Influence of Natural Risks and Non-Agricultural Income on Agricultural Trusteeship Decisions in Northeast China
Abstract
1. Introduction
2. Theoretical Framework
2.1. The Influence Mechanism of Natural Risk on Farmers’ APTS Adoption
2.2. The Influence Mechanism of the NAEI on Farmers’ APTS Adoption
2.3. The Moderating Effect of the NAEI on the Influence of Natural Risk on Farmers’ APTS Choice Behavior
3. Materials and Methods
3.1. Data Source
3.2. Methods
3.3. Variable Selection
3.3.1. Explained Variables
3.3.2. Key Variables
3.3.3. Control Variables
4. Results
4.1. The Impact of Natural Risks on APTS Choice
4.2. The Impact of Non-Agricultural Employment on APTS Adoption
4.3. The Moderating Effect of the NAEI on the Effect of Natural Risk on Farmers’ APTS Adoption
4.4. Robustness Test of the Model
4.5. Discussion of Scale Heterogeneity
4.5.1. The Impact of Natural Risks and the NAEI on the APTS Choice for Farmers of Different Scales
4.5.2. The Moderating Effect of the NAEI on the APTS Choice of Farmers of Different Scales
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plunkett, B.; Duff, A.; Kingwell, R.; Feldman, D. Australian agricultural scale and corporate agroholdings: Environmental and climatic impacts. Int. Food Agribus. Manag. Rev. 2017, 20, 187–190. [Google Scholar] [CrossRef]
- Alemu, M.; Berihun, D.; Lokossou, J.C.; Yismaw, B. Productivity and efficiency heterogeneity among maize smallholder farmers in Ethiopia. Cogent Food Agric. 2024, 10, 2300191. [Google Scholar] [CrossRef]
- Devkota, M.; Devkota, K.P.; Kumar, S. Conservation agriculture improves agronomic, economic, and soil fertility indicators for a clay soil in a rainfed Mediterranean climate in Morocco. Agric. Syst. 2022, 201, 103470. [Google Scholar] [CrossRef]
- Cinque, A.; Poggi, C.; Miluka, J. How Does Fertility Affect Female Employment? Evidence from Albania. J. Dev. Stud. 2024, 1–19. [Google Scholar] [CrossRef]
- Arthur-Holmes, F.; Yeboah, T.; Busia, K.A. Dimensions of women’s mobility, livelihoods and vulnerability in artisanal and small-scale mining-induced local economy. J. Rural. Stud. 2023, 101, 103061. [Google Scholar] [CrossRef]
- Kmoch, L.; Palm, M.; Persson, U.M.; Jepsen, M.R. Upland Livelihoods between Local Land and Global Labour Market Dependencies: Evidence from Northern Chin State, Myanmar. Sustainability 2018, 10, 3707. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Lou, S. Research on grain production efficiency in China’s main grain-producing areas from the perspective of grain subsidy. Environ. Technol. Innov. 2021, 22, 101530. [Google Scholar] [CrossRef]
- Li, Y.; Han, X.; Zhou, B.; Lv, L.; Fan, Y. Farmland Dynamics and Its Grain Production Efficiency and Ecological Security in China’s Major Grain-Producing Regions between 2000 and 2020. Land 2023, 12, 1404. [Google Scholar] [CrossRef]
- Batista, K.; Giacomini, A.A.; Gerdes, L.; de Mattos, W.T.; Otsuk, I.P. Nitrogen fertilisation improves the grain production efficiency and sustainability of out-of-season corn and Congo grass intercropping. Soil Res. 2019, 57, 397–407. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Zhu, F.; Liu, X.; Liu, J.; Sriboonchitta, S. Promotion Effect of Agricultural Production Trusteeship on High—Quality Production of Grain-Evidence from the Perspective of Farm Households. Agronomy 2023, 13, 2024. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.; Shi, J. The environmental performance of agricultural production trusteeship from the perspective of planting carbon emissions. China Agric. Econ. Rev. 2023, 15, 853–870. [Google Scholar] [CrossRef]
- Xiao, J.; Song, Y.; You, H. Explaining Peasants’ Intention and Behavior of Farmland Trusteeship in China: Implications for Sustainable Agricultural Production. Sustainability 2020, 12, 5748. [Google Scholar] [CrossRef]
- He, Y.; Fu, D.; Zhang, H.; Wang, X. Can Agricultural Production Services Influence Smallholders’ Willingness to Adjust Their Agriculture Production Modes? Evidence from Rural China. Agriculture 2023, 13, 564. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q. The Impact of Farmland Tenure Security on China’s Agricultural Production Efficiency: A Perspective of Agricultural Production Factors. Sustainability 2022, 14, 16266. [Google Scholar] [CrossRef]
- Huan, M.; Zhan, S. Agricultural Production Services, Farm Size and Chemical Fertilizer Use in China’s Maize Production. Land 2022, 11, 1931. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, K.; Wu, H.; Liu, C.; Yu, Z. Land Transfer or Trusteeship: Can Agricultural Production Socialization Services Promote Grain Scale Management? Land 2023, 12, 797. [Google Scholar] [CrossRef]
- Liansangpuii; Singh, R.; Singh, R.M.; Singh, K.N.; Kar, S.K. Impact assessment of rainwater management interventions on land use land cover changes in Parasai-Sindh watershed of Bundelkhand Region, Central India. Ecol. Eng. 2024, 201, 107213. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Ma, H.; Shen, Q.; Rehman, A.; Oxley, L. Climate change variability adaptation and farmers decisions of farm exit and survival in Pakistan. Clim. Serv. 2024, 33, 100437. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, L.; Liang, C. Agricultural drought disaster risk assessment in Shandong Province, China. Nat. Hazards 2023, 118, 1515–1534. [Google Scholar] [CrossRef]
- Mohammed, G.; Boutkhil, M.; Ayoub, B. Assessing the impact of anthropogenic activities on land use and land cover changes in the semi-arid and arid regions of Algeria. Environ. Monit. Assess. 2024, 196, 383. [Google Scholar] [CrossRef]
- Egbueri, J.C.; Mgbenu, C.N.; Digwo, D.C.; Nnyigide, C.S. A multi-criteria water quality evaluation for human consumption, irrigation and industrial purposes in Umunya area, southeastern Nigeria. Int. J. Environ. Anal. Chem. 2023, 103, 3351–3375. [Google Scholar] [CrossRef]
- Rao, A.; Lucey, B.; Kumar, S. Climate risk and carbon emissions: Examining their impact on key energy markets through asymmetric spillovers. Energy Econ. 2023, 126, 106970. [Google Scholar] [CrossRef]
- Segnon, A.C.; Zougmoré, R.B.; Green, R.; Ali, Z.; Carr, T.W.; Houessionon, P.; M’Boob, S.; Scheelbeek, P.F.D. Climate change adaptation options to inform planning of agriculture and food systems in The Gambia: A systematic approach for stocktaking. Front. Sustain. Food Syst. 2022, 6, 834867. [Google Scholar] [CrossRef]
- Zecca, F. Agricultural Policies and Risk Management Strategies: What Solution for Guarantee Food Security? In Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development During Global Challenges; International Business Information Management Association: King of Prussia, PA, USA, 2020; pp. 13454–13464. [Google Scholar]
- Andati, P.; Majiwa, E.; Ngigi, M.; Mbeche, R.; Ateka, J. Effect of climate smart agriculture technologies on crop yields: Evidence from potato production in Kenya. Clim. Risk Manag. 2023, 41, 100539. [Google Scholar] [CrossRef]
- Tiague, B.D. Floods, Agricultural Production, and Household Welfare: Evidence from Tanzania. Environ. Resour. Econ. 2023, 85, 341–384. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Q.; Fahad, S.; Kagatsume, M.; Yu, J. Impact of Off-Farm Employment on Farmland Transfer: Insight on the Mediating Role of Agricultural Production Service Outsourcing. Agriculture 2022, 12, 1617. [Google Scholar] [CrossRef]
- Uddin, M.N.; Akter, S.; Roy, D.; Dev, D.S.; Mithun, N.A.S.; Rahman, S.; Mahmud, S.; Donaldson, J.L. An econometric analysis of factors affecting vegetable growers' interest in good agricultural practices: A case of rural Bangladesh. Environ. Dev. Sustain. 2024, 1–21. [Google Scholar] [CrossRef]
- Okello, D.M.; Akite, I.; Atube, F.; Kalule, S.W.; Ongeng, D. Examining the relationship between farmers’ characteristics and access to agricultural extension: Empirical evidence from northern Uganda. J. Agric. Educ. Ext. 2023, 29, 439–461. [Google Scholar] [CrossRef]
- Schinato, F.; Bussoni, A.; Olmos, V.M. Farmers’ preferences and willingness to incorporate silvopastoral systems in Uruguay. Agrofor. Syst. 2024, 98, 1243–1256. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, P. Research on the Relationship between Price Mechanism and Short-Term Behavior in Chinese Farmland Trusteeships. Sustainability 2019, 11, 5708. [Google Scholar] [CrossRef]
- Sims, B.; Kienzle, J. Sustainable Agricultural Mechanization for Smallholders: What Is It and How Can We Implement It? Agriculture 2017, 7, 50. [Google Scholar] [CrossRef]
- Adem, M. Empirical analysis of production risk and technical efficiency of sesame farmers in northwest Ethiopia. Cogent Food Agric. 2024, 10, 2310803. [Google Scholar] [CrossRef]
- Mbah, L.T.; Molua, E.L.; Bomdzele, E.; Egwu, B.M.J. Farmers’ response to maize production risks in Cameroon: An application of the criticality risk matrix model. Heliyon 2023, 9, e15124. [Google Scholar] [CrossRef] [PubMed]
- Abebe, F.; Zuo, A.; Wheeler, S.A.; Bjornlund, H.; Chilundo, M.; Kissoly, L.; Dube, T. The influences on farmers’ planned and actual farm adaptation decisions: Evidence from small-scale irrigation schemes in South-Eastern Africa. Ecol. Econ. 2022, 202, 107594. [Google Scholar] [CrossRef]
- Eitzinger, A.; Binder, C.R.; Meyer, M.A. Risk perception and decision-making: Do farmers consider risks from climate change? Clim. Change 2018, 151, 507–524. [Google Scholar] [CrossRef]
- Ahmad, D.; Afzal, M.; Rauf, A. Analysis of wheat farmers’ risk perceptions and attitudes: Evidence from Punjab, Pakistan. Nat. Hazards 2019, 95, 845–861. [Google Scholar] [CrossRef]
- Ullah, R.; Shivakoti, G.P.; Ali, G. Factors effecting farmers’ risk attitude and risk perceptions: The case of Khyber Pakhtunkhwa, Pakistan. Int. J. Disaster Risk Reduct. 2015, 13, 151–157. [Google Scholar] [CrossRef]
- Usman, M.; Ali, A.; Bashir, M.K.; Radulescu, M.; Mushtaq, K.; Wudil, A.H.; Baig, S.A.; Akram, R. Do farmers’ risk perception, adaptation strategies, and their determinants benefit towards climate change? Implications for agriculture sector of Punjab, Pakistan. Environ. Sci. Pollut. Res. 2023, 30, 79861–79882. [Google Scholar] [CrossRef] [PubMed]
- Salazar, O.V.; Ramos-Martin, J.; Lomas, P.L. Livelihood sustainability assessment of coffee and cocoa producers in the Amazon region of Ecuador using household types. J. Rural Stud. 2018, 62, 1–9. [Google Scholar] [CrossRef]
- Liehr, E.; Millar, J.; Walkden-Brown, S.; Chittavong, M.; Olmo, L. The role of goat production in smallholder systems in Lao PDR: Implications for improving productivity and scaling up production. Anim. Prod. Sci. 2024, 64, 1–13. [Google Scholar] [CrossRef]
- Alary, V.; Corbeels, M.; Affholder, F.; Alvarez, S.; Soria, A.; Valadares Xavier, J.H.; da Silva, F.A.M.; Scopel, E. Economic assessment of conservation agriculture options in mixed crop-livestock systems in Brazil using farm modelling. Agric. Syst. 2016, 144, 33–45. [Google Scholar] [CrossRef]
- Ellis, F. Peasant Economics: Farm Households and Agrarian Development; Cambridge University Press: Cambridge, UK; London, UK, 1993. [Google Scholar]
- Ellis, F. The Determinants of Rural Livelihood Diversification in Developing Countries. J. Agric. Econ. 2000, 51, 289–302. [Google Scholar] [CrossRef]
- Barba-Escoto, L.; van Wijk, M.T.; López-Ridaura, S. Non-linear Interactions Driving Food Security of Smallholder Farm Households in the Western Highlands of Guatemala. Front. Sustain. Food Syst. 2020, 4, 1–14. [Google Scholar] [CrossRef]
- Kusmierek-Tomaszewska, R.; Zarski, J. Assessment of Meteorological and Agricultural Drought Occurrence in Central Poland in 1961-2020 as an Element of the Climatic Risk to Crop Production. Agriculture 2021, 11, 855. [Google Scholar] [CrossRef]
- Manoj, T.; Makkithaya, K.; Narendra, V.G. A trusted IoT data sharing and secure oracle based access for agricultural production risk management. Comput. Electron. Agric. 2023, 204, 107544. [Google Scholar] [CrossRef]
- Chavas, J.; Cooper, J.; Wallander, S. The Impact of Input and Output Decisions on Agricultural Production Risk. J. Agric. Resour. Econ. 2019, 44, 513–535. [Google Scholar] [CrossRef]
- Shani, F.K.; Joshua, M.; Ngongondo, C. Determinants of Smallholder Farmers’ Adoption of Climate-Smart Agricultural Practices in Zomba, Eastern Malawi. Sustainability 2024, 16, 3782. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, J.; Liu, Y. Digital economy and farmers’ income inequality—A quasi-natural experiment based on the “broadband China” strategy. Appl. Econ. Lett. 2024, 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W. Social capital’s role in mitigating economic vulnerability: Understanding the impact of income disparities on farmers’ livelihoods. World Dev. 2024, 177, 106515. [Google Scholar] [CrossRef]
- Gu, J. Neighborhood Does Matter: Farmers’ Local Social Interactions and Land Rental Behaviors in China. Land 2024, 13, 76. [Google Scholar] [CrossRef]
- Zhu, M.; Shen, C.; Tian, Y.; Wu, J.; Mu, Y. Factors Affecting Smallholder Farmers’ Marketing Channel Choice in China with Multivariate Logit Model. Agriculture 2022, 12, 1441. [Google Scholar] [CrossRef]
- Trinh, T.Q.; Ranola, R.F.; Camacho, L.D.; Simelton, E. Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam. Land Use Policy 2018, 70, 224–231. [Google Scholar] [CrossRef]
- Rahman, S.; Sujan, H.K.; Alam, S.-U.; Sultana, M.; Akter, M.S. Adoption of improved management practices of livestock: Case of small-scale farmers in rural Bangladesh. Heliyon 2023, 9, e18667. [Google Scholar] [CrossRef]
- Getahun, W.; Haji, J.; Mehare, A.; Zemedu, L. Drivers of income diversification among rural households in the Ethiopian central highlands. Food Energy Secur. 2023, 12, e443. [Google Scholar] [CrossRef]
- Ahmar, M.; Ali, F.; Jiang, Y.; Wang, Y.; Iqbal, K. Determinants of Adoption and the Type of Solar PV Technology Adopted in Rural Pakistan. Front. Environ. Sci. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- Kenyo, B.; Koumetio, F.; Kwekam, M.; Kengni, L. Characteristics of lineaments using gravity data in the Eastern Cameroon: Structural, hydrogeological and natural risks implications. J. Afr. Earth Sci. 2023, 202, 104886. [Google Scholar] [CrossRef]
- Paglieri, F.; Falcone, R.; Felletti, S.; Sapienza, A. Social trust and collective prevention of natural risks: Two experimental studies. Boll. Geofis. Teor. Appl. 2019, 60, S23–S35. [Google Scholar]
- Teka, O.; Vogt, J. Social perception of natural risks by local residents in developing, countries—The example of the coastal area of Benin. Soc. Sci. J. 2010, 47, 215–224. [Google Scholar] [CrossRef]
- Smedzik-Ambrozy, K.; Matuszczak, A.; Kata, R.; Kulyk, P. The Relationship of Agricultural and Non-Agricultural Income and Its Variability in Regard to Farms in the European Union Countries. Agriculture 2021, 11, 196. [Google Scholar] [CrossRef]
- Sunny, F.A.; Fu, L.; Rahman, M.S.; Karimanzira, T.T.P.; Zuhui, H. What influences Bangladeshi Boro rice farmers’ adoption decisions of recommended fertilizer doses: A case study on Dinajpur district. PLoS ONE 2022, 17, e0269611. [Google Scholar] [CrossRef]
- Zeweld, W.; Van Huylenbroeck, G.; Tesfay, G.; Speelman, S. Impacts of socio-psychological factors on smallholder farmers’ risk attitudes: Empirical evidence and implications. Agrekon 2019, 58, 253–279. [Google Scholar] [CrossRef]
- Yiridoe, E.K.; Atari, D.O.A.; Gordon, R.; Smale, S. Factors influencing participation in the Nova Scotia Environmental Farm Plan Program. Land Use Policy 2010, 27, 1097–1106. [Google Scholar] [CrossRef]
- Marino, D.; Palmieri, M.; Marucci, A.; Soraci, M.; Barone, A.; Pili, S. Linking Flood Risk Mitigation and Food Security: An Analysis of Land-Use Change in the Metropolitan Area of Rome. Land 2023, 12, 366. [Google Scholar] [CrossRef]
- Parven, A.; Pal, I.; Witayangkurn, A.; Pramanik, M.; Nagai, M.; Miyazaki, H.; Wuthisakkaroon, C. Impacts of disaster and land-use change on food security and adaptation: Evidence from the delta community in Bangladesh. Int. J. Disaster Risk Reduct. 2022, 78, 103119. [Google Scholar] [CrossRef]
- Kent, C.; Pope, E.; Thompson, V.; Lewis, K.; Scaife, A.A.; Dunstone, N. Using climate model simulations to assess the current climate risk to maize production. Environ. Res. Lett. 2017, 12, 1–24. [Google Scholar] [CrossRef]
- Zou, B.; Mishra, A.K. Modernizing smallholder agriculture and achieving food security: An exploration in machinery services and labor reallocation in China. Appl. Econ. Perspect. Policy 2024, 12, 1–22. [Google Scholar] [CrossRef]
- Anang, B.T.; Asante, B.O. Farm household access to agricultural services in northern Ghana. Heliyon 2020, 6, e05517. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Cheng, Z.; Ma, H. Impact of Land-Use Intensification on the Development of Sustainable Agricultural Green Innovation Technology. J. Knowl. Econ. 2024, 1–35. [Google Scholar] [CrossRef]
- Michels, M.; Mußhoff, O. Drip irrigation in Bengaluru: Evaluating gender’s moderating effect on the intention to adopt drip irrigation. Appl. Econ. Lett. 2024, 1–5. [Google Scholar] [CrossRef]
- Sikandar, F.; Erokhin, V.; Xin, L.; Sidorova, M.; Ivolga, A.; Bobryshev, A. Sustainable Agriculture and Rural Poverty Eradication in Pakistan: The Role of Foreign Aid and Government Policies. Sustainability 2022, 14, 14751. [Google Scholar] [CrossRef]
- Tanti, P.C.; Jena, P.R.; Timilsina, R.R.; Rahut, D.B. Enhancing crop yields and farm income through climate-smart agricultural practices in Eastern India. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 35. [Google Scholar] [CrossRef]
- Dompreh, E.B.; Rossignoli, C.M.; Griffiths, D.; Wang, Q.; Htoo, K.K.; Nway, H.M.; Akester, M.; Gasparatos, A. Impact of adoption of better management practices and nutrition-sensitive training on the productivity, livelihoods and food security of small-scale aquaculture producers in Myanmar. Food Secur. 2023, 16, 757–780. [Google Scholar] [CrossRef]
- Islam, A.H.M.S.; Barman, B.K.; Murshed-E-Jahan, K. Adoption and impact of integrated rice–fish farming system in Bangladesh. Aquaculture 2015, 447, 76–85. [Google Scholar] [CrossRef]
- Krupek, F.S.; Redfearn, D.; Eskridge, K.M.; Basche, A. Ecological intensification with soil health practices demonstrates positive impacts on multiple soil properties: A large-scale farmer-led experiment. Geoderma 2022, 409, 115594. [Google Scholar] [CrossRef]
- Wood, S.A.; Bowman, M. Large-scale farmer -led experiment demonstrates positive impact of cover crops on multiple soil health indicators. Nat. Food 2021, 2, 97–103. [Google Scholar] [CrossRef]
- Mutegi, J.; Adolwa, I.; Kiwia, A.; Njoroge, S.; Gitonga, A.; Muthamia, J.; Nchanji, E.; Mairura, F.; Majumdar, K.; Zingore, S.; et al. Agricultural production and food security implications of Covid-19 disruption on small-scale farmer households: Lessons from Kenya. World Dev. 2024, 173, 106405. [Google Scholar] [CrossRef]
- Rashidi, T.; Pakravan-Charvadeh, M.R.; Gholamrezai, S.; Rahimian, M. Efficiency of small-scale farmer ‘s conservative behavior on their food security status in Iran. Reg. Environ. Change 2024, 24, 23. [Google Scholar] [CrossRef]
- Naziri, D.; Aubert, M.; Codron, J.-M.; Loc, N.T.T.; Moustier, P. Estimating the Impact of Small-Scale Farmer Collective Action on Food Safety: The Case of Vegetables in Vietnam. J. Dev. Stud. 2014, 50, 715–730. [Google Scholar] [CrossRef]
- Cao, Z.; Jiang, S.; Wang, Z. Behavior ability, transaction cost and farmers’ production process outsourcing: Dual veri-fication based on Logit regression and csQCA. J. Agric. Econ. 2017, 3, 64–74. [Google Scholar] [CrossRef]
- Shi, X.; Heerink, N.; Qu, F. Does off-farm employment contribute to agriculture-based environmental pollution? New insights from a village-level analysis in Jiangxi Province, China. China Econ. Rev. 2011, 22, 524–533. [Google Scholar] [CrossRef]
- Kabir, J.; Alauddin, M.; Crimp, S. Farm-level adaptation to climate change in Western Bangladesh: An analysis of adaptation dynamics, profitability and risks. Land Use Policy 2017, 64, 212–224. [Google Scholar] [CrossRef]
- Ahmad, D.; Afzal, M.; Rauf, A. Environmental risks among rice farmers and factors influencing their risk perceptions and attitudes in Punjab, Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 21953–21964. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ma, W. Agricultural mechanization and land productivity in China. Int. J. Sustain. Dev. World Ecol. 2022, 29, 530–542. [Google Scholar] [CrossRef]
- Gonzalez, E.B.; Easdale, M.H.; Sacchero, D.M. Socio-technical networks modulate on-farm technological innovations in wool production of North Patagonia, Argentina. J. Rural. Stud. 2021, 83, 30–36. [Google Scholar] [CrossRef]
Variable Category | Variable Name | Variable Definition | Mean | S.D. | Min | Max |
---|---|---|---|---|---|---|
Explained variables | APTS selection behavior (Choose) | Self-cultivation = 0; select partial link APTS = 1; choose whole-process APTS = 2 | 2.15 | 0.52 | 0 | 2 |
key variables | Natural risk (Disaster) | Was there a natural disaster last year: yes = 1, no = 0 | 0.54 | 0.50 | 0 | 1 |
NAEI (Nonfarm) | Annual per capita NAEI of farmers: the sum of NAEI of each member last year divided by the total number of farmers population | 6760.26 | 9922.78 | 0 | 87,500 | |
control variable | Individual characteristic | |||||
Farmer age (Age) | The actual age of the head of farmer (years) | 55.50 | 10.20 | 25 | 86 | |
Farmer education (Education) | years of education (years) | 7.04 | 2.81 | 0 | 15 | |
Risk preference (Risker) | You are willing to give up your immediate interests for the long-term benefit: 0–10 points | 4.48 | 3.00 | 0 | 10 | |
Family endowment variable | ||||||
Net income (Family income) | The actual annual net income of the family (yuan) | 59,951.07 | 61,677.19 | 1504 | 874,192 | |
Fluctuation of farmers production output (Output) | The difference between the highest yield and the lowest yield in the past 5 years (kg/mu) | 511.21 | 282.99 | 34 | 2300 | |
Is there agricultural machinery (Machinery) | Agricultural machinery = 1, no agricultural machinery = 0 | 0.47 | 0.50 | 0 | 1 | |
Relational network (Service) | The relationship between the server and you: 0 = stranger, 1 = known person, 2 = relative. | 0.82 | 0.50 | 0 | 2 | |
Area dummy variables | ||||||
Province variables (Province) | Heilongjiang = 1, Jilin = 2, Liaoning = 3 | 1.88 | 0.76 | 1 | 3 | |
Region variable (City) | Harbin = 1, Suihua = 2, Qiqihar = 3, Changchun = 4, Siping = 5, Tieling = 6 | 4.05 | 1.55 | 1 | 6 |
Variable Name | Partial Link APTS | Whole-Process APTS | ||||
---|---|---|---|---|---|---|
Model 1 | Mode 2 | Mode 3 | Mode 1 | Mode 2 | Mode 3 | |
Disaster | −0.8478 ** (0.3473) | — | −0.7672 ** (0.3490) | −0.9415 ** (0.3724) | — | −0.8628 ** (0.3738) |
Nonfarm | — | 0.4798 ** (0.2270) | 0.4213 * (0.2288) | — | 0.4956 ** (0.2386) | 0.4358 * (0.2401) |
Age | 0.3965 ** (0.1729) | 0.4220 ** (0.1741) | 0.4145 ** (0.1740) | 0.4470 ** (0.1860) | 0.4708 ** (0.1869) | 0.4651 ** (0.1868) |
Education | 0.2995 * (0.1689) | 0.3070 * (0.1693) | 0.2942 * (0.1703) | 0.3631 ** (0.1814) | 0.3665 ** (0.1820) | 0.3540 * (0.1827) |
Risker | 0.0828 (0.1648) | 0.0973 (0.1640) | 0.1040 (0.1658) | 0.3559 ** (0.1771) | 0.3755 ** (0.1764) | 0.3791 ** (0.1780) |
Family income | −0.0383 (0.1770) | −0.1626 (0.1728) | 0.1587 (0.1639) | 0.0409 (0.1861) | −0.0903 (0.1803) | −0.0825 (0.1707) |
Output | 0.3086 * (0.1720) | 0.2254 (0.1646) | 0.2788 (0.1728) | 0.3648 ** (0.1814) | 0.2766 (0.1748) | 0.3321 * (0.1825) |
Machinery | −0.7693 ** (0.3843) | −0.7635 ** (0.3816) | −0.6907 * (0.3886) | −1.6846 *** (0.4116) | −1.6873 *** (0.4091) | −1.6060 *** (0.4154) |
Service | 4.6673 *** (0.5421) | 4.6014 *** (0.5402) | 4.6495 *** (0.5439) | 4.1623 *** (0.5608) | 4.0996 *** (0.5596) | 4.1413 *** (0.5630) |
Area dummy variables | controlled | controlled | controlled | controlled | controlled | controlled |
Constant | 3.3526 *** (0.7248) | 2.5413 *** (0.6416) | 3.2066 *** (0.7260) | 1.3394 * (0.7736) | 0.4616 (0.6919) | 1.1964 (0.7747) |
Log likelihood | −521.6670 | −522.6065 | −519.7582 | −521.6670 | −522.6065 | −519.7582 |
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Variable Name | Model 5: Partial Link APTS | Model 5: Whole-Process APTS | ||
---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | |
Disaster | −0.6960 * | 0.3596 | −0.7896 ** | 0.3834 |
Nonfarm × Disaster | 0.6396 ** | 0.3249 | 0.5978 * | 0.3399 |
Age | 0.4186 ** | 0.1746 | 0.4688 ** | 0.1873 |
Education | 0.3053 * | 0.1710 | 0.3704 * | 0.1831 |
Risker | 0.0726 | 0.1663 | 0.3464 * | 0.1783 |
Family income | −0.1441 | 0.1639 | −0.0503 | 0.1694 |
Output | 0.2569 | 0.1719 | 0.3142 * | 0.1813 |
Machinery | −0.7509 * | 0.3894 | −1.6728 *** | 0.4158 |
Service | 4.6616 *** | 0.5443 | 4.1555 *** | 0.5633 |
Area dummy variables | controlled | controlled | controlled | controlled |
Log likelihood | −519.46306 | |||
Prob > chi2 | 0.0000 | |||
Adjust R2 | 0.2926 | |||
N | 949 |
Variable Name | Matching Method | Treatment Group | Control Group | ATT | S.D. | T Value | |
---|---|---|---|---|---|---|---|
Natural risk | K neighborhood matching (k = 4) | Before matching | 0.909 | 0.949 | −0.041 | 0.017 | −2.40 ** |
After matching | 0.911 | 0.959 | −0.0482 | 0.020 | −2.44 ** | ||
Radius matching (0.01) | Before matching | 0.909 | 0.949 | −0.041 | 0.017 | −2.40 ** | |
After matching | 0.911 | 0.951 | −0.040 | 0.019 | −2.12 ** | ||
Kernel matching | Before matching | 0.909 | 0.949 | −0.041 | 0.017 | −2.40 ** | |
After matching | 0.911 | 0.948 | −0.038 | 0.018 | −2.05 ** | ||
Non-agricultural employment | K neighborhood matching (k = 4) | Before matching | 0.945 | 0.903 | 0.041 | 0.017 | 2.44 ** |
After matching | 0.945 | 0.878 | 0.067 | 0.025 | 2.72 *** | ||
Radius matching (0.01) | Before matching | 0.945 | 0.903 | 0.041 | 0.017 | 2.44 ** | |
After matching | 0.944 | 0.893 | 0.051 | 0.024 | 2.11 ** | ||
Kernel matching | Before matching | 0.945 | 0.903 | 0.041 | 0.017 | 2.44 ** | |
After matching | 0.945 | 0.885 | 0.059 | 0.022 | 2.66 ** |
Variable Name | Partial Link APTS | Whole-Process APTS | ||||
---|---|---|---|---|---|---|
Model 6 | Mode 7 | Mode 8 | Mode 6 | Mode 7 | Mode 8 | |
Small-Scale Farmers | Medium-Scale Farmers | Large-Scale Farmers | Small-Scale Farmers | Medium-Scale Farmers | Large-Scale Farmers | |
Natural risk | −1.6427 * (0.8656) | −1.7935 ** (0.7561) | −0.7339 (0.7651) | −1.5571 * (0.8706) | −2.2812 *** (0.7908) | −0.0604 (1.0118) |
NAEI | 1.3884 ** (0.6381) | 1.1737 * (0.6452) | 0.7927 ** (0.4045) | 1.5067 ** (0.6506) | 1.3407 ** (0.6617) | 0.6469 (0.4857) |
Control variables | controlled | controlled | controlled | controlled | controlled | controlled |
Log likelihood | −208.2572 | −190.0261 | −80.84248 | −208.2572 | −190.0261 | −80.84248 |
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Adjust R2 | 0.2914 | 0.2858 | 0.5006 | 0.2914 | 0.2858 | 0.5006 |
N | 382 | 363 | 211 | 382 | 363 | 211 |
Variable Name | Partial Link APTS | Whole-Process APTS | ||||
---|---|---|---|---|---|---|
Model 9 | Model 10 | Model 11 | Model 9 | Model 10 | Model 11 | |
Small-Scale Farmers | Medium-Scale Farmers | Large-Scale Farmers | Small-Scale Farmers | Medium-Scale Farmers | Large-Scale Farmers | |
Natural risk | −1.7134 ** (0.8682) | −1.5279 ** (0.7719) | −1.0751 (0.7504) | −1.6192 ** (0.8606) | −2.0277 ** (0.8060) | −0.3296 (1.0069) |
NAEI | 1.0685 ** (0.2272) | 1.2155 * (0.7362) | 0.4430 (0.4821) | 1.1278 ** (0.3516) | 1.2578 * (0.7535) | 0.7695 (0.6443) |
Control variables | controlled | controlled | controlled | controlled | controlled | controlled |
Log likelihood | −210.2235 | −190.9400 | −82.375615 | −210.2235 | −190.9400 | −82.375615 |
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Adjust R2 | 0.2847 | 0.2823 | 0.4912 | 0.2847 | 0.2823 | 0.4912 |
N | 382 | 363 | 211 | 382 | 363 | 211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Liu, H. Influence of Natural Risks and Non-Agricultural Income on Agricultural Trusteeship Decisions in Northeast China. Foods 2024, 13, 2024. https://doi.org/10.3390/foods13132024
Xue Y, Liu H. Influence of Natural Risks and Non-Agricultural Income on Agricultural Trusteeship Decisions in Northeast China. Foods. 2024; 13(13):2024. https://doi.org/10.3390/foods13132024
Chicago/Turabian StyleXue, Ying, and Hongbin Liu. 2024. "Influence of Natural Risks and Non-Agricultural Income on Agricultural Trusteeship Decisions in Northeast China" Foods 13, no. 13: 2024. https://doi.org/10.3390/foods13132024
APA StyleXue, Y., & Liu, H. (2024). Influence of Natural Risks and Non-Agricultural Income on Agricultural Trusteeship Decisions in Northeast China. Foods, 13(13), 2024. https://doi.org/10.3390/foods13132024