The Main Features and Microbiota Diversity of Fermented Camel Milk
Abstract
:1. Introduction
2. Geographical and Historical Aspects of Shubat Distribution
3. Local and International Regulations Regarding Shubat
4. Composition of Shubat
5. Shubat Process from Traditional to Modern Technology
6. Microbiology of Shubat
6.1. Bacterial Community
[31] | [26] | [28] | [32] | [23] | [24] | [33] | [25] | [34] | [30] | [29] | [35] | [36] | [37] | [38] | [39] | [40] | [18] | [41] | [42] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bacteria | ||||||||||||||||||||
Enterococcus faecium * | + | + | + | + | + | + | ||||||||||||||
Enterococcus faecalis * | + | + | + | + | ||||||||||||||||
Lacticaseibacillus casei * | + | + | + | + | + | + | + | + | ||||||||||||
Lactobacillus helveticus * | + | + | + | + | + | + | + | |||||||||||||
Lactiplantibacillus plantarum * | + | + | + | + | ||||||||||||||||
Lactobacillus delbrueckii subsp. Bulgaricus * | + | + | + | + | + | |||||||||||||||
Lactococcus lactis * | + | + | + | + | + | + | ||||||||||||||
Latilactobacillus sakei * | + | + | + | |||||||||||||||||
Leuconostoc mesenteroides subsp. Mesenteroides * | + | + | + | |||||||||||||||||
Leuconostoc lactis * | + | + | ||||||||||||||||||
Levilactobacillus brevis * | + | + | ||||||||||||||||||
Limosilactobacillus fermentum * | + | + | + | |||||||||||||||||
Lacticaseibacillus paracasei * | + | + | ||||||||||||||||||
Weissella hellenica | + | + | ||||||||||||||||||
Pediococcus acidilactici | + | + | ||||||||||||||||||
Lentilactobacillus kefiri | + | + | ||||||||||||||||||
Acetobacter pasteurianus | + | + | ||||||||||||||||||
Enterococcus durans | + | + | ||||||||||||||||||
Enterococcus hirae | + | |||||||||||||||||||
Enterococcus lactis | + | |||||||||||||||||||
Lactobacillus kefiranofaciens | + | + | ||||||||||||||||||
Bifidobacterium mongoliense | + | |||||||||||||||||||
Lentilactobacillus buchneri | + | |||||||||||||||||||
Lentilactobacillus curieae | + | |||||||||||||||||||
Limosilactobacillus pontis | + | |||||||||||||||||||
Limosilactobacillus reuteri | ||||||||||||||||||||
Moraxella osloensis | + | |||||||||||||||||||
Pediococcus pentosaceus | + | |||||||||||||||||||
Secundilactobacillus oryzae | + | |||||||||||||||||||
Streptococcus salivarius | + | |||||||||||||||||||
Streptococcus thermophilus | + | |||||||||||||||||||
Weissella confusa | + | |||||||||||||||||||
Yeast | ||||||||||||||||||||
Kazachstania unispora * | + | + | + | |||||||||||||||||
Kluyveromyces marxianus * | + | + | + | + | ||||||||||||||||
Candida ethanolica | + | + | ||||||||||||||||||
Brettanomyces bruxellensis | + | |||||||||||||||||||
Galactomyces geotrichum | + | |||||||||||||||||||
Naumovozyma castellii | + | |||||||||||||||||||
Saccharomyces cerevisiae | + | |||||||||||||||||||
Saccharomyces lactis | + | |||||||||||||||||||
Candida kefyr | + | |||||||||||||||||||
Brettanomyces anomalus | + |
Microflora | Type of Fermentation | Substrate | Enantiomeric Form of Lactic Acid | Primary Metabolites | References |
---|---|---|---|---|---|
Acetobacter pasteurianus | Acetic acid | Ethanol + lactate | Acetate + acetoin methanol | [48,49] | |
Enterococcus durans | Lactic acid (homofermentation) | Lactose, glucose, and others | L(+) | Lactate, acetoin | [50,51] |
Enterococcus faecalis | Lactic acid (homofermentation) | Lactose, glucose, and others | L(+) | Lactate, acetoin | [52,53] |
Enterococcus faecium | Lactic acid (homofermentation) | Lactose, glucose, and others | L(+) | Lactate, acetoin | [54] |
Lactobacillus delbrueckii subsp. bulgaricus | Lactic acid (homofermentation) | Lactose, glucose, galactose, and others | L(+) | Lactate | [55] |
Lacticaseibacillus paracasei and Lacticaseibacillus casei | Lactic acid (homofermentation in general, but some strains could be facultatively heterofermentative) | Glucose, fructose, mannose, galactose, lactose, cellobiose, and trehalose | L(+) and sometimes D(−) | Lactate (major compounds) and for some strains ethanol and/or acetate, CO2/diacetyl, acetoin | [45,56,57] |
Lactobacillus helveticus | Lactic acid (homofermentation) | Glucose, lactose, mannose, and trehalose | L(+), D(−) | Lactates | [58,59] |
Lactococcus lactis | Lactic acid (homofermentation) | Galactose, glucose, fructose, lactose, and others | L(+) | Lactate/folate gamma-aminobutyric acid | [59,60] |
Latilactobacillus curvatus | Lactic acid (homofermentation) | Galactose, glucose, and others | L(+), D(−) | Lactates | [61,62] |
Latilactobacillus sakei | Lactic acid (facultative heterofermentation) | Glucose or ribose | L(+) | Lactate, acetate, aroma compounds (diacetyl and acetoin), ethanol | [59,62,63,64] |
Lentilactobacillus kefiri | Lactic acid (facultative heterofermentation) | Lactose, glucose, galactose, and others | D(−) | Lactate, ethanol, acetate, CO2 | [46] |
Leuconostoc lactis | Lactic acid (facultative heterofermentation) | Lactose, maltose, D-glucose | D(−) | Lactate, ethanol and/or acetate, CO2, acetoin | [65,66,67] |
Leuconostoc mesenteroides | Lactic acid (facultative heterofermentation) | D-fructose, D-glucose, D-mannitol, D-mannose, L-arabinose, lactose, maltose, sucrose | D(−) | Lactate/dextran, class C polysaccharides | [44,65,68] |
Levilactobacillus brevis | Lactic acid (obligatory heterofermentation) | Hexoses, pentoses, glycerol | D(−) | Lactate, acetate, ethanol, CO2, 1,3-propanediol | [69,70] |
Streptococcus thermophilus | Lactic acid (homofermentation) | Lactose, sucrose, galactose | L(+) | 2 lactate +, folate, acetoin | [71] |
Candida ethanolica | Alcohol | D-glucose; ethanol; glycerin (slowly); and lactic, succinic, citric (weakly), and gluconic acids | Glycerol, acetic acid, ethanol | [72] | |
Dekkera anomala | Alcohol | D-glucose, D-galactose, sucrose, maltose, trehalose, c~-methyl-D-glucoside, + cellobiose, lactose No lactate assimilation | Glycerol, acetic acid, ethanol, phenolic compounds | [73] CIRM Levures (www.bio-aware.com, accessed on 13 May 2024) | |
Dekkera bruxellensis | Alcohol | Fermentation of D glucose and D galactose Carbon assimilation: Lactose-galactose-glucose + lactate-, Citrate- | Glycerol, acetic acid, ethanol, volatile phenols 4-ethylphenol and 4-ethylguaiacol | [74] CIRM Levures (www.bio-aware.com, accessed on 13 May 2024) | |
Galactomyces geotrichum | Fermentation (yeast data base): D Glucose +/− Lactose – D galactose – Carbon assimilation: Glucose, galactose, lactate, citrate | L(+) | Lactic acid, phenylacetaldehyde, phenylacetic, phenyllactic acid | [75,76] Confirmed by theyeasts.org, accessed on 13 May 2024 | |
Kazachstania unispora | Alcohol fermentation Non-lactose-fermenting yeast | D-Galactose, D-Glucose | - | Succinic acid (umami taste), low ethanol production | [77,78,79,80] |
Kluyveromyces marxianus | Alcohol fermentation Lactose-fermenting yeast | Glucose (+), galactose (+), lactose (+; −), sucrose (+) | - | Ethanol, 2-phenylethanol | [81,82,83,84] https://wi.knaw.nl/, accessed on 13 May 2024 |
Saccharomyces cerevisiae | Non-lactose-fermenting yeast, glycolytic pathway, alcoholic fermentation | D-Galactose, maltose, sucrose, raffinose | - | Lactate, ethanol, and/or acetate, CO2 Production of ethanol and other byproducts | [78,85,86] |
6.2. Yeast Community
7. Probiotic Properties of Shubat
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konuspayeva, G.; Baubekova, A.; Akhmetsadykova, S.; Faye, B. Traditional Dairy Fermented Products in Central Asia. Int. Dairy J. 2023, 137, 105514. [Google Scholar] [CrossRef]
- Konuspayeva, G.; Faye, B. Recent Advances in Camel Milk Processing. Animals 2021, 11, 1045. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, C.; Yang, S.; Hou, Z.; Wang, Y.; Hu, X.; Senoo, K.; Wei, W. Diversity and Specificity of the Bacterial Community in Chinese Horse Milk Cheese. Microbiol. Open 2020, 9, e1066. [Google Scholar] [CrossRef]
- Faye, B.; Konuspayeva, G. The Sustainability Challenge to the Dairy Sector–The Growing Importance of Non-Cattle Milk Production Worldwide. Int. Dairy J. 2012, 24, 50–56. [Google Scholar] [CrossRef]
- Altayev, Z.A.; Imanbayeva, Z.M. Values of Traditional Kazakh Culture. Cent. Asian J. Art. Stud. 2021, 6, 10–24. [Google Scholar] [CrossRef]
- Anonymous. Normative Documents for Standardization Republic of Kazakhstan. Available online: https://easc.by/images/document/katalog/ynd-kaz2010.pdf (accessed on 6 June 2024).
- Konuspayeva, G. Variabilité Physico-Chimique et Biochimique Du Lait Des Grands Camélidés (Camelus Bactrianus, Camelus Dromedarius et Hybrides) Au Kazakhstan; Universite Montpellier II: Montpellier, France, 2007; p. 89. [Google Scholar]
- Anonymous. On the Safety of Milk and Dairy Products (TR CU 033/2013). Available online: https://eec.eaeunion.org/upload/medialibrary/789/TR-TS-033_2013.pdf (accessed on 6 June 2024).
- Narmuratova, M.; Konuspayeva, G.; Loiseau, G.; Serikbaeva, A.; Nathalie, B.; Didier, M.; Faye, B. Fatty Acids Composition of Dromedary and Bactrian Camel Milk in Kazakhstan. J. Camel Pract. Res. 2006, 13, 45–50. [Google Scholar]
- Konuspayeva, G.; Faye, B.; Loiseau, G. Variability of Vitamin C Content in Camel Milk from Kazakhstan. J. Camelid Sci. 2011, 4, 63–69. [Google Scholar]
- Serikbayeva, A.D.; Konuspayeva, G.S.; Narmuratova, M.K.; Meldebekova, A.A.; Faye, B. Shubat’s Typology. Proc. Natl. Acad. Sci. Repub. Kazakhstan 2012, 1, 37–41. [Google Scholar]
- Hamed, N.S.; Mbye, M.; Ayyash, M.; Ulusoy, B.H.; Kamal-Eldin, A. Camel Milk: Antimicrobial Agents, Fermented Products, and Shelf Life. Foods 2024, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Lortal, S.; Di Blasi, A.; Madec, M.-N.; Pediliggieri, C.; Tuminello, L.; Tanguy, G.; Fauquant, J.; Lecuona, Y.; Campo, P.; Carpino, S. Tina Wooden Vat Biofilm: A Safe and Highly Efficient Lactic Acid Bacteria Delivering System in PDO Ragusano Cheese Making. Int. J. Food Microbiol. 2009, 132, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Akhmetsadykova, S.H.; Konuspayeva, G.; Akhmetsadykov, N. Camel Breeding in Kazakhstan and Future Perspectives. Anim. Front. 2022, 12, 71–77. [Google Scholar] [CrossRef] [PubMed]
- ST RK 166-97; State Standard of the Republic of Kazakhstan. Camel Milk for Processing into Shubat. Kazakhstan Institute of Standardization and Metrology: Nur-Sultan, Kazakhstan, 2017.
- Zhusipova, G.T.; Tokhanov, M.T.; Yermakhanov, M.N.; Menlikulova, A.B.; Zhorabayeva, N.K. Innovative Technology for Obtaining a Tablet Form of Dry Shubat from Camel Milk. Adv. Mod. Nat. Sci. 2015, 201–203. Available online: https://s.natural-sciences.ru/pdf/2015/1-2/34811.pdf (accessed on 6 June 2024).
- Tokhanov, B.M.; Ombayev, A.M.; Tokhanov, M. Method for Obtaining Sachet Granules from Dry Shubat. 26758, 2013. Available online: https://kzpatents.com/3-ip26758-sposob-polucheniya-sashe-granuly-iz-suhogo-shubata.html (accessed on 6 June 2024).
- Musayeva, A.A.; Omarova, A.I.; Sariyeva, Z.A. Increasing the Profitability of Camel Farming and the Possibility of Producing Products from Camel Milk. Probl. AgriMarket 2018, 1, 127–134. [Google Scholar]
- Omaraliyeva, A.M.; Davletov, S.A.; Chomanov, U.C.H.; Musayev, Z.M.; Abchekenova, M.M. Method for Preparing Fermented Milk Drink from Camel Milk Enriched with Vegetable Additives. Preliminary Patent #15775, 15 June 2005. [Google Scholar]
- Assembayeva, E.; Dikhanbayeva, F.; Alimardanova, M.; Nadirova, S.; Petchenko, V. Method for Production of Fermented Milk Drink from Camel Milk. Preliminary Patent #30167, 15 June 2015. [Google Scholar]
- Omarova, A. Improving the Technology of National Dairy Products Using Plant Raw Materials. In Materials of the Republican Scientific and Theoretical Conference “Seifullin Readings-12: Youth in Science-Innovative Potential of the Future”; Kazakhstan Institute of Standardization and Metrology: Astana, Kazakhstan, 2016; pp. 67–69. [Google Scholar]
- Alibekov, R.S.; Gabrilyants, E.A.; Yespotayeva, A.A. Quality Indicators of Shubat with Antioxidants. Vestn. SKMA 2018, 4, 61–63. [Google Scholar]
- Akhmetsadykova, S.; Baubekova, A.; Konuspayeva, G.; Konuspayeva, N.; Loiseau, G. Microflora Identification of Fresh and Fermented Camel Milk from Kazakhstan. Emir. J. Food Agric. 2014, 327–332. [Google Scholar] [CrossRef]
- Baubekova, A.; Akhmetsadykova, S.; Konuspayeva, G.; Akhmetsadykov, N.; Faye, B.; Loiseau, G. Biodiversity Study of the Yeast in Fresh and Fermented Camel and Mare’s Milk by Denaturing Gradient Gel Electrophoresis. J. Camel Pract. Res. 2015, 22, 91–95. [Google Scholar] [CrossRef]
- Orazov, A.Z.; Bozymov, K.K.; Baybatyrov, T.A. Characteristics of the Natural Predominant Microflora of Shubat Obtained from Camel Milk as a Result of the Process of Spontaneous Fermentation. Bull. Almaty Technol. Univ. 2020, 1, 45–50. [Google Scholar]
- Rahman, N.; Xiaohong, C.; Meiqin, F.; Mingsheng, D. Characterization of the Dominant Microflora in Naturally Fermented Camel Milk Shubat. World J. Microbiol. Biotechnol. 2009, 25, 1941–1946. [Google Scholar] [CrossRef]
- Serikbayeva, A.; Konuspayeva, G.; Faye, B.; Loiseau, G.; Narmuratova, M. Probiotic Properties of a Sour-Milk Product: Shubat from the Camel Milk. In Desertification Combat and Food Safety: The Added Value of Camel Producers; IOS Press: Amsterdam, The Netherlands, 2005; Volume 362, pp. 187–191. [Google Scholar]
- Ishii, S.; Nurtazin, S. Properties of Camel Milk Liquor (“Shubat”) in the Republic of Kazakhstan. Milk Sci. 2014, 63, 55–62. [Google Scholar] [CrossRef]
- Yu, Z.; Peng, C.; Kwok, L.; Zhang, H. The Bacterial Diversity of Spontaneously Fermented Dairy Products Collected in Northeast Asia. Foods 2021, 10, 2321. [Google Scholar] [CrossRef]
- Zhadyra, S.; Han, X.; Anapiyayev, B.B.; Tao, F.; Xu, P. Bacterial Diversity Analysis in Kazakh Fermented Milks Shubat and Ayran by Combining Culture-Dependent and Culture-Independent Methods. LWT 2021, 141, 110877. [Google Scholar] [CrossRef]
- Shigayeva, M.K.; Ospanova, M.S. Microflora of National Fermented Milk Drinks; Nauka Kazakhskoi: Alma-Ata, Kazakhstan, 1983. [Google Scholar]
- Berzhanova, R.; Sartaeva, A.; Sagyndykov, U.; Mukasheva, T.; Shigaeva, M. The Studying of Diversity of Lactic Microorganisms Isolated from Shubat of Various Areas of Kazakhstan. J. Biotechnol. 2014, 185, S82. [Google Scholar] [CrossRef]
- Abdrahmanova, A.K.; Berzhanova, R.Z.H.; Mukasheva, T.D.; Sartaeva, A.A. Identifying New Types of Lactic Acid Microorganisms and Studying Properties. Bull. KazNU Biol. Ser. 2015, 64, 120–125. [Google Scholar]
- Nagyzbekkyzy, E.; Sembayeva, D.; Sarsenova, A.; Mansurov, N.; Moldabayeva, A.; Moldagulova, N. Data on the Diversity of Lactic Acid Bacteria Isolated from Raw and Fermented Camel Milk. Data Brief. 2020, 31, 105956. [Google Scholar] [CrossRef]
- Kochetkova, T.V.; Grabarnik, I.P.; Klyukina, A.A.; Zayulina, K.S.; Elizarov, I.M.; Shestakova, O.O.; Gavirova, L.A.; Malysheva, A.D.; Shcherbakova, P.A.; Barkhutova, D.D. Microbial Communities of Artisanal Fermented Milk Products from Russia. Microorganisms 2022, 10, 2140. [Google Scholar] [CrossRef] [PubMed]
- Elcheninov, A.G.; Zayulina, K.S.; Klyukina, A.A.; Kremneva, M.K.; Kublanov, I.V.; Kochetkova, T.V. Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia. Microorganisms 2023, 12, 16. [Google Scholar] [CrossRef]
- Dudikova, G.N.; Sagyndykov, U.Z. Development of a Method for Drying Acid Bacteria for Leaven Preparation. Bull. KazNU Biol. Ser. 2011, 48, 118–120. [Google Scholar]
- Bekzhanova, A.Z.; Mazhirova, S.M.; Baubekova, A.S.; Lessova, Z.T. Study of the Physiological and Biochemical Properties of Microorganisms Isolated from Shubat. Bull. Almaty Technol. Univ. 2012, 2, 13–17. [Google Scholar]
- Lü, X.; Hu, P.; Dang, Y.; Liu, B. Purification and Partial Characterization of a Novel Bacteriocin Produced by Lactobacillus casei TN-2 Isolated from Fermented Camel Milk (Shubat) of Xinjiang Uygur Autonomous Region, China. Food Control 2014, 43, 276–283. [Google Scholar] [CrossRef]
- Yelubaeva, M.E.; Kuznetsova, T.V.; Shormanova, M.M.; Aytzhanova, A.A. Study of Antibacterial Activity of Shubat Microflora. Agric. Sci. Ser. 2017, 1, 165–167. [Google Scholar]
- Nadtochii, L.; Orazov, A.; Kuznetsova, L.; Pinaev, A.; Weihong, L.; Garbuz, S.; Muradova, M. Identification of Yeast Species Involved in Fermentation of the Kazakh Camel Dairy Product–Shubat. Agron. Res. 2018, 16, 5. [Google Scholar] [CrossRef]
- Sartayeva, A.A.; Baitasheva, G.U.; Imanova, E.M.; Parmanbekova, M.H.; Ashirova, Z.H. Creation of a Collection of Microorganisms as a Method for Conservation of Biodiversity. Vestn. ZKGU 2021, 2, 276–279. [Google Scholar]
- Wolfe, B.E.; Dutton, R.J. Fermented Foods as Experimentally Tractable Microbial Ecosystems. Cell 2015, 161, 49–55. [Google Scholar] [CrossRef]
- Gänzle, M.G. Lactic Metabolism Revisited: Metabolism of Lactic Acid Bacteria in Food Fermentations and Food Spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Hansen, P.A.; Lessel, E.F. Lactobacillus casei (Orla-Jensen) Comb. Nov. Int. J. Syst. Evol. Microbiol. 1971, 21, 69–71. [Google Scholar] [CrossRef]
- Kandler, O.; Kunath, P. Lactobacillus kefir sp. nov., a Component of the Microflora of Kefir. Syst. Appl. Microbiol. 1983, 4, 286–294. [Google Scholar] [CrossRef]
- Ewaschuk, J.B.; Naylor, J.M.; Zello, G.A. D-Lactate in Human and Ruminant Metabolism. J. Nutr. 2005, 135, 1619–1625. [Google Scholar] [CrossRef]
- Illeghems, K.; Pelicaen, R.; De Vuyst, L.; Weckx, S. Assessment of the Contribution of Cocoa-Derived Strains of Acetobacter Ghanensis and Acetobacter Senegalensis to the Cocoa Bean Fermentation Process through a Genomic Approach. Food Microbiol. 2016, 58, 68–78. [Google Scholar] [CrossRef]
- Cleenwerck, I.; Vandemeulebroecke, K.; Janssens, D.; Swings, J. Re-Examination of the Genus Acetobacter, with Descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 1551–1558. [Google Scholar] [CrossRef]
- Ozawa, Y.; Courvalin, P.; Galimand, M. Identification of Enterococci at the Species Level by Sequencing of the Genes for D-Alanine: D-Alanine Ligases. Syst. Appl. Microbiol. 2000, 23, 230–237. [Google Scholar] [CrossRef]
- Anonymous. For Referencing Data from This Strain in Database Bacdive. Available online: https://bacdive.dsmz.de/pdf-view/5278?site=pdf_view&id=527 (accessed on 6 June 2024).
- Niemi, R.M.; Ollinkangas, T.; Paulin, L.; Švec, P.; Vandamme, P.; Karkman, A.; Kosina, M.; Lindström, K. Enterococcus Rivorum sp. nov., from Water of Pristine Brooks. Int. J. Syst. Evol. Microbiol. 2012, 62 Pt 9, 2169–2173. [Google Scholar] [CrossRef]
- Anonymous. For Referencing Data from This Strain in Database Bacdive. Available online: https://bacdive.dsmz.de/strain/5292 (accessed on 6 June 2024).
- Anonymous. For Referencing Data from This Strain in Database Bacdive. Available online: https://bacdive.dsmz.de/strain/5301 (accessed on 6 June 2024).
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Farmer, J. Enterobacteriaceae: Introduction and Identification. Man. Clin. Microbiol. 1995, 438–449. [Google Scholar]
- Weiss, N.; Schillinger, U.; Kandler, O. Lactobacillus lactis, Lactobacillus leichmannii and Lactobacillus bulgaricus, Subjective Synonyms of Lactobacillus delbrueckii, and Description of Lactobacillus delbrueckii subsp. lactis comb. Nov. and Lactobacillus delbrueckii subsp. bulgaricus comb. nov. Syst. Appl. Microbiol. 1983, 4, 552–557. [Google Scholar] [PubMed]
- Collins, M.D.; Phillips, B.A.; Zanoni, P. Deoxyribonucleic Acid Homology Studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 1989, 39, 105–108. [Google Scholar]
- Litchfield, J.H. Lactic Acid, Microbially Produced. In Encyclopedia of Microbiology; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Mozzi, F. Lactic Acid Bacteria. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2016; pp. 501–508. [Google Scholar] [CrossRef]
- Schleifer, K.H.; Kraus, J.; Dvorak, C.; Kilpper-Bälz, R.; Collins, M.D.; Fischer, W. Transfer of Streptococcus Lactis and Related Streptococci to the Genus Lactococcus Gen. Nov. Syst. Appl. Microbiol. 1985, 6, 183–195. [Google Scholar] [CrossRef]
- Stella, S.; Bernardi, C.; Cattaneo, P.; Colombo, F.M.; Tirloni, E. Evaluation of the in Vitro Antimicrobial Activity of Mixtures of Lactobacillus Sakei and Lactobacillus Curvatus Isolated from Argentine Meat and Their Effect on Vacuum-Packaged Beef. Ital. J. Food Sci. 2016, 28, 612–624. [Google Scholar]
- Torriani, S.; Van Reenen, C.A.; Klein, G.; Reuter, G.; Dellaglio, F.; Dicks, L.M.T. Lactobacillus curvatus subsp. curvatus subsp. nov. and Lactobacillus curvatus subsp. melibiosus subsp. nov. and Lactobacillus sake subsp. sake subsp. nov. and Lactobacillus sake subsp. carnosus subsp. nov., New Subspecies of Lactobacillus curvatus Abo-Elnaga and Kandler 1965 and Lactobacillus sake Katagiri, Kitahara, and Fukami 1934 (Klein et al. 1996, Emended Descriptions), Respectively. Int. J. Syst. Evol. Microbiol. 1996, 46, 1158–1163. [Google Scholar] [CrossRef]
- Barbieri, F.; Laghi, L.; Montanari, C.; Lan, Q.; Levante, A.; Gardini, F.; Tabanelli, G. Insights into the Metabolomic Diversity of Latilactobacillus Sakei. Foods 2022, 11, 477. [Google Scholar] [CrossRef]
- Anonymous. For Referencing Data from This Strain in Database Bacdive. Available online: https://bacdive.dsmz.de/strain/6570 (accessed on 6 June 2024).
- Milliere, J.B.; Mathot, A.; Schmitt, P.; Divies, C. Phenotypic Characterization of Leuconostoc Species. J. Appl. Microbiol. 1989, 67, 529–542. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Vesterlund, S. Antimicrobial components from lactic acid bacteria. In Food Science and Technology; Marcel Dekker: New York, NY, USA, 2004; Volume 139, pp. 375–396. [Google Scholar]
- Anonymous. For Referencing Data from This Strain in Database Bacdive. Available online: https://bacdive.dsmz.de/pdf-view/6818?site=pdf_view&id=681 (accessed on 6 June 2024).
- Schillinger, U.; Holzapfel, W.H.; Björkroth, K.J. Lactic Acid Bacteria. Food Spoilage Microorg. 2006, 541–578. [Google Scholar]
- Muñoz, R.; Moreno-Arribas, M.; de las Rivas, B. Lactic Acid Bacteria. Mol. Wine Microbiol. 2011, 23, 191–226. [Google Scholar]
- Oberg, T.S.; McMahon, D.J.; Culumber, M.D.; McAuliffe, O.; Oberg, C.J. Invited Review: Review of Taxonomic Changes in Dairy-Related Lactobacilli. J. Dairy Sci. 2022, 105, 2750–2770. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. For Referencing Data from This Strain in Database Bacdive. Available online: https://bacdive.dsmz.de/strain/14786 (accessed on 6 June 2024).
- Brachiyeva, R.N.; Satrutdinov, A.D.; Blagodatskaya, V.M.; Gradova, N.B.; Yeroshin, V.K.; Salikhova, N.A.; Sherova, T.L.; Blinchevskaya, N.Y.; Chistyakova, T.I.; Zaikina, A.I.; et al. Strain of Yeast Candida Ethanolica—A Producer of Biomass. Russia Patent SU19925037076, 10 June 1996. p. 2061751. [Google Scholar]
- Smith, M.T.; Van Grinsven, A.M. Dekkera anomala sp. nov., the Teleomorph of Brettanomyces Anomalus, Recovered from Spoiled Soft Drinks. Antonie Van. Leeuwenhoek 1984, 50, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Blomqvist, J.; Eberhard, T.; Schnürer, J.; Passoth, V. Fermentation Characteristics of Dekkera Bruxellensis Strains. Appl. Microbiol. Biotechnol. 2010, 87, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Perkins, V.; Vignola, S.; Lessard, M.-H.; Plante, P.-L.; Corbeil, J.; Dugat-Bony, E.; Frenette, M.; Labrie, S. Phenotypic and Genetic Characterization of the Cheese Ripening Yeast Geotrichum Candidum. Front. Microbiol. 2020, 11, 737. [Google Scholar] [CrossRef] [PubMed]
- Grygier, A.; Myszka, K.; Rudzińska, M. Galactomyces Geotrichum-Moulds from Dairy Products with High Biotechnological Potential. Acta Sci. Pol. Technol. Aliment. 2017, 16, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Kondybayev, A.; Achir, N.; Mestres, C.; Collombel, I.; Strub, C.; Grabulos, J.; Akhmetsadykov, N.; Aubakirova, A.; Kamidinkyzy, U.; Ghanmi, W. Growth Kinetics of Kazachstania Unispora and Its Interaction with Lactic Acid Bacteria during Qymyz Production. Fermentation 2023, 9, 101. [Google Scholar] [CrossRef]
- Galinari, É.; Almeida-Lima, J.; Macedo, G.R.; Mantovani, H.C.; Rocha, H.A.O. Antioxidant, Antiproliferative, and Immunostimulatory Effects of Cell Wall α-d-Mannan Fractions from Kluyveromyces Marxianus. Int. J. Biol. Macromol. 2018, 109, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Korcari, D.; Ricci, G.; Capusoni, C.; Fortina, M.G. Physiological Performance of Kazachstania Unispora in Sourdough Environments. World J. Microbiol. Biotechnol. 2021, 37, 1–8. [Google Scholar] [CrossRef]
- Bhattacharya, I.; Yan, S.; Yadav, J.S.S.; Tyagi, R.D.; Surampalli, R.Y. Saccharomyces Unisporus: Biotechnological Potential and Present Status. Compr. Rev. Food Sci. Food Saf. 2013, 12, 353–363. [Google Scholar] [CrossRef]
- Ozarslan, S.; Kök Taş, T. Treatment of Lactose by Fermentation: Production Process on β-Galactosidase Using Kluyveromyces Marxianus Isolated from Kefir Grains. Int. Food Res. J. 2022, 29, 864–871. [Google Scholar] [CrossRef]
- Gómez, G.A.; Cuffia, F.; Nagel, O.G.; Althaus, R.L.; Ceruti, R.J. Fermentation of Whey-Derived Matrices by Kluyveromyces Marxianus: Alcoholic Beverage Development from Whey and Fruit Juice Mixes. J. Dairy Res. 2024, 91, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zhang, D.D.; Zhang, Y.; Jiang, T.M.; Chen, L.J. Effect of Kluyveromyces Marxianus on Lactose Metabolism in Traditional Fermented Milk. Food Sci. 2015, 36, 128–134. [Google Scholar]
- Wittmann, C.; Hans, M.; Bluemke, W. Metabolic Physiology of Aroma-producing Kluyveromyces Marxianus. Yeast 2002, 19, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.M.; Stewart, G.G. Saccharomyces Cerevisiae in the Production of Fermented Beverages. Beverages 2016, 2, 30. [Google Scholar] [CrossRef]
- Merico, A.; Sulo, P.; Piškur, J.; Compagno, C. Fermentative Lifestyle in Yeasts Belonging to the Saccharomyces Complex. FEBS J. 2007, 274, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.D.; Dias, M.M.S.; Grześkowiak, Ł.M.; Reis, S.A.; Conceição, L.L.; Maria do Carmo, G.P. Milk Kefir: Nutritional, Microbiological and Health Benefits. Nutr. Res. Rev. 2017, 30, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Moure, M.C.; Pérez Torrado, R.; Garmendia, G.; Vero, S.; Querol, A.; Alconada, T.; León Peláez, Á. Characterization of Kefir Yeasts with Antifungal Capacity against Aspergillus Species. Int. Microbiol. 2023, 26, 361–370. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Tsao, M. Enhancement of Survival of Probiotic and Non-Probiotic Lactic Acid Bacteria by Yeasts in Fermented Milk under Non-Refrigerated Conditions. Int. J. Food Microbiol. 2009, 135, 34–38. [Google Scholar] [CrossRef]
- Ao, X.-L.; Liao, Y.-M.; Kang, H.-Y.; Li, H.-L.; He, T.; Zou, L.-K.; Liu, S.-L.; Chen, S.-J.; Yang, Y.; Liu, X.-Y. Untargeted Metabolomics and Physicochemical Analysis Revealed the Quality Formation Mechanism in Fermented Milk Inoculated with Lactobacillus Brevis and Kluyveromyces Marxianus Isolated from Traditional Fermented Milk. Foods 2023, 12, 3704. [Google Scholar] [CrossRef]
- Kang, H.; Ao, X.; Tang, Q.; Li, H.; Fan, Y.; Liu, A.; Zou, L.; Liu, S.; Yang, Y.; Zhao, N. Effects of Yeast Screened from Traditional Fermented Milk on Commercial Fermented Milk as Adjunct Flavor Culture. Food Biosci. 2024, 57, 103551. [Google Scholar] [CrossRef]
- Fröhlich-Wyder, M.; Arias-Roth, E.; Jakob, E. Cheese Yeasts. Yeast 2019, 36, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Akabanda, F.; Owusu-Kwarteng, J.; Tano-Debrah, K.; Glover, R.L.K.; Nielsen, D.S.; Jespersen, L. Taxonomic and Molecular Characterization of Lactic Acid Bacteria and Yeasts in Nunu, a Ghanaian Fermented Milk Product. Food Microbiol. 2013, 34, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, H.; Liu, H.; Xiong, L.; Gao, X.; Jia, H.; Lian, Z.; Tong, N.; Han, T. Hypocholesterolemic Effects of Kluyveromyces Marxianus M3 Isolated from Tibetan Mushrooms on Diet-Induced Hypercholesterolemia in Rat. Braz. J. Microbiol. 2015, 46, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Sharmanov, T.S.; Zhangabylov, A.K. The Healing Properties of Kumiss and Shubat; Gylym: Alma-Ata, Kazakhstan, 1991. [Google Scholar]
- Zhangabylov, A.K.; Tashenov, G.T.; Kostyushina, N.V.; Kusebayeva, F.Y. The Influence of Kumiss and Shubat on the Exocrine Function of the Pancreas in an Experiment. News ANKazSSR 1983, 2, 63–66. [Google Scholar]
- Kakebayi, G.; Nabi, X. Anti-Inflammatory Effects and Mechanism of Xinjiang Kazakh Traditional Fermented Camel Milk. China Dairy Ind. 2007, 35, 8–10. [Google Scholar]
- Manaer, T.; Yu, L.; Zhang, Y.; Xiao, X.-J.; Nabi, X.-H. Anti-Diabetic Effects of Shubat in Type 2 Diabetic Rats Induced by Combination of High-Glucose-Fat Diet and Low-Dose Streptozotocin. J. Ethnopharmacol. 2015, 169, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dilidaxi, D.; Wu, Y.; Sailike, J.; Sun, X.; Nabi, X. Composite Probiotics Alleviate Type 2 Diabetes by Regulating Intestinal Microbiota and Inducing GLP-1 Secretion in Db/Db Mice. Biomed. Pharmacother. 2020, 125, 109914. [Google Scholar] [CrossRef]
- He, Z.-J.; Yusufu, W.; Zhang, S.; Luo, M.-Y.; Chen, Y.-C.; Peng, H.; Wan, X.-Y. Association between Dietary Inflammatory Index and Risk of Colorectal Adenomatous Polyps in Kashgar Prefecture of Xinjiang, China. Nutrients 2023, 15, 4067. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z.; Shen, F.; Zhou, W.; Manaer, T.; Jiaerken, D.; Nabi, X. Exploring the immunomodulatory effects and mechanisms of Xinjiang fermented camel milk-derived bioactive peptides based on network pharmacology and molecular docking. Front. Pharmacol. 2023, 13, 1038812. [Google Scholar] [CrossRef]
# | Parameter | n * | Mean and SD | Max Value | Min Value |
---|---|---|---|---|---|
1 | pH | 22 | 4.08 ± 0.28 | 4.72 | 3.55 |
2 | Dornic (0D) | 30 | 139 ± 29 | 189 | 86 |
3 | Thurner (0T) | 18 | 165 ± 31 | 215 | 106 |
4 | Proteins (%) | 29 | 3.34 ± 0.84 | 5.63 | 1.19 |
5 | Vitamin C (mg L−1) | 24 | 156 ± 110 | 417 | 28 |
6 | Ca (g L−1) | 30 | 1.35 ± 0.22 | 1.88 | 1.03 |
7 | P (g L−1) | 30 | 0.99 ± 0.32 | 1.80 | 0.11 |
8 | Fe (g L−1) | 30 | 3.04 ± 1.95 | 9.10 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, Z.; Akhmetsadykova, S.; Baubekova, A.; Tormo, H.; Faye, B.; Konuspayeva, G. The Main Features and Microbiota Diversity of Fermented Camel Milk. Foods 2024, 13, 1985. https://doi.org/10.3390/foods13131985
Bilal Z, Akhmetsadykova S, Baubekova A, Tormo H, Faye B, Konuspayeva G. The Main Features and Microbiota Diversity of Fermented Camel Milk. Foods. 2024; 13(13):1985. https://doi.org/10.3390/foods13131985
Chicago/Turabian StyleBilal, Zauresh, Shynar Akhmetsadykova, Almagul Baubekova, Helene Tormo, Bernard Faye, and Gaukhar Konuspayeva. 2024. "The Main Features and Microbiota Diversity of Fermented Camel Milk" Foods 13, no. 13: 1985. https://doi.org/10.3390/foods13131985
APA StyleBilal, Z., Akhmetsadykova, S., Baubekova, A., Tormo, H., Faye, B., & Konuspayeva, G. (2024). The Main Features and Microbiota Diversity of Fermented Camel Milk. Foods, 13(13), 1985. https://doi.org/10.3390/foods13131985