Structural and Release Properties of Combined Curcumin Controlled-Release Tablets Formulated with Chitosan/Sodium Alginate/HPMC
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Tablets
2.2.1. Wet Granulation
2.2.2. Tablet Preparation
2.3. Flowability of Particle Blends
2.4. Characterization of the Tablets
2.4.1. Weight Variance
2.4.2. Friability
2.4.3. Hardness
2.4.4. Tensile Strength
2.4.5. Disintegration Time
2.4.6. Differential Scanning Calorimetry (DSC)
2.4.7. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.4.8. Release Properties of Curcumin
2.4.9. Concentration of Curcumin
2.4.10. Microstructure
2.5. Statistical Analysis
3. Results and Discussion
3.1. Flowability of Particle Blends
3.2. Characterization of the Tablets
3.3. Differential Scanning Calorimetry (DSC)
3.4. Fourier-Transform Infrared Spectroscopy (FTIR)
3.5. Release Properties of Curcumin
3.6. Microstructure of Tablet after In Vitro Release Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, K.C.; Chiang, Y.C.; Li, P.H.; Chiang, P.Y. Physicochemical and release properties of anthocyanin gastric floating tablets colloidized with κ-carrageenan/metal ions. Food Hydrocoll. 2024, 150, 109674. [Google Scholar] [CrossRef]
- Lordan, R. Dietary supplements and nutraceuticals market growth during the coronavirus pandemic–Implications for consumers and regulatory oversight. PharmaNutrition 2021, 18, 100282. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Sablani, S.; Gogate, P.; Annapure, U.; Casanova, F.; Nayik, G.A.; Alaskar, K.; Sarwar, N.; Raina, I.A.; Ramniwas, S.; et al. Factors governing consumers buying behavior concerning nutraceutical product. Food Sci. Nutr. 2023, 11, 4988–5003. [Google Scholar] [CrossRef]
- López-Córdoba, A.; Matera, S.; Deladino, L.; Hoya, A.; Navarro, A.; Martino, M. Compressed tablets based on mineral-functionalized starch and co-crystallized sucrose with natural antioxidants. J. Food Eng. 2015, 146, 234–242. [Google Scholar] [CrossRef]
- Maderuelo, C.; Zarzuelo, A.; Lanao, J.M. Critical factors in the release of drugs from controlled release hydrophilic matrices. J. Control. Release 2011, 154, 2–19. [Google Scholar] [CrossRef]
- Bruneau, M.; Bennici, S.; Brendle, J.; Dutournie, P.; Limousy, L.; Pluchon, S. Systems for stimuli-controlled release: Materials and applications. J. Control. Release 2019, 294, 355–371. [Google Scholar] [CrossRef]
- Mašková, E.; Kubová, K.; Raimi-Abraham, B.T.; Vllasaliu, D.; Vohlídalová, E.; Turánek, J.; Mašek, J. Hypromellose–A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J. Control. Release 2020, 324, 695–727. [Google Scholar] [CrossRef]
- Lee, B.J.; Ryu, S.G.; Cui, J.H. Formulation and release characteristics of hydroxypropyl methylcellulose matrix tablet containing melatonin. Drug Dev. Ind. Pharm. 1999, 25, 493–501. [Google Scholar] [CrossRef]
- Heng PW, S.; Chan, L.W.; Easterbrook, M.G.; Li, X. Investigation of the influence of mean HPMC particle size and number of polymer particles on the release of aspirin from swellable hydrophilic matrix tablets. J. Control. Release 2001, 76, 39–49. [Google Scholar] [CrossRef]
- Joshi, S.C. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 2011, 4, 1861–1905. [Google Scholar] [CrossRef]
- Fu, J.; Yang, F.; Guo, Z. The chitosan hydrogels: From structure to function. New J. Chem. 2018, 42, 17162–17180. [Google Scholar] [CrossRef]
- Sabnis, S.; Rege, P.; Block, L.H. Use of chitosan in compressed tablets of diclofenac sodium: Inhibition of drug release in an acidic environment. Pharm. Dev. Technol. 1997, 2, 243–255. [Google Scholar] [CrossRef]
- Caddeo, C.; Nácher, A.; Díez-Sales, O.; Merino-Sanjuán, M.; Fadda, A.M.; Manconi, M. Chitosan–xanthan gum microparticle-based oral tablet for colon-targeted and controlled delivery of quercetin. J. Microencapsul. 2014, 31, 694–699. [Google Scholar] [CrossRef]
- Draget, K.I.; Skjåk-Bræk, G.; Stokke, B.T. Similarities and differences between alginic acid gels and ionically crosslinked alginate gels. Food Hydrocoll. 2006, 20, 170–175. [Google Scholar] [CrossRef]
- Abd El-Ghaffar, M.; Hashem, M.; El-Awady, M.; Rabie, A. pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohydr. Polym. 2012, 89, 667–675. [Google Scholar] [CrossRef]
- Draget, K.I.; Østgaard, K.; Smidsrød, O. Homogeneous alginate gels: A technical approach. Carbohydr. Polym. 1990, 14, 159–178. [Google Scholar] [CrossRef]
- Holte, Ø.; Onsøyen, E.; Myrvold, R.; Karlsen, J. Controlled release of water-soluble drug from directly compressed alginate tablets. Eur. J. Pharm. Sci. 2003, 20, 403–407. [Google Scholar] [CrossRef]
- Tuğcu-Demiröz, F.; Acartürk, F.; Takka, S.; Konuş-Boyunağa, Ö. Evaluation of alginate based mesalazine tablets for intestinal drug delivery. Eur. J. Pharm. Biopharm. 2007, 67, 491–497. [Google Scholar] [CrossRef]
- Suresh, D.; Srinivasan, K. Studies on the in vitro absorption of spice principles–curcumin, capsaicin and piperine in rat intestines. Food Chem. Toxicol. 2007, 45, 1437–1442. [Google Scholar] [CrossRef]
- Chen, M.; Du, Z.Y.; Zheng, X.; Li, D.L.; Zhou, R.P.; Zhang, K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen. Res. 2018, 13, 742. [Google Scholar] [CrossRef]
- Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef]
- Sohn, S.I.; Priya, A.; Balasubramaniam, B.; Muthuramalingam, P.; Sivasankar, C.; Selvaraj, A.; Valliammai, A.; Jothi, R.; Pandian, S. Biomedical applications and bioavailability of curcumin—An updated overview. Pharmaceutics 2021, 13, 2102. [Google Scholar] [CrossRef]
- Liang, Y.X.; Li, P.H.; Chiang, Y.C.; Song, H.Y.; Lai, Y.J.; Chiang, P.Y. Assessment of curcumin self-emulsion containing high methoxyl pectin-whey protein complex: Quality stability by thermal, freeze-thaw treatment, and release characteristics. LWT 2023, 188, 115398. [Google Scholar] [CrossRef]
- Krisanti, E.A.; Budiatmadjaja, M.G.; Mulia, K. Formulation and characterization of gastro-retentive floating tablet contained curcuminoids from Curcuma longa extracts for treatment of gastric ulcers. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2021; Volume 2344. [Google Scholar] [CrossRef]
- Gabbott, I.P.; Al Husban, F.; Reynolds, G.K. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes. Eur. J. Pharm. Biopharm. 2016, 106, 70–78. [Google Scholar] [CrossRef]
- Mutlu, C.; Koç, A.; Erbaş, M. Some physical properties and adsorption isotherms of vacuum-dried honey powder with different carrier materials. LWT 2020, 134, 110166. [Google Scholar] [CrossRef]
- Berardi, A.; Bauhuber, S.; Sawafta, O.; Warnke, G. Alginates as tablet disintegrants: Understanding disintegration mechanisms and defining ranges of applications. Int. J. Pharm. 2021, 601, 120512. [Google Scholar] [CrossRef]
- Chao, P.W.; Yang, K.M.; Chiang, Y.C.; Chiang, P.Y. The formulation and the release of low–methoxyl pectin liquid-core beads containing an emulsion of soybean isoflavones. Food Hydrocoll. 2022, 130, 107722. [Google Scholar] [CrossRef]
- Morin, G.; Briens, L. The effect of lubricants on powder flowability for pharmaceutical application. AAPS PharmSciTech 2013, 14, 1158–1168. [Google Scholar] [CrossRef]
- Kaleem, M.A.; Alam, M.Z.; Khan, M.; Jaffery SH, I.; Rashid, B. An experimental investigation on accuracy of Hausner Ratio and Carr Index of powders in additive manufacturing processes. Met. Powder Rep. 2021, 76, S50–S54. [Google Scholar] [CrossRef]
- Adebayo, S.A.; Brown-Myrie, E.; Itiola, O.A. Comparative disintegrant activities of breadfruit starch and official corn starch. Powder Technol. 2008, 181, 98–103. [Google Scholar] [CrossRef]
- Moravkar, K.K.; Shah, D.S.; Magar, A.G.; Bhairav, B.A.; Korde, S.D.; Ranch, K.M.; Chalikwar, S.S. Assessment of pharmaceutical powders flowability and comparative evaluation of lubricants on development of gastro retentive tablets: An application of powder flow tester. J. Drug Deliv. Sci. Technol. 2022, 71, 103265. [Google Scholar] [CrossRef]
- Neto, H.; Novák, C.; Matos, J. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J. Therm. Anal. Calorim. 2009, 97, 367–374. [Google Scholar] [CrossRef]
- Guinesi, L.S.; Cavalheiro, É.T.G. The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim. Acta 2006, 444, 128–133. [Google Scholar] [CrossRef]
- Pathak, T.S.; Kim, J.S.; Lee, S.J.; Baek, D.J.; Paeng, K.J. Preparation of alginic acid and metal alginate from algae and their comparative study. J. Polym. Environ. 2008, 16, 198–204. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Liu, H.; Chen, L.; Li, L. Thermal decomposition of corn starch with different amylose/amylopectin ratios in open and sealed systems. Cereal Chem. 2009, 86, 383–385. [Google Scholar] [CrossRef]
- Monajjemzadeh, F.; Hassanzadeh, D.; Valizadeh, H.; Siahi-Shadbad, M.R.; Mojarrad, J.S.; Robertson, T.A.; Roberts, M.S. Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets. Eur. J. Pharm. Biopharm. 2009, 73, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Uesu, N.Y.; Pineda, E.A.; Hechenleitner, A.A. Microcrystalline cellulose from soybean husk: Effects of solvent treatments on its properties as acetylsalicylic acid carrier. Int. J. Pharm. 2000, 206, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Potts, A.R.; Hoag, S.W. Elucidating the variability of magnesium stearate and the correlations with its spectroscopic features. J. Pharm. Sci. 2019, 108, 1569–1580. [Google Scholar] [CrossRef]
- Li, J.; Shin, G.H.; Lee, I.W.; Chen, X.; Park, H.J. Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocoll. 2016, 56, 41–49. [Google Scholar] [CrossRef]
- Ewing, A.V.; Biggart, G.D.; Hale, C.R.; Clarke, G.S.; Kazarian, S.G. Comparison of pharmaceutical formulations: ATR-FTIR spectroscopic imaging to study drug-carrier interactions. Int. J. Pharm. 2015, 495, 112–121. [Google Scholar] [CrossRef]
- Kasprzyk, I.; Depciuch, J.; Grabek-Lejko, D.; Parlinska-Wojtan, M. FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control 2018, 84, 33–40. [Google Scholar] [CrossRef]
- Huang, H.C.; Chen, L.C.; Lin, S.B.; Chen, H.H. Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohydr. Polym. 2011, 83, 979–987. [Google Scholar] [CrossRef]
- Smitha, B.; Sridhar, S.; Khan, A. Chitosan–sodium alginate polyion complexes as fuel cell membranes. Eur. Polym. J. 2005, 41, 1859–1866. [Google Scholar] [CrossRef]
- Xiao, Q.; Gu, X.; Tan, S. Drying process of sodium alginate films studied by two-dimensional correlation ATR-FTIR spectroscopy. Food Chem. 2014, 164, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, M.A.; Ramli, N.A.; Othman, N.A.; Amin, K.N.M.; Adam, F. Characterization and property investigation of microcrystalline cellulose (MCC) and carboxymethyl cellulose (CMC) filler on the carrageenan-based biocomposite film. Mater. Today Proc. 2021, 42, 56–62. [Google Scholar] [CrossRef]
- Mohan, P.K.; Sreelakshmi, G.; Muraleedharan, C.; Joseph, R. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc. 2012, 62, 77–84. [Google Scholar] [CrossRef]
- Du, H.; Liu, M.; Yang, X.; Zhai, G. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov. Today 2015, 20, 1004–1011. [Google Scholar] [CrossRef]
- Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grøndahl, L. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 2007, 8, 2533–2541. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, L.; Shao, Y.; Ni, R.; Zhang, T.; Mao, S. Drug release characteristics from chitosan–alginate matrix tablets based on the theory of self-assembled film. Int. J. Pharm. 2013, 450, 197–207. [Google Scholar] [CrossRef]
- Hodsdon, A.C.; Mitchell, J.R.; Davies, M.C.; Melia, C.D. Structure and behaviour in hydrophilic matrix controlled release dosage forms: 3. The influence of pH on the controlled-release performance and internal gel structure of sodium alginate matrices. J. Control. Release 1995, 33, 143–152. [Google Scholar] [CrossRef]
- Papageorgiou, S.K.; Kouvelos, E.P.; Favvas, E.P.; Sapalidis, A.A.; Romanos, G.E.; Katsaros, F.K. Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 2010, 345, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, C.; Millon, C.; Nunez, H.; Pinto, M.; Valencia, P.; Acevedo, C.; Simpson, R. Study of effect of sodium alginate on potato starch digestibility during in vitro digestion. Food Hydrocoll. 2015, 44, 328–332. [Google Scholar] [CrossRef]
- Baysal, G.; Olcay, H.S.; Günneç, Ç. Encapsulation and antibacterial studies of goji berry and garlic extract in the biodegradable chitosan. J. Bioact. Compat. Polym. 2023, 38, 209–219. [Google Scholar] [CrossRef]
Formulae | Hydroxypropyl Methylcellulose | Chitosan | Sodium Alginate | Corn Starch | Microcrystalline Cellulose | Lactose | Magnesium Stearate |
---|---|---|---|---|---|---|---|
Formulae of Tablets (%) | |||||||
A | 50 | - | - | - | 25 | 24 | 1 |
B | 25 | 25 | - | - | 25 | 24 | 1 |
C | - | 50 | - | - | 25 | 24 | 1 |
D | - | 25 | 25 | - | 25 | 24 | 1 |
E | - | - | 50 | - | 25 | 24 | 1 |
F | 25 | - | 25 | - | 25 | 24 | 1 |
G | - | - | - | 50 | 25 | 24 | 1 |
Formulae | Bulk Density (g/cm3) | Tapped Density (g/cm3) | Carr Index | Hausner Ratio |
---|---|---|---|---|
A | 0.34 e ± 0.01 | 0.35 e ± 0.00 | 2.92 c ± 0.92 | 1.03 c ± 0.01 |
B | 0.34 e ± 0.01 | 0.36 e ± 0.01 | 4.02 c ± 1.22 | 1.04 c ± 0.01 |
C | 0.48 c ± 0.01 | 0.50 c ± 0.01 | 3.56 c ± 1.17 | 1.03 c ± 0.01 |
D | 0.51 b ± 0.01 | 0.64 b ± 0.02 | 20.73 a ± 4.52 | 1.26 a ± 0.07 |
E | 0.55 a ± 0.02 | 0.69 a ± 0.02 | 19.62 a ± 3.06 | 1.25 a ± 0.05 |
F | 0.37 d ± 0.00 | 0.41 d ± 0.00 | 9.91 b ± 0.98 | 1.11 b ± 0.01 |
G | 0.51 b ± 0.01 | 0.64 b ± 0.01 | 19.64 a ± 1.34 | 1.24 a ± 0.02 |
Formulae | Weight Variation (%) | Friability (%) | Hardness (kgf) | Tensile Strength (MPa) | Disintegration Time (min) |
---|---|---|---|---|---|
A | −0.31 d ± 0.00 | 0.11 c ± 0.01 | 5.19 b ± 0.06 | 0.95 a ± 0.01 | 401.25 a ± 11.00 |
B | −0.11 c ± 0.00 | 0.00 d ± 0.03 | 4.02 c ± 0.08 | 0.71 c ± 0.01 | 155.85 b ± 5.25 |
C | 0.32 a ± 0.00 | 0.00 d ± 0.00 | 5.63 a ± 0.25 | 0.88 b ± 0.04 | 0.00 f ± 0.00 |
D | −0.10 c ± 0.00 | 0.01 d ± 0.00 | 2.30 d ± 0.36 | 0.38 e ± 0.06 | 41.50 e ± 2.25 |
E | 0.02 b ± 0.00 | 1.22 a ± 0.23 | 2.04 e ± 0.23 | 0.33 f ± 0.04 | 49.53 d ± 0.60 |
F | 0.01 b ± 0.00 | 0.02 d ± 0.00 | 3.85 c ± 0.07 | 0.69 d ± 0.01 | 124.64 c ± 8.85 |
G | 0.01 b ± 0.00 | 0.21 b ± 0.02 | 1.98 e ± 0.17 | 0.29 g ± 0.03 | 0.00 f ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.-T.; Chiang, Y.-C.; Li, P.-H.; Chiang, P.-Y. Structural and Release Properties of Combined Curcumin Controlled-Release Tablets Formulated with Chitosan/Sodium Alginate/HPMC. Foods 2024, 13, 2022. https://doi.org/10.3390/foods13132022
Lin J-T, Chiang Y-C, Li P-H, Chiang P-Y. Structural and Release Properties of Combined Curcumin Controlled-Release Tablets Formulated with Chitosan/Sodium Alginate/HPMC. Foods. 2024; 13(13):2022. https://doi.org/10.3390/foods13132022
Chicago/Turabian StyleLin, Jing-Ting, Yi-Chan Chiang, Po-Hsien Li, and Po-Yuan Chiang. 2024. "Structural and Release Properties of Combined Curcumin Controlled-Release Tablets Formulated with Chitosan/Sodium Alginate/HPMC" Foods 13, no. 13: 2022. https://doi.org/10.3390/foods13132022
APA StyleLin, J.-T., Chiang, Y.-C., Li, P.-H., & Chiang, P.-Y. (2024). Structural and Release Properties of Combined Curcumin Controlled-Release Tablets Formulated with Chitosan/Sodium Alginate/HPMC. Foods, 13(13), 2022. https://doi.org/10.3390/foods13132022