–6.24 | 1.56–50 | 1.56–50 | n.r. |
L. plantarum | 0.097–1.56 | 1.56–37.5 | 1.56–25 | n.r. | n.r. |
L. plantarum LP 299v | 6.24 | 0.125 | n.d. | n.r. | n.r. |
Species | Indicator Strains | ||||
---|---|---|---|---|---|
S. aureus ATCC 25923 | P. mirabilis ATCC 12453 | E. coli ATCC 25922 | E. coli G14 | K. pneumoniae | |
ZI* (mm) | ZI* (mm) | ZI* (mm) | ZI* (mm) | ZI* (mm) | |
L. lactis subsp. lactis | 8–16 | 0–12 | 0–8 | 8–12 | 0–12 |
L. paracasei | 6–18 | 6–16 | 6–14 | 0–12 | 0–12 |
L. plantarum | 12–18 | 8–14 | 10–16 | 0–12 | 0–10 |
Antibiotic | S. aureus ATCC 25923 | P. mirabilis ATCC 12453 | E. coli ATCC 25922 | E. coli G14 | K. pneumoniae |
---|---|---|---|---|---|
Amoxicillin | 24 (S) | 24 (S) | 16 (S) | 20 | n.d. |
Chloramphenicol | 26 (S) | 45 (S) | 31 (S) | 24 | 22 |
Tetracycline | 28 (S) | 10 (R) | 22 (S) | 20 | 20 |
Species | Isolate | Biofilm Quantification | Classification |
---|---|---|---|
L. lactis subsp. lactis | C0-4 | 0.05 ± 0.02 | + |
L. lactis subsp. lactis | C0-14 | 0.09 ± 0.05 | +++ |
L. lactis subsp. lactis | C14-7 | 0.06 ± 0.03 | ++ |
L. lactis subsp. lactis | C14-13 | 0.06 ± 0.05 | ++ |
L. lactis subsp. lactis | C21-7 | 0.07 ± 0.03 | ++ |
L. lactis subsp. lactis | C21-8 | 0.10 ± 0.02 | +++ |
L. lactis subsp. lactis | C21-21 | 0.08 ± 0.03 | ++ |
L. paracasei | M-1 | 0.13 ± 0.01 | +++ |
L. paracasei | M-3 | 0.05 ± 0.01 | ++ |
L. paracasei | C0-1 | 0.08 ± 0.02 | ++ |
L. paracasei | C7-6 | 0.02 ± 0.01 | + |
L. paracasei | C7-11 | 0.04 ± 0.01 | + |
L. paracasei | C7-13 | 0.09 ± 0.02 | +++ |
L. paracasei | C14-1 | 0.05 ± 0.03 | + |
L. paracasei | C14-9 | 0.03 ± 0.01 | + |
L. plantarum | C0-2 | 0.08 ± 0.03 | ++ |
L. plantarum | C0-3 | 0.07 ± 0.02 | ++ |
L. plantarum | C7-7 | 0.11 ± 0.03 | +++ |
L. plantarum | C7-8 | 0.12 ± 0.03 | +++ |
L. plantarum | C14-1 | 0.06 ± 0.02 | ++ |
L. plantarum | C14-3 | 0.08 ± 0.02 | ++ |
L. plantarum | C14-5 | 0.10 ± 0.02 | +++ |
L. plantarum | C14-6 | 0.04 ± 0.01 | + |
L. plantarum | LP 299v | 0.14 ± 0.02 | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grujović, M.Ž.; Marković, K.G.; Morais, S.; Semedo-Lemsaddek, T. Unveiling the Potential of Lactic Acid Bacteria from Serbian Goat Cheese. Foods 2024, 13, 2065. https://doi.org/10.3390/foods13132065
Grujović MŽ, Marković KG, Morais S, Semedo-Lemsaddek T. Unveiling the Potential of Lactic Acid Bacteria from Serbian Goat Cheese. Foods. 2024; 13(13):2065. https://doi.org/10.3390/foods13132065
Chicago/Turabian StyleGrujović, Mirjana Ž., Katarina G. Marković, Susana Morais, and Teresa Semedo-Lemsaddek. 2024. "Unveiling the Potential of Lactic Acid Bacteria from Serbian Goat Cheese" Foods 13, no. 13: 2065. https://doi.org/10.3390/foods13132065
APA StyleGrujović, M. Ž., Marković, K. G., Morais, S., & Semedo-Lemsaddek, T. (2024). Unveiling the Potential of Lactic Acid Bacteria from Serbian Goat Cheese. Foods, 13(13), 2065. https://doi.org/10.3390/foods13132065