Fatty Acids in Dry Beans (Phaseolus vulgaris L.): A Contribution to Their Analysis and the Characterization of a Diversity Panel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents and Standards
2.3. Derivatization and Extraction of FAME
2.4. Chromatographic Separation, Identification and Quantitation
2.5. Extraction Optimization
2.6. Validation Procedure
2.7. Data Treatment
3. Results and Discussion
3.1. Validation Method
3.1.1. Chromatographic Separation and Identification
3.1.2. Optimization of Extraction Conditions
3.1.3. Linearity and Limits of Detection and Quantification
3.1.4. Precision, Accuracy and Extract Stability
3.1.5. Robustness
3.2. Variation of Fatty Acid Content in Bean Seed
3.3. Gene Pool and Fatty Acid Content in Dry Bean
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bitocchi, E.; Bellucci, E.; Giardini, A.; Rau, D.; Rodriguez, M.; Biagetti, E.; Santilocchi, R.; Spagnoletti Zeuli, P.; Gioia, T.; Logozzo, G.; et al. Molecular Analysis of the Parallel Domestication of the Common Bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol. 2013, 197, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Gepts, P.; Osborn, T.C.; Rashka, K.; Bliss, F.A. Phaseolin-protein Variability in Wild Forms and Landraces of the Common Bean (Phaseolus vulgaris): Evidence for Multiple Centers of Domestication. Econ. Bot. 1986, 40, 451–468. [Google Scholar] [CrossRef]
- Kwak, M.; Gepts, P. Structure of Genetic Diversity in the Two Major Gene Pools of Common Bean (Phaseolus vulgaris L., Fabaceae). Theor. Appl. Genet. 2009, 118, 979–992. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. 2024. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 31 May 2024).
- Yoshida, H.; Tomiyama, Y.; Kita, S.; Mizushina, Y. Lipid Classes, Fatty Acid Composition and Triacylglycerol Molecular Species of Kidney Beans (Phaseolus vulgaris L.). Eur. J. Lipid Sci. Technol. 2005, 107, 307–315. [Google Scholar] [CrossRef]
- Diaz, S.; Polania, J.; Ariza-Suarez, D.; Cajiao, C.; Grajales, M.; Raatz, B.; Beebe, S.E. Genetic Correlation Between Fe and Zn Biofortification and Yield Components in a Common Bean (Phaseolus vulgaris L.). Front. Plant Sci. 2022, 12, 739033. [Google Scholar] [CrossRef] [PubMed]
- Hayat, I.; Ahmad, A.; Masud, T.; Ahmed, A.; Bashir, S. Nutritional and Health Perspectives of Beans (Phaseolus vulgaris L.): An Overview. Crit. Rev. Food Sci. Nutr. 2014, 54, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Messina, V. Nutritional and Health Benefits of Dried Beans. Am. J. Clin. Nutr. 2014, 100, 437S–442S. [Google Scholar] [CrossRef] [PubMed]
- Murube, E.; Beleggia, R.; Pacetti, D.; Nartea, A.; Frascarelli, G.; Lanzavecchia, G.; Bellucci, E.; Nanni, L.; Gioia, T.; Marciello, U.; et al. Characterization of Nutritional Quality Traits of a Common Bean Germplasm Collection. Foods 2021, 10, 1572. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Madrera, R.; Campa Negrillo, A.; Suárez Valles, B.; Ferreira Fernández, J.J. Characterization of Extractable Phenolic Profile of Common Bean Seeds (Phaseolus vulgaris L.) in a Spanish Diversity Panel. Food Res. Int. 2020, 138, 109713. [Google Scholar] [CrossRef]
- Rodríguez, L.; Mendez, D.; Montecino, H.; Carrasco, B.; Arevalo, B.; Palomo, I.; Fuentes, E. Role of Phaseolus vulgaris L. in the Prevention of Cardiovascular Diseases—Cardioprotective Potential of Bioactive Compounds. Plants 2022, 11, 186. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, S. Health Benefits of Plant-Derived α-Linolenic Acid. Am. J. Clin. Nutr. 2014, 100, 443S–448S. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, H.; Jin, Q.; Wang, X. Effects of Dietary Plant-Derived Low-Ratio Linoleic Acid/Alpha-Linolenic Acid on Blood Lipid Profiles: A Systematic Review and Meta-Analysis. Foods 2023, 12, 3005. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodriguez, A.; Reglero, G.; Ibañez, E. Recent Trends in the Advanced Analysis of Bioactive Fatty Acids. J. Pharm. Biomed. Anal. 2010, 51, 305–326. [Google Scholar] [CrossRef] [PubMed]
- Byrdwell, W.C.; Goldschmidt, R.J. Fatty Acids of Ten Commonly Consumed Pulses. Molecules 2022, 27, 7260. [Google Scholar] [CrossRef] [PubMed]
- Ologhobo, A. Varietal Differences in the Fatty Acid Composition of Oils from Cowpea (Vigna unguiculata) and Limabean (Phaseolus lunatus). Food Chem. 1983, 10, 267–274. [Google Scholar] [CrossRef]
- Lo Turco, V.; Potortì, A.G.; Rando, R.; Ravenda, P.; Dugo, G.; Di Bella, G. Functional Properties and Fatty Acids Profile of Different Beans Varieties. Nat. Product. Res. 2016, 30, 2243–2248. [Google Scholar] [CrossRef] [PubMed]
- Abdulkadir, S.; Tsuchiya, M. One-Step Method for Quantitative and Qualitative Analysis of Fatty Acids in Marine Animal Samples. J. Exp. Mar. Biol. Ecol. 2008, 354, 1–8. [Google Scholar] [CrossRef]
- Harmanescu, M. Comparative Researches on Two Direct Transmethylation without Prior Extraction Methods for Fatty Acids Analysis in Vegetal Matrix with Low Fat Content. Chem. Cent. J. 2012, 6, 8. [Google Scholar] [CrossRef]
- Xiao, S.; Li, H.; Xu, M.; Huang, K.; Luo, Z.; Xiao, L. A High-Throughput Method for Profiling Fatty Acids in Plant Seeds Based on One-Step Acid-Catalyzed Methylation Followed by Gas Chromatography-Mass Spectrometry. Biotechnol. Biotechnol. Equip. 2021, 35, 1076–1085. [Google Scholar] [CrossRef]
- La Cruz García, C.; López Hernández, J.; Simal Lozano, J. Gas chromatographic determination of the fatty-acid content of heat-treated green beans Cultivars. J. Chromatogr. A 2000, 891, 367–370. [Google Scholar] [CrossRef]
- Lepage, G.; Roy, C.C. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 1984, 25, 1394–1396. [Google Scholar] [CrossRef]
- Sutivisedsak, N.; Moser, B.R.; Sharma, B.K.; Evangelista, R.L.; Cheng, H.N.; Lesch, W.C.; Tangsrud, R.R.; Biswas, A. Physical Properties and Fatty Acid Profiles of Oils from Black, Kidney, Great Northern, and Pinto Beans. J. Am. Oil Chem. Soc. 2011, 88, 193–200. [Google Scholar] [CrossRef]
- Caprioli, G.; Giusti, F.; Ballini, R.; Sagratini, G.; Vila-Donat, P.; Vittori, S.; Fiorini, D. Lipid Nutritional Value of Legumes: Evaluation of Different Extraction Methods and Determination of Fatty Acid Composition. Food Chem. 2016, 192, 965–971. [Google Scholar] [CrossRef]
- Khrisanapant, P.; Kebede, B.; Leong, S.Y.; Oey, I. A Comprehensive Characterisation of Volatile and Fatty Acid Profiles of Legume Seeds. Foods 2019, 8, 651. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Campa Negrillo, A.; Ferreira Fernández, J.J. Modulation of the Nutritional and Functional Values of Common Bean by Farming System: Organic vs. Conventional. Front. Sustain. Food Syst. 2024, 7, 1282427. [Google Scholar] [CrossRef]
- Puerta Romero, J. Variedades de Judía Cultivadas en España. Monografía Nº 11; Ministerio de Agricultura: Madrid, Spain, 1961; p. 798. [Google Scholar]
- Pérez-Vega, E.; Campa, A.; De la Rosa, L.; Giraldez, R.; Ferreira, J.J. Genetic diversity in a core collection established from the main bean genebank in Spain. Crop Sci. 2009, 49, 1377–1386. [Google Scholar] [CrossRef]
- Santalla, M.; Rodiño, A.; De Ron, A. Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for the common bean. Theor. Appl. Genet. 2002, 104, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Campa, A.; Murube, E.; Ferreira, J.J. Genetic Diversity, Population Structure, and Linkage Disequilibrium in a Spanish Common Bean Diversity Panel Revealed through Genotyping-by-Sequencing. Genes 2018, 9, 518. [Google Scholar] [CrossRef]
- García-Fernández, C.; Campa, A.; Garzón, A.S.; Miklas, P.; Ferreira, J.J. GWAS of pod morphological and color characters in common bean. BMC Plant Biol. 2021, 21, 184. [Google Scholar] [CrossRef] [PubMed]
- Kruijer, W.; Boer, M.P.; Malosetti, M. Marker-based estimation of heritability in immortal populations. Genetics 2015, 199, 379–398. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. The R Project Statistical Computing. 2023. Available online: http://www.Rprojectorg/ (accessed on 23 September 2023).
- Rodrıguez-Ruiz, J.; Belarbi, E.-H. Rapid Simultaneous Lipid Extraction and Transesterification for Fatty Acid Analyses. Biotechnol. Tech. 1998, 12, 689–691. [Google Scholar] [CrossRef]
- Weston, T.R.; Derner, J.D.; Murrieta, C.M.; Rule, D.C.; Hess, B.W. Comparison of Catalysts for Direct Transesterification of Fatty Acids in Freeze-Dried Forage Samples. Crop Sci. 2008, 48, 1936–1941. [Google Scholar] [CrossRef]
- Miller, J.N. Basic Statistical Methods for Analytical Chemistry Part 2. Calibration and Regression Methods. A Review. Analyst 1991, 116, 3–14. [Google Scholar] [CrossRef]
- FAO. Food Energy: Methods of Analysis and Conversion Factors; Report of a Technical Workshop, Rome, 3—6 December 2002; FAO, Ed.; FAO food and nutrition paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004. [Google Scholar]
- Møller, A. Fatty Acid Molecular Weights and Conversion Factors; Danish Food Information; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2011; pp. 1–7. [Google Scholar]
- Youden, W.J.; Steiner, E.H. Statistical Manual of the Association of Official Analytical Chemists; AOAC International: Gaithersburg, MD, USA, 1975; pp. 33–36, 69–71. [Google Scholar]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential Fatty Acids as Functional Components of Foods- a Review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef] [PubMed]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 8848161, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Balouchi, H.; Soltani Khankahdani, V.; Moradi, A.; Gholamhoseini, M.; Piri, R.; Heydari, S.Z.; Dedicova, B. Seed Fatty Acid Changes Germination Response to Temperature and Water Potentials in Six Sesame (Sesamum indicum L.) Cultivars: Estimating the Cardinal Temperatures. Agriculture 2023, 13, 1936. [Google Scholar] [CrossRef]
- Izquierdo, N.; Benech-Arnold, R.; Batlla, D.; Belo, R.G.; Tognetti, J. Seed Composition in Oil Crops: Its Impact on Seed Germination Performance. In Oilseed Crops; Ahmad, P., Ed.; Wiley: Hoboken, NJ, USA, 2017; pp. 34–51. [Google Scholar] [CrossRef]
- Grela, E.R.; Günter, K.D. Fatty Acid Composition and Tocopherol Content of Some Legume Seeds. Anim. Feed Sci. Technol. 1995, 52, 325–331. [Google Scholar] [CrossRef]
- Ciurescu, G.; Toncea, I.; Rapota, M.; Habeanu, M. Seeds Composition and their Nutrients Quality of Some Pea (Pisum sativum L.) and Lentil (Lens culinaris Medik.) Cultivars. Rom. Agric. Res. 2018, 35, 101–108. [Google Scholar] [CrossRef]
- Gopala Krishna, A.G.; Prabhakar, J.V.; Aitzetmüller, K. Tocopherol and Fatty Acid Composition of Some Indian Pulses. J. Am. Oil Chem. Soc. 1997, 74, 1603–1606. [Google Scholar] [CrossRef]
- Hall, C.; Hillen, C.; Garden Robinson, J. Composition, Nutritional Value, and Health Benefits of Pulses. Cereal Chem. 2017, 94, 11–31. [Google Scholar] [CrossRef]
- Fahmy, H.A.; El-Shamy, S.; Farag, M.A. Comparative GC–MS Based Nutrients Profiling of Less Explored Legume Seeds of Melilotus, Medicago, Trifolium, and Ononis Analysed Using Chemometric Tools. Sci. Rep. 2023, 13, 18221. [Google Scholar] [CrossRef] [PubMed]
- Zia-Ul-Haq, M.; Ahmad, M.; Iqbal, S.; Ahmad, S.; Ali, H. Characterization and Compositional Studies of Oil from Seeds of Desi Chickpea (Cicer arietinum L.) Cultivars Grown in Pakistan. J. Am. Oil Chem. Soc. 2007, 84, 1143–1148. [Google Scholar] [CrossRef]
- Tresina Soris, P.; Mohan, V.R. Chemical analysis and nutritional assessment of two less known pulses of genus Vigna. Trop. Subtrop. Agroecosyst. 2011, 14, 473–484. [Google Scholar]
- Hernández-López, V.M.; Vargas-Vázquez, M.L.P.; Muruaga-Martínez, J.S.; Hernández-Delgado, S. Origin, domestication and diversification of common beans. Advences and perspectives. Rev. Fitotec. Mex. 2013, 36, 95–104. [Google Scholar]
- Sarzynski, T.; Bertrand, B.; Rigal, C.; Marraccini, P.; Vaast, P.; Georget, F.; Campa, C.; Abdallah, C.; Nguyen, C.T.Q.; Nguyen, H.P.; et al. Genetic-environment Interactions and Climatic Variables Effect on Bean Physical Characteristics and Chemical Composition of Coffea arabica. J. Sci. Food Agric. 2023, 103, 4692–4703. [Google Scholar] [CrossRef]
Palmitic Acid | Stearic Acid | Oleic Acid | cis-Vaccenic Acid | Linoleic Acid | Linolenic Acid | |
---|---|---|---|---|---|---|
Line Cornell49242 | ||||||
Sample without spiking (mg/g) | 3.79 | 0.46 | 2.11 | 0.33 | 8.22 | 6.09 |
Spiking level 1 (mg/g) | 1.00 | 0.17 | 0.70 | 0.20 | 3.10 | 1.72 |
Conc ± RSD (n = 3) | 4.75 ± 1.28 | 0.62 ± 1.5 | 2.78 ± 1.03 | 0.53 ± 1.94 | 11.04 ± 1.45 | 7.87 ± 0.84 |
Recovery level 1 (%) | 96 | 94 | 96 | 100 | 91 | 103 |
Spiking level 2 (mg/g) | 2.00 | 0.35 | 1.39 | 0.40 | 6.20 | 3.40 |
Conc ± RSD (n = 3) | 5.71 ± 0.39 | 0.79 ± 0.38 | 3.39 ± 1.26 | 0.72 ± 1.90 | 13.97 ± 1.14 | 9.56 ± 1.41 |
Recovery level 2 (%) | 96 | 94 | 92 | 97 | 93 | 102 |
Spiking level 3 (mg/g) | 4.00 | 0.70 | 2.78 | 0.80 | 12.40 | 6.80 |
Conc ± RSD (n = 3) | 7.59 ± 0.40 | 1.11 ± 0.66 | 4.73 ± 1.00 | 1.11 ± 0.32 | 19.8 ± 0.36 | 13.34 ± 0.70 |
Recovery level 3(%) | 95 | 93 | 94 | 98 | 93 | 107 |
Line A4804 | ||||||
Sample without spiking(mg/g) | 2.78 | 0.31 | 1.52 | 0.37 | 3.38 | 7.52 |
Spiking level 1 (mg/g) | 1.00 | 0.17 | 0.70 | 0.20 | 3.10 | 1.72 |
Conc ± RSD (n = 3) | 3.74 ± 1.20 | 0.48 ± 2.03 | 2.17 ± 0.89 | 0.56 ± 0.84 | 6.33 ± 1.46 | 9.2 ± 0.51 |
Recovery level 1 (%) | 96 | 103 | 93 | 94 | 95 | 98 |
Spiking level 2 (mg/g) | 2.00 | 0.35 | 1.39 | 0.40 | 6.20 | 3.40 |
Conc ± RSD (n = 3) | 4.68 ± 1.20 | 0.64 ± 2.03 | 2.84 ± 0.89 | 0.75 ± 0.84 | 9.08 ± 1.46 | 11.01 ± 0.51 |
Recovery level 2 (%) | 95 | 96 | 95 | 95 | 92 | 101 |
Spiking level 3 (mg/g) | 4.00 | 0.70 | 2.78 | 0.80 | 12.40 | 6.80 |
Conc ± RSD (n = 3) | 6.59 ± 0.93 | 0.98 ± 0.51 | 4.27 ± 0.11 | 1.16 ± 0.08 | 14.85 ± 0.60 | 14.86 ± 0.49 |
Recovery level 3(%) | 95 | 96 | 99 | 99 | 93 | 108 |
Factor | Palmitic Acid | Stearic Acid | Oleic Acid | cis-Vaccenic Acid | Linoleic Acid | Linolenic Acid | Total Fatty Acids |
---|---|---|---|---|---|---|---|
Sample mass | 0.099 | 0.024 | 0.065 | 0.010 | 0.368 | 0.271 | 0.876 |
Heating system | 0.054 | 0.007 | 0.074 | 0.014 | 0.347 | 0.295 | 0.821 |
HCl/Methanol stability | 0.134 | 0.023 | 0.100 | 0.014 | 0.502 * | 0.402 * | 1.182 * |
Volume hexane | 0.059 | 0.016 | 0.053 | 0.014 | 0.341 | 0.280 | 0.785 |
Vol HCl/Methanol | 0.081 | 0.010 | 0.080 | 0.013 | 0.426 | 0.287 | 0.894 |
Internal standard concentration | 0.052 | 0.013 | 0.033 | 0.006 | 0.172 | 0.169 | 0.432 |
Chromatographic equipment | 0.025 | 0.016 | 0.037 | 0.002 | 0.205 | 0.174 | 0.391 |
SD | 0.157 | 0.026 | 0.086 | 0.016 | 0.324 | 0.235 | 0.782 |
0.221 | 0.036 | 0.122 | 0.022 | 0.458 | 0.332 | 1.106 |
Palmitic Acid | Stearic Acid | Oleic Acid | cis-Vaccenic Acid | Linoleic Acid | Linolenic Acid | TFA | SFA | UFA | MUFA | PUFA | ω-6/ω-3 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene pool | |||||||||||||
Andean | mean | 2.77 a | 0.29 a | 1.43 | 0.38 b | 3.53 a | 6.81 b | 15.69 a | 3.49 a | 12.2 a | 1.86 | 10.34 a | 0.52 a |
(n = 65) | max | 3.38 | 0.56 | 3.80 | 0.51 | 5.54 | 8.76 | 19.72 | 4.50 | 15.68 | 4.18 | 13.73 | 0.89 |
min | 2.09 | 0.18 | 0.52 | 0.28 | 1.78 | 5.09 | 11.22 | 2.62 | 8.60 | 0.85 | 7.54 | 0.23 | |
Mesoamerican | mean | 3.09 b | 0.37 c | 1.56 | 0.33 a | 4.57 b | 6.83 b | 17.28 b | 3.95 c | 13.33 b | 1.93 | 11.4 b | 0.7 b |
(n = 51) | max | 4.35 | 0.71 | 3.95 | 0.47 | 8.30 | 9.26 | 25.46 | 5.61 | 19.85 | 4.38 | 15.47 | 1.37 |
min | 2.45 | 0.22 | 0.66 | 0.21 | 1.97 | 4.33 | 13.63 | 3.10 | 10.12 | 1.00 | 8.37 | 0.25 | |
Middle | mean | 2.81 a | 0.35 b | 1.47 | 0.39 b | 3.71 a | 6.58 a | 15.81 a | 3.62 b | 12.19 a | 1.90 | 10.28 a | 0.57 a |
(n = 56) | max | 4.50 | 0.75 | 2.79 | 0.55 | 9.22 | 8.84 | 25.76 | 6.14 | 19.61 | 3.18 | 17.38 | 1.13 |
min | 2.24 | 0.19 | 0.45 | 0.25 | 1.82 | 4.76 | 12.37 | 2.92 | 9.20 | 0.77 | 7.48 | 0.29 | |
Year of cultivation | |||||||||||||
2018 | mean | 2.86 | 0.36 b | 1.58 b | 0.38 | 3.80 | 6.62 a | 16.11 | 3.69 | 12.42 | 2.00 b | 10.42 | 0.59 |
(n = 172) | max | 3.89 | 0.71 | 3.80 | 0.53 | 7.57 | 8.95 | 22.17 | 5.25 | 16.93 | 4.18 | 15.33 | 1.37 |
min | 2.24 | 0.19 | 0.49 | 0.21 | 1.86 | 4.33 | 12.37 | 2.91 | 9.20 | 0.79 | 7.48 | 0.23 | |
2023 | mean | 2.89 | 0.31 a | 1.38 a | 0.36 | 3.99 | 6.87 b | 16.29 | 3.65 | 12.64 | 1.79 a | 10.86 | 0.59 |
(n = 172) | max | 4.50 | 0.75 | 3.95 | 0.55 | 9.22 | 9.26 | 25.76 | 6.14 | 19.85 | 4.38 | 17.38 | 1.37 |
min | 2.09 | 0.18 | 0.45 | 0.24 | 1.78 | 4.76 | 11.22 | 2.62 | 8.60 | 0.77 | 7.54 | 0.25 | |
Gene pool × Year of cultivation | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | |
Heritability, H2 | 0.74 | 0.79 | 0.80 | 0.86 | 0.87 | 0.82 | 0.76 | 0.78 | 0.75 | 0.78 | 0.75 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez Madrera, R.; Campa Negrillo, A.; Ferreira Fernández, J.J. Fatty Acids in Dry Beans (Phaseolus vulgaris L.): A Contribution to Their Analysis and the Characterization of a Diversity Panel. Foods 2024, 13, 2023. https://doi.org/10.3390/foods13132023
Rodríguez Madrera R, Campa Negrillo A, Ferreira Fernández JJ. Fatty Acids in Dry Beans (Phaseolus vulgaris L.): A Contribution to Their Analysis and the Characterization of a Diversity Panel. Foods. 2024; 13(13):2023. https://doi.org/10.3390/foods13132023
Chicago/Turabian StyleRodríguez Madrera, Roberto, Ana Campa Negrillo, and Juan José Ferreira Fernández. 2024. "Fatty Acids in Dry Beans (Phaseolus vulgaris L.): A Contribution to Their Analysis and the Characterization of a Diversity Panel" Foods 13, no. 13: 2023. https://doi.org/10.3390/foods13132023
APA StyleRodríguez Madrera, R., Campa Negrillo, A., & Ferreira Fernández, J. J. (2024). Fatty Acids in Dry Beans (Phaseolus vulgaris L.): A Contribution to Their Analysis and the Characterization of a Diversity Panel. Foods, 13(13), 2023. https://doi.org/10.3390/foods13132023