Genome- and Toxicology-Based Safety Assessment of Probiotic Akkermansia muciniphila ONE Isolated from Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and 16S rRNA Gene Sequencing
2.2. Genome Sequencing, Assembly, and Analysis
2.3. Analysis of Antibiotic-Resistance Gene, Virulence Gene, and Pathogenicity of AKK ONE
2.4. Gastrointestinal Tract (GI) Tolerance, Hydrophobicity, Auto-Aggregation, and Biofilm Formation Ability
2.4.1. Tolerance to Artificial Gastric and Intestinal Fluid
2.4.2. Hydrophobicity
2.4.3. Auto-Aggregation
2.4.4. Biofilm Formation Ability
2.5. Acute Toxicity
2.6. In Vitro Mammalian Cell Micronucleus Test
2.7. Bacterial Reverse Mutation Test (Ames Test)
2.8. Ninety-Day Oral Toxicity Study
2.9. Statistics
3. Results and Discussion
3.1. Microbiological Properties and 16S rRNA Gene Sequencing
3.2. Genome Sequence Characteristics and Functional Annotation
3.3. Analysis Results of Antibiotic-Resistance Gene, Virulence Gene, and Pathogenicity of AKK ONE
3.4. GI Tolerance, Hydrophobicity, Auto-Aggregation, and Biofilm Formation
3.5. Acute Toxicity
3.6. In Vitro Mammalian Cell Micronucleus Test
3.7. Bacterial Reverse Mutation Test (Ames Test)
3.8. Ninety-Day Oral Toxicity Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thumu, S.C.R.; Halami, P.M. In vivo safety assessment of Lactobacillus fermentum strains, evaluation of their cholesterol-lowering ability and intestinal microbial modulation. J. Sci. Food Agric. 2020, 100, 705–713. [Google Scholar] [CrossRef]
- Vemuri, R.; Shinde, T.; Shastri, M.D.; Perera, A.P.; Tristram, S.; Martoni, C.J.; Gundamaraju, R.; Ahuja, K.D.K.; Ball, M.; Eri, R. A human origin strain Lactobacillus acidophilus DDS-1 exhibits superior in vitro probiotic efficacy in comparison to plant or dairy origin probiotics. Int. J. Med. Sci. 2018, 15, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Calvo, A.; Pastor, Y.; Rosas-Val, P.; Gamazo, C. Unveiling the immunomodulatory effect of the novel probiotic Akkermansia muciniphila and its protective effect in vitro. Microbiol. Res. 2024, 283, 127677. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; Van-Baarlen, P.; Hooiveld, G.; Norin, E.; Müller, M.; de Vos, W.M. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front. Microbiol. 2011, 2, 166. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Derrien, M.; Isolauri, E.; de Vos, W.M.; Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 2007, 73, 7767–7770. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, J.; Li, D.; Yang, H.; Chen, C.; Qin, M.; Wen, Z.; He, Z.; Xu, L. Akkermansia muciniphila: A potential target and pending issues for oncotherapy. Pharmacol. Res. 2023, 196, 106916. [Google Scholar] [CrossRef] [PubMed]
- Ansaldo, E.; Slayden, L.C.; Ching, K.L.; Koch, M.A.; Wolf, N.K.; Plichta, D.R.; Brown, E.M.; Graham, D.B.; Xavier, R.J.; Moon, J.J.; et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 2019, 364, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.S.; Cho, C.H.; Yun, M.S.; Jang, S.J.; You, H.J.; Kim, J.H.; Han, D.; Cha, K.H.; Moon, S.H.; Lee, K.; et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 2021, 6, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Depommier, C.; Derrien, M.; Everard, A.; de Vos, W.M. Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 625–637. [Google Scholar] [CrossRef]
- Dalloul, I.; Strzalkowski, T.J.C.; von Bergwelt-Baildon, M.; Nüssler, V.; Zielinski, C.; Kobold, S. 9th Immunotherapy of Cancer conference (ITOC): A meeting report. Hum. Vaccines Immunother. 2022, 18, 2159706. [Google Scholar] [CrossRef]
- Chelakkot, C.; Choi, Y.; Kim, D.K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M.S.; Jee, Y.K.; Gho, Y.S.; et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 2018, 50, e450. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef]
- Brahe, L.K.; Le Chatelier, E.; Prifti, E.; Pons, N.; Kennedy, S.; Hansen, T.; Pedersen, O.; Astrup, A.; Ehrlich, S.D.; Larsen, L.H. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr. Diabetes 2015, 5, e159. [Google Scholar] [CrossRef] [PubMed]
- Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 2017, 23, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, Q.; Cheng, L.; Buch, H.; Zhang, F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 2019, 12, 1109–1125. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, W.; Tian, F.; Zhao, J.; Zhang, H.; Hong, K.; Yu, L. Akkermansia muciniphila exerts strain-specific effects on DSS-induced ulcerative colitis in mice. Front. Cell Infect. Microbiol. 2021, 11, 698914. [Google Scholar] [CrossRef] [PubMed]
- Zhai, R.; Xue, X.; Zhang, L.; Yang, X.; Zhao, L.; Zhang, C. Strain-specific anti-inflammatory properties of two strains on chronic colitis in mice. Front. Cell Infect. Microbiol. 2019, 9, 239. [Google Scholar] [CrossRef] [PubMed]
- Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef]
- Cozzolino, A.; Vergalito, F.; Tremonte, P.; Iorizzo, M.; Lombardi, S.J.; Sorrentino, E.; Luongo, D.; Coppola, R.; Di Marco, R.; Succi, M. Preliminary evaluation of the safety and probiotic potential of Akkermansia muciniphila DSM 22959 in comparison with Lactobacillus rhamnosus GG. Microorganisms 2020, 8, 189. [Google Scholar] [CrossRef]
- Hou, F.; Tang, J.; Liu, Y.; Tan, Y.; Wang, Y.; Zheng, L.; Liang, D.; Lin, Y.; Wang, L.; Pan, Z.; et al. Safety Evaluation and Probiotic Potency Screening of Akkermansia muciniphila Strains Isolated from Human Feces and Breast Milk. Microbiol. Spectr. 2023, 11, e03361-22. [Google Scholar] [CrossRef]
- Fan, T.; Qu, J.; Wang, L.; Zhang, J.; Yang, X.; Zhang, H.; Qin, Y.; Tao, Y.; Jin, G. Genome sequencing, assembly, and characterization of Pichia fermentans Z9Y-3 as a non-Saccharomyces yeast with aroma enhancing potential. Food Biosci. 2023, 53, 102701. [Google Scholar] [CrossRef]
- Lopez-Varea, A.; Vega-Cuesta, P.; Ruiz-Gomez, A.; Ostale, C.M.; Molnar, C.; Hevia, C.F.; Martin, M.; Organista, M.F.; de Celis, J.; Culi, J.; et al. Genome-wide phenotypic RNAi screen in the Drosophila wing: Phenotypic description of functional classes. G3-Genes Genom. Genet. 2021, 11, jkab349. [Google Scholar]
- Saerens, S.M.G.; Duong, C.T.; Nevoigt, E. Genetic improvement of brewer’s yeast: Current state, perspectives and limits. Appl. Microbiol. Biotechnol. 2010, 86, 1195–1212. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Wang, Y.; Han, Y.; Zhang, Y.; Cao, T.; Huo, G.; Li, B. Genome Analysis of Bifidobacterium Bifidum E3, Structural Characteristics, and Antioxidant Properties of Exopolysaccharides. Foods 2023, 12, 2988. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Li, C.L.; Zhao, L.Y.; Zhang, Y.X.; Yin, K.Y.; Wang, Q.Y. Interplay between ferric uptake regulator fur and horizontally acquired virulence regulator EsrB coordinates virulence gene expression in Edwardsiella piscicida. Microbiol. Res. 2021, 253, 126892. [Google Scholar] [CrossRef] [PubMed]
- Ulsemer, P.; Toutounian, K.; Schmidt, J.; Karsten, U.; Goletz, S. Preliminary safety evaluation of a new Bacteroides xylanisolvens isolate. Appl. Environ. Microbiol. 2012, 78, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Dey, D.K.; Koo, B.G.; Sharma, C.; Kang, S.C. Characterization of Weissella confusa DD_A7 isolated from kimchi. LWT 2019, 111, 663–672. [Google Scholar] [CrossRef]
- Fenech, M. The cytokinesis-block micronucleus technique and its application to genotoxicity studies in human populations. Environ. Health Perspect. 1993, 101 (Suppl. S3), 101–107. [Google Scholar] [PubMed]
- Guo, X.; Li, S.; Zhang, J.; Wu, F.; Li, X.; Wu, D.; Zhang, M.; Ou, Z.; Jie, Z.; Yan, Q.; et al. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diversity, and global distribution in mammalian gut microbiotas. BMC Genom. 2017, 18, 800. [Google Scholar] [CrossRef]
- van Passel, M.W.; Kant, R.; Zoetendal, E.G.; Plugge, C.M.; Derrien, M.; Malfatti, S.A.; Chain, P.S.; Woyke, T.; Palva, A.; de Vos, W.M.; et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 2011, 6, e16876. [Google Scholar] [CrossRef]
- Derrien, M.; van Passel, M.W.; van de Bovenkamp, J.H.; Schipper, R.G.; de Vos, W.M.; Dekker, J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 2010, 1, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.K.; Bhatt, P.; Singh, J.; Kaushik, R.D.; Sharma, G.; Kumar, V. Preclinical safety assessment of chemically cross-linked modified mandua starch: Acute and sub-acute oral toxicity studies in swiss albino mice. ACS Omega 2022, 7, 35506–35514. [Google Scholar] [CrossRef] [PubMed]
- Teo, S.; Stirling, D.; Thomas, S.; Hoberman, A.; Kiorpes, A.; Khetani, V. A 90-day oral gavage toxicity study of D-methylphenidate and D,L-methylphenidate in Sprague-Dawley rats. Toxicology 2002, 179, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yang, Z.; Cao, C.; Xiao, X.; Huang, Y.; Tian, L.; Bai, W. Subacute safety assessment of recombinant Lactococcus lactis on the gut microbiota of male Sprague-Dawley rats. J. Sci. Food Agric. 2021, 101, 5807–5812. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Li, G.; Wang, Z.; Yang, J.; Li, Y.; Wang, H.; Jin, H.; Qiao, J.; Wang, H.; et al. Acute and repeated dose 26-week oral toxicity study of 20(S)-ginsenoside Rg3 in Kunming mice and Sprague-Dawley rats. J. Ginseng Res. 2020, 44, 222–228. [Google Scholar] [CrossRef]
Antibiotics | Judging Rule | Tested Strain | Quality Control Strain | |||||
---|---|---|---|---|---|---|---|---|
AKK ONE | B. fragilis ATCC25285 | |||||||
S | I | R | MIC (μg/mL) | Result | Quality Control Range | MIC (μg/mL) | Within the Quality Control Range? | |
Ampicillin | ≤0.5 | 1 | ≥2 | <0.25 | Sensitivity | 16–64 | 32 | Yes |
Ceftriaxone | ≤16 | 32 | ≥64 | 8 | Sensitivity | 32–128 | 64 | Yes |
Cefotaxime | ≤16 | 32 | ≥64 | 8 | Sensitivity | 8–32 | 32 | Yes |
Meropenem | ≤4 | 8 | ≥16 | 0.125 | Sensitivity | 0.03–0.25 | 0.25 | Yes |
Tetracycline | ≤4 | 8 | ≥16 | 2 | Sensitivity | 0.125–0.5 | 0.25 | Yes |
Moxifloxacin | ≤2 | 4 | ≥8 | 128 | Resistance | 0.125–0.5 | 0.5 | Yes |
Chloramphenicol | ≤8 | 16 | ≥32 | 4 | Sensitivity | 2–8 | 4 | Yes |
Groups | Blood Routine Indexes | Saline | Low Dosage | Medium Dosage | High Dosage |
---|---|---|---|---|---|
Acute toxicity | WBC (×109/L) | 0.5 ± 0.3 | 0.6 ± 0.3 | 0.7 ± 0.7 | 0.6 ± 0.4 |
RBC (×1012/L) | 1.3 ± 0.7 | 1.7 ± 0.5 | 1.4 ± 0.5 | 1.20 ± 0.3 | |
HGB (g/L) | 85.8 ± 25.3 | 105.5 ± 7.7 | 88.5 ± 16.2 | 88.5 ± 3.5 | |
MCV (fL) | 54.7 ± 4.2 | 51.1 ± 4.1 | 51.2 ± 7.7 | 54.5 ± 1.3 | |
PLT (×109/L) | 1128.8 ± 488.3 | 1262.5 ± 351.4 | 975.5 ± 265.1 | 1374.5 ± 115.2 | |
Lymphocytes (×109/L) | 0.6 ± 0.2 | 0.6 ± 0.2 | 0.6 ± 0.6 | 0.6 ± 0.4 | |
MCHC (g/L) | 1667.5 ± 1033.1 | 1288.0 ± 421.4 | 2435.1 ± 1506.1 | 1410.2 ± 434.1 | |
MCH (pg) | 88.9 ± 47.5 | 86.8 ± 27.1 | 91.3 ± 56.2 | 76.9 ± 22.5 | |
Subchronic toxicity | WBC (×109/L) | 1.8 ± 1.2 | 1.8 ± 0.1 | 1.6 ± 0.7 | 1.8 ± 0.1 |
RBC (×1012/L) | 7.4 ± 0.5 | 6.4 ± 0.4 | 7.7 ± 0.2 | 7.2 ± 0.6 | |
HGB (g/L) | 107.5 ± 6.3 | 98.0 ± 6.6 | 108.5 ± 5.4 | 104.5 ± 8.1 | |
MCV (fL) | 50.9 ± 2.5 | 50.1 ± 1.3 | 49.0 ± 1.5 | 49.8 ± 2.1 | |
PLT (×109/L) | 493.1 ± 57.3 | 474.7 ± 48.5 | 508.7 ± 63.0 | 473.0 ± 56.1 | |
Lymphocytes (×109/L) | 1.7 ± 1.0 | 1.8 ± 0.1 | 1.5 ± 0.6 | 1.8 ± 0.9 | |
MCHC (g/L) | 286.7 ± 11.6 | 287.7 ± 8.9 | 287.2 ± 13.2 | 290.3 ± 12.3 | |
MCH (pg) | 14.4 ± 0.6 | 14.4 ± 0.5 | 14.1 ± 0.6 | 14.4 ± 0.3 |
Groups | Indicators | Saline | Low Dosage | Medium Dosage | High Dosage | ||||
---|---|---|---|---|---|---|---|---|---|
Serum | Liver | Serum | Liver | Serum | Liver | Serum | Liver | ||
Acute toxicity | BG (mmol/L) | 8.4 ± 1.7 | 9.1 ± 2.2 | 8.9 ± 1.6 | 8.9 ± 1.7 | 8.4 ± 1.5 | 9.4 ± 1.8 | 8.6 ± 1.8 | 9.1 ± 1.9 |
TGs (mmol/L) | 1.5 ± 0.8 | 0.4 ± 0.07 | 1.5 ± 0.7 | 0.4 ± 0.12 | 1.4 ± 0.6 | 0.4 ± 0.04 | 1.6 ± 0.7 | 0.4 ± 0.05 | |
TC (mmol/L) | 5.9 ± 2.1 | 0.03 ± 0.01 | 6.4 ± 2.8 | 0.03 ± 0.01 | 6.6 ± 1.6 | 0.03 ± 0.01 | 6.4 ± 1.4 | 0.03 ± 0.01 | |
BA (μmol/L) | 3.0 ± 0.8 | 56.2 ± 35.7 | 3.0 ± 0.6 | 50.1 ± 28.9 | 2.7 ± 0.7 | 52.4 ± 28.4 | 2.8 ± 0.4 | 56.6 ± 38.0 | |
TP (μg/mL) | 261.4 ± 24.6 | 775.5 ± 74.0 | 289.6 ± 22.8 | 755.3 ± 80.0 | 267.7 ± 25.7 | 769.2 ± 70.6 | 285.1 ± 35.2 | 772.4 ± 69.2 | |
ALT (U/L) | 15.3 ± 6.5 | 9.1 ± 4.7 | 18.8 ± 5.5 | 9.4 ± 3.7 | 15.9 ± 6.2 | 9.8 ± 1.7 | 16.8± 6.4 | 9.3 ± 3.7 | |
AST (U/L) | 46.9 ± 9.1 | 10.1 ± 2.1 | 49.9 ± 8.4 | 8.9 ± 2.9 | 49.1 ± 5.1 | 9.4 ± 2.5 | 49.7 ± 4.8 | 9.0 ± 2.4 | |
Cr (μmol/L) | 17.5 ± 5.1 | - | 23.1 ± 7.6 | - | 24.7 ± 8.8 | - | 18.8 ± 6.6 | - | |
BUN (mmol/L) | 5.3 ± 1.7 | - | 5.0 ± 1.9 | - | 5.2 ± 1.7 | - | 5.1 ± 1.5 | - | |
Subchronic toxicity | BG (mmol/L) | 8.4 ± 1.5 | 12.4 ± 0.9 | 7.9 ± 1.3 | 12.6 ± 1.6 | 8.5 ± 1.6 | 11.8 ± 1.7 | 8.3 ± 1.2 | 11.7 ± 1.6 |
TGs (mmol/L) | 1.1 ± 0.5 | 1.8 ± 0.8 | 1.2 ± 0.3 | 2.0 ± 0.7 | 1.0 ± 0.3 | 2.0 ± 0.8 | 1.3 ± 0.6 | 2.1 ± 0.9 | |
TC (mmol/L) | 2.0 ± 0.8 | 0.2 ± 0.1 | 2.0 ± 0.3 | 0.2 ± 0.1 | 2.0 ± 0.8 | 0.2 ± 0.1 | 2.3 ± 0.7 | 0.2 ± 0.1 | |
BA (μmol/L) | 5.3 ± 1.7 | 2.7 ± 1.4 | 5.1 ± 2.1 | 2.1 ± 1.1 | 5.6 ± 2.5 | 2.5 ± 1.9 | 5.7 ± 2.5 | 2.3 ± 1.4 | |
TP (μg/mL) | 1516 ± 363.7 | 621.7 ± 110.3 | 1484 ± 306.8 | 672.2± 121.7 | 1456 ± 303.2 | 639.1 ± 85.1 | 1573 ± 272.8 | 622.7 ± 74.2 | |
ALT (U/L) | 10.1 ± 1.9 | 9.6 ± 2.7 | 11.3 ± 1.6 | 9.2 ± 2.2 | 12.3 ± 1.1 | 9.4 ± 2.6 | 11.9 ± 1.9 | 9.7 ± 2.6 | |
AST (U/L) | 48.5 ± 6.2 | 278.2 ± 27.8 | 47.4 ± 9.0 | 267.3 ± 26.9 | 51.9 ± 5.1 | 272.2 ± 33.8 | 45.9 ± 8.8 | 280.4 ± 30.9 | |
Cr (μmol/L) | 13.9 ± 3.9 | - | 12.7 ± 2.3 | - | 12.8 ± 5.8 | - | 14.5 ± 3.4 | - | |
BUN (mmol/L) | 3.7 ± 0.7 | - | 3.8 ± 0.9 | - | 3.4 ± 0.4 | - | 3.4 ± 0.6 | - |
Heart | Liver | Spleen | Kidney | Thymus | Brain | Testicle | lung | Stomach | Intestines | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Acute toxicity | Saline | 5.8 ± 1.1 | 43.9 ± 7.5 | 2.5 ± 0.4 | 13.6 ± 2.5 | 2.9 ± 0.6 | 10.5± 1.5 | 6.2 ± 0.4 | 6.1 ± 0.9 | 19.3 ± 6.7 | 100.5 ± 10.6 |
Low dosage | 5.5 ± 1.1 | 46.8 ± 5.8 | 2.7± 0.9 | 14.0 ± 2.6 | 2.8 ± 0.5 | 11.2± 0.8 | 5.8 ± 0.3 | 5.7 ± 0.5 | 19.0 ± 2.2 | 101.2 ± 4.4 | |
Medium dosage | 5.7 ± 0.9 | 47.4 ± 7.7 | 2.6 ± 0.3 | 14.6 ± 3.1 | 2.7 ± 0.3 | 9.9 ± 0.5 | 6.5 ± 0.6 | 6.4 ± 0.7 | 21.3 ± 5.4 | 97.9 ± 5.7 | |
High dosage | 5.6 ± 1.5 | 49.9 ± 5.0 | 2.1 ± 0.8 | 13.4 ± 3.3 | 3.0 ± 0.2 | 10.6 ± 1.8 | 5.9± 0.6 | 5.9± 0.7 | 18.8 ± 5.5 | 100.4 ± 10.7 | |
Subchronic toxicity | Saline | 4.7 ± 0.4 | 39.6± 4.3 | 2.4 ± 0.7 | 11.2± 1.6 | 2.6 ± 0.8 | 9.4 ± 3.5 | 5.8 ± 1.1 | 5.8± 0.4 | 14.8 ± 5.9 | 77.4 ± 10.3 |
Low dosage | 4.7 ± 0.8 | 42.3 ± 5.0 | 2.7 ± 0.4 | 11.7± 0.9 | 2.8 ± 0.4 | 9.9 ± 1.6 | 5.9 ± 0.6 | 5.6 ± 0.5 | 14.6 ± 3.5 | 74.7 ± 9.7 | |
Medium dosage | 4.6 ± 0.4 | 39.9± 6.4 | 2.5 ± 0.9 | 10.1 ± 3.9 | 2.5 ± 0.5 | 8.9 ± 2.2 | 5.5 ± 0.6 | 5.4 ± 0.5 | 15.3 ± 4.9 | 79.3 ± 14.4 | |
High dosage | 4.6 ± 0.5 | 38.9 ± 3.2 | 2.7 ± 0.7 | 11.5± 1.0 | 2.7 ± 0.7 | 9.2 ± 1.9 | 5.3 ± 0.4 | 5.6 ± 0.6 | 14.4 ± 5.1 | 75.5 ± 14.8 |
Group | PCE (%) | NCE Ratio | PCE Ratio |
---|---|---|---|
Negative control group | 36.34 ± 4.63 | 0.06 ± 0.09 | 0.09 ± 0.04 |
Low dose group | 39.73 ± 5.62 | 0.02 ± 0.09 | 0.12 ± 0.04 |
Mid dose group | 32.54 ± 5.79 | 0.03 ± 0.06 | 0.10 ± 0.09 |
High dose group | 31.75 ± 6.74 | 0.03 ± 0.02 | 0.14 ± 0.03 |
Positive control group | 24.6 ± 5.90 | 0.33 ± 0.10 *** | 4.76 ± 2.13 *** |
Concentrations | Revertant Colonies per Plate (Mean ± Standard Deviation) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Salmonella typhimurium | Escherichia coli | |||||||||
TA97a | TA98 | TA100 | TA1535 | WP2 uvr A | ||||||
−S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | |
Distilled water control | 122.00 ± 30.68 | 126.20 ± 22.13 | 41.40 ± 8.11 | 35.00 ± 6.40 | 144.60 ± 25.52 | 109.00 ± 43.81 | 12.00 ± 4.42 | 16.00 ± 6.52 | 122.40 ± 19.36 | 162.00 ± 32.41 |
AKK ONE | 85.60 ± 14.54 | 99.20 ± 19.87 | 38.20 ± 12.09 | 34.00 ± 4.80 | 71.20 ± 9.58 | 62.00 ± 11.81 | 13.20 ± 4.49 | 13.00 ± 3.39 | 113.00 ± 13.91 | 134.20 ± 27.10 |
Dixon | 1169.40 ± 181.47 | - | 1525.00 ± 271.69 | - | - | - | - | - | - | - |
Sodium azide | - | - | - | - | 1347.00 ± 202.27 | - | - | - | 613.40 ± 61.99 | - |
Methyl methylsulfonate | - | - | - | - | - | - | 141.80 ± 26.63 | - | - | - |
2-aminofluorene | - | 1288.40 ± 296.29 | - | 1398.60 ± 309.13 | - | 1247.40 ± 59.71 | - | 163.20 ± 9.98 | - | 548.60 ± 111.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, N.; Wang, C.; Zhou, H.; Ma, X.; Yu, X.; Ren, D. Genome- and Toxicology-Based Safety Assessment of Probiotic Akkermansia muciniphila ONE Isolated from Humans. Foods 2024, 13, 1979. https://doi.org/10.3390/foods13131979
Lv N, Wang C, Zhou H, Ma X, Yu X, Ren D. Genome- and Toxicology-Based Safety Assessment of Probiotic Akkermansia muciniphila ONE Isolated from Humans. Foods. 2024; 13(13):1979. https://doi.org/10.3390/foods13131979
Chicago/Turabian StyleLv, Na, Caiping Wang, Hongtao Zhou, Xin Ma, Xueping Yu, and Dayong Ren. 2024. "Genome- and Toxicology-Based Safety Assessment of Probiotic Akkermansia muciniphila ONE Isolated from Humans" Foods 13, no. 13: 1979. https://doi.org/10.3390/foods13131979
APA StyleLv, N., Wang, C., Zhou, H., Ma, X., Yu, X., & Ren, D. (2024). Genome- and Toxicology-Based Safety Assessment of Probiotic Akkermansia muciniphila ONE Isolated from Humans. Foods, 13(13), 1979. https://doi.org/10.3390/foods13131979