Genome- and Toxicology-Based Safety Assessment of Probiotic Akkermansia muciniphila ONE Isolated from Humans
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and 16S rRNA Gene Sequencing
2.2. Genome Sequencing, Assembly, and Analysis
2.3. Analysis of Antibiotic-Resistance Gene, Virulence Gene, and Pathogenicity of AKK ONE
2.4. Gastrointestinal Tract (GI) Tolerance, Hydrophobicity, Auto-Aggregation, and Biofilm Formation Ability
2.4.1. Tolerance to Artificial Gastric and Intestinal Fluid
2.4.2. Hydrophobicity
2.4.3. Auto-Aggregation
2.4.4. Biofilm Formation Ability
2.5. Acute Toxicity
2.6. In Vitro Mammalian Cell Micronucleus Test
2.7. Bacterial Reverse Mutation Test (Ames Test)
2.8. Ninety-Day Oral Toxicity Study
2.9. Statistics
3. Results and Discussion
3.1. Microbiological Properties and 16S rRNA Gene Sequencing
3.2. Genome Sequence Characteristics and Functional Annotation
3.3. Analysis Results of Antibiotic-Resistance Gene, Virulence Gene, and Pathogenicity of AKK ONE
3.4. GI Tolerance, Hydrophobicity, Auto-Aggregation, and Biofilm Formation
3.5. Acute Toxicity
3.6. In Vitro Mammalian Cell Micronucleus Test
3.7. Bacterial Reverse Mutation Test (Ames Test)
3.8. Ninety-Day Oral Toxicity Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thumu, S.C.R.; Halami, P.M. In vivo safety assessment of Lactobacillus fermentum strains, evaluation of their cholesterol-lowering ability and intestinal microbial modulation. J. Sci. Food Agric. 2020, 100, 705–713. [Google Scholar] [CrossRef]
- Vemuri, R.; Shinde, T.; Shastri, M.D.; Perera, A.P.; Tristram, S.; Martoni, C.J.; Gundamaraju, R.; Ahuja, K.D.K.; Ball, M.; Eri, R. A human origin strain Lactobacillus acidophilus DDS-1 exhibits superior in vitro probiotic efficacy in comparison to plant or dairy origin probiotics. Int. J. Med. Sci. 2018, 15, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Calvo, A.; Pastor, Y.; Rosas-Val, P.; Gamazo, C. Unveiling the immunomodulatory effect of the novel probiotic Akkermansia muciniphila and its protective effect in vitro. Microbiol. Res. 2024, 283, 127677. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; Van-Baarlen, P.; Hooiveld, G.; Norin, E.; Müller, M.; de Vos, W.M. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front. Microbiol. 2011, 2, 166. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Derrien, M.; Isolauri, E.; de Vos, W.M.; Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 2007, 73, 7767–7770. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, J.; Li, D.; Yang, H.; Chen, C.; Qin, M.; Wen, Z.; He, Z.; Xu, L. Akkermansia muciniphila: A potential target and pending issues for oncotherapy. Pharmacol. Res. 2023, 196, 106916. [Google Scholar] [CrossRef] [PubMed]
- Ansaldo, E.; Slayden, L.C.; Ching, K.L.; Koch, M.A.; Wolf, N.K.; Plichta, D.R.; Brown, E.M.; Graham, D.B.; Xavier, R.J.; Moon, J.J.; et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 2019, 364, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.S.; Cho, C.H.; Yun, M.S.; Jang, S.J.; You, H.J.; Kim, J.H.; Han, D.; Cha, K.H.; Moon, S.H.; Lee, K.; et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 2021, 6, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Depommier, C.; Derrien, M.; Everard, A.; de Vos, W.M. Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 625–637. [Google Scholar] [CrossRef]
- Dalloul, I.; Strzalkowski, T.J.C.; von Bergwelt-Baildon, M.; Nüssler, V.; Zielinski, C.; Kobold, S. 9th Immunotherapy of Cancer conference (ITOC): A meeting report. Hum. Vaccines Immunother. 2022, 18, 2159706. [Google Scholar] [CrossRef]
- Chelakkot, C.; Choi, Y.; Kim, D.K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M.S.; Jee, Y.K.; Gho, Y.S.; et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 2018, 50, e450. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef]
- Brahe, L.K.; Le Chatelier, E.; Prifti, E.; Pons, N.; Kennedy, S.; Hansen, T.; Pedersen, O.; Astrup, A.; Ehrlich, S.D.; Larsen, L.H. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr. Diabetes 2015, 5, e159. [Google Scholar] [CrossRef] [PubMed]
- Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 2017, 23, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, Q.; Cheng, L.; Buch, H.; Zhang, F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 2019, 12, 1109–1125. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, W.; Tian, F.; Zhao, J.; Zhang, H.; Hong, K.; Yu, L. Akkermansia muciniphila exerts strain-specific effects on DSS-induced ulcerative colitis in mice. Front. Cell Infect. Microbiol. 2021, 11, 698914. [Google Scholar] [CrossRef] [PubMed]
- Zhai, R.; Xue, X.; Zhang, L.; Yang, X.; Zhao, L.; Zhang, C. Strain-specific anti-inflammatory properties of two strains on chronic colitis in mice. Front. Cell Infect. Microbiol. 2019, 9, 239. [Google Scholar] [CrossRef] [PubMed]
- Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef]
- Cozzolino, A.; Vergalito, F.; Tremonte, P.; Iorizzo, M.; Lombardi, S.J.; Sorrentino, E.; Luongo, D.; Coppola, R.; Di Marco, R.; Succi, M. Preliminary evaluation of the safety and probiotic potential of Akkermansia muciniphila DSM 22959 in comparison with Lactobacillus rhamnosus GG. Microorganisms 2020, 8, 189. [Google Scholar] [CrossRef]
- Hou, F.; Tang, J.; Liu, Y.; Tan, Y.; Wang, Y.; Zheng, L.; Liang, D.; Lin, Y.; Wang, L.; Pan, Z.; et al. Safety Evaluation and Probiotic Potency Screening of Akkermansia muciniphila Strains Isolated from Human Feces and Breast Milk. Microbiol. Spectr. 2023, 11, e03361-22. [Google Scholar] [CrossRef]
- Fan, T.; Qu, J.; Wang, L.; Zhang, J.; Yang, X.; Zhang, H.; Qin, Y.; Tao, Y.; Jin, G. Genome sequencing, assembly, and characterization of Pichia fermentans Z9Y-3 as a non-Saccharomyces yeast with aroma enhancing potential. Food Biosci. 2023, 53, 102701. [Google Scholar] [CrossRef]
- Lopez-Varea, A.; Vega-Cuesta, P.; Ruiz-Gomez, A.; Ostale, C.M.; Molnar, C.; Hevia, C.F.; Martin, M.; Organista, M.F.; de Celis, J.; Culi, J.; et al. Genome-wide phenotypic RNAi screen in the Drosophila wing: Phenotypic description of functional classes. G3-Genes Genom. Genet. 2021, 11, jkab349. [Google Scholar]
- Saerens, S.M.G.; Duong, C.T.; Nevoigt, E. Genetic improvement of brewer’s yeast: Current state, perspectives and limits. Appl. Microbiol. Biotechnol. 2010, 86, 1195–1212. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Wang, Y.; Han, Y.; Zhang, Y.; Cao, T.; Huo, G.; Li, B. Genome Analysis of Bifidobacterium Bifidum E3, Structural Characteristics, and Antioxidant Properties of Exopolysaccharides. Foods 2023, 12, 2988. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Li, C.L.; Zhao, L.Y.; Zhang, Y.X.; Yin, K.Y.; Wang, Q.Y. Interplay between ferric uptake regulator fur and horizontally acquired virulence regulator EsrB coordinates virulence gene expression in Edwardsiella piscicida. Microbiol. Res. 2021, 253, 126892. [Google Scholar] [CrossRef] [PubMed]
- Ulsemer, P.; Toutounian, K.; Schmidt, J.; Karsten, U.; Goletz, S. Preliminary safety evaluation of a new Bacteroides xylanisolvens isolate. Appl. Environ. Microbiol. 2012, 78, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Dey, D.K.; Koo, B.G.; Sharma, C.; Kang, S.C. Characterization of Weissella confusa DD_A7 isolated from kimchi. LWT 2019, 111, 663–672. [Google Scholar] [CrossRef]
- Fenech, M. The cytokinesis-block micronucleus technique and its application to genotoxicity studies in human populations. Environ. Health Perspect. 1993, 101 (Suppl. S3), 101–107. [Google Scholar] [PubMed]
- Guo, X.; Li, S.; Zhang, J.; Wu, F.; Li, X.; Wu, D.; Zhang, M.; Ou, Z.; Jie, Z.; Yan, Q.; et al. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diversity, and global distribution in mammalian gut microbiotas. BMC Genom. 2017, 18, 800. [Google Scholar] [CrossRef]
- van Passel, M.W.; Kant, R.; Zoetendal, E.G.; Plugge, C.M.; Derrien, M.; Malfatti, S.A.; Chain, P.S.; Woyke, T.; Palva, A.; de Vos, W.M.; et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 2011, 6, e16876. [Google Scholar] [CrossRef]
- Derrien, M.; van Passel, M.W.; van de Bovenkamp, J.H.; Schipper, R.G.; de Vos, W.M.; Dekker, J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 2010, 1, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.K.; Bhatt, P.; Singh, J.; Kaushik, R.D.; Sharma, G.; Kumar, V. Preclinical safety assessment of chemically cross-linked modified mandua starch: Acute and sub-acute oral toxicity studies in swiss albino mice. ACS Omega 2022, 7, 35506–35514. [Google Scholar] [CrossRef] [PubMed]
- Teo, S.; Stirling, D.; Thomas, S.; Hoberman, A.; Kiorpes, A.; Khetani, V. A 90-day oral gavage toxicity study of D-methylphenidate and D,L-methylphenidate in Sprague-Dawley rats. Toxicology 2002, 179, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yang, Z.; Cao, C.; Xiao, X.; Huang, Y.; Tian, L.; Bai, W. Subacute safety assessment of recombinant Lactococcus lactis on the gut microbiota of male Sprague-Dawley rats. J. Sci. Food Agric. 2021, 101, 5807–5812. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Li, G.; Wang, Z.; Yang, J.; Li, Y.; Wang, H.; Jin, H.; Qiao, J.; Wang, H.; et al. Acute and repeated dose 26-week oral toxicity study of 20(S)-ginsenoside Rg3 in Kunming mice and Sprague-Dawley rats. J. Ginseng Res. 2020, 44, 222–228. [Google Scholar] [CrossRef]
Antibiotics | Judging Rule | Tested Strain | Quality Control Strain | |||||
---|---|---|---|---|---|---|---|---|
AKK ONE | B. fragilis ATCC25285 | |||||||
S | I | R | MIC (μg/mL) | Result | Quality Control Range | MIC (μg/mL) | Within the Quality Control Range? | |
Ampicillin | ≤0.5 | 1 | ≥2 | <0.25 | Sensitivity | 16–64 | 32 | Yes |
Ceftriaxone | ≤16 | 32 | ≥64 | 8 | Sensitivity | 32–128 | 64 | Yes |
Cefotaxime | ≤16 | 32 | ≥64 | 8 | Sensitivity | 8–32 | 32 | Yes |
Meropenem | ≤4 | 8 | ≥16 | 0.125 | Sensitivity | 0.03–0.25 | 0.25 | Yes |
Tetracycline | ≤4 | 8 | ≥16 | 2 | Sensitivity | 0.125–0.5 | 0.25 | Yes |
Moxifloxacin | ≤2 | 4 | ≥8 | 128 | Resistance | 0.125–0.5 | 0.5 | Yes |
Chloramphenicol | ≤8 | 16 | ≥32 | 4 | Sensitivity | 2–8 | 4 | Yes |
Groups | Blood Routine Indexes | Saline | Low Dosage | Medium Dosage | High Dosage |
---|---|---|---|---|---|
Acute toxicity | WBC (×109/L) | 0.5 ± 0.3 | 0.6 ± 0.3 | 0.7 ± 0.7 | 0.6 ± 0.4 |
RBC (×1012/L) | 1.3 ± 0.7 | 1.7 ± 0.5 | 1.4 ± 0.5 | 1.20 ± 0.3 | |
HGB (g/L) | 85.8 ± 25.3 | 105.5 ± 7.7 | 88.5 ± 16.2 | 88.5 ± 3.5 | |
MCV (fL) | 54.7 ± 4.2 | 51.1 ± 4.1 | 51.2 ± 7.7 | 54.5 ± 1.3 | |
PLT (×109/L) | 1128.8 ± 488.3 | 1262.5 ± 351.4 | 975.5 ± 265.1 | 1374.5 ± 115.2 | |
Lymphocytes (×109/L) | 0.6 ± 0.2 | 0.6 ± 0.2 | 0.6 ± 0.6 | 0.6 ± 0.4 | |
MCHC (g/L) | 1667.5 ± 1033.1 | 1288.0 ± 421.4 | 2435.1 ± 1506.1 | 1410.2 ± 434.1 | |
MCH (pg) | 88.9 ± 47.5 | 86.8 ± 27.1 | 91.3 ± 56.2 | 76.9 ± 22.5 | |
Subchronic toxicity | WBC (×109/L) | 1.8 ± 1.2 | 1.8 ± 0.1 | 1.6 ± 0.7 | 1.8 ± 0.1 |
RBC (×1012/L) | 7.4 ± 0.5 | 6.4 ± 0.4 | 7.7 ± 0.2 | 7.2 ± 0.6 | |
HGB (g/L) | 107.5 ± 6.3 | 98.0 ± 6.6 | 108.5 ± 5.4 | 104.5 ± 8.1 | |
MCV (fL) | 50.9 ± 2.5 | 50.1 ± 1.3 | 49.0 ± 1.5 | 49.8 ± 2.1 | |
PLT (×109/L) | 493.1 ± 57.3 | 474.7 ± 48.5 | 508.7 ± 63.0 | 473.0 ± 56.1 | |
Lymphocytes (×109/L) | 1.7 ± 1.0 | 1.8 ± 0.1 | 1.5 ± 0.6 | 1.8 ± 0.9 | |
MCHC (g/L) | 286.7 ± 11.6 | 287.7 ± 8.9 | 287.2 ± 13.2 | 290.3 ± 12.3 | |
MCH (pg) | 14.4 ± 0.6 | 14.4 ± 0.5 | 14.1 ± 0.6 | 14.4 ± 0.3 |
Groups | Indicators | Saline | Low Dosage | Medium Dosage | High Dosage | ||||
---|---|---|---|---|---|---|---|---|---|
Serum | Liver | Serum | Liver | Serum | Liver | Serum | Liver | ||
Acute toxicity | BG (mmol/L) | 8.4 ± 1.7 | 9.1 ± 2.2 | 8.9 ± 1.6 | 8.9 ± 1.7 | 8.4 ± 1.5 | 9.4 ± 1.8 | 8.6 ± 1.8 | 9.1 ± 1.9 |
TGs (mmol/L) | 1.5 ± 0.8 | 0.4 ± 0.07 | 1.5 ± 0.7 | 0.4 ± 0.12 | 1.4 ± 0.6 | 0.4 ± 0.04 | 1.6 ± 0.7 | 0.4 ± 0.05 | |
TC (mmol/L) | 5.9 ± 2.1 | 0.03 ± 0.01 | 6.4 ± 2.8 | 0.03 ± 0.01 | 6.6 ± 1.6 | 0.03 ± 0.01 | 6.4 ± 1.4 | 0.03 ± 0.01 | |
BA (μmol/L) | 3.0 ± 0.8 | 56.2 ± 35.7 | 3.0 ± 0.6 | 50.1 ± 28.9 | 2.7 ± 0.7 | 52.4 ± 28.4 | 2.8 ± 0.4 | 56.6 ± 38.0 | |
TP (μg/mL) | 261.4 ± 24.6 | 775.5 ± 74.0 | 289.6 ± 22.8 | 755.3 ± 80.0 | 267.7 ± 25.7 | 769.2 ± 70.6 | 285.1 ± 35.2 | 772.4 ± 69.2 | |
ALT (U/L) | 15.3 ± 6.5 | 9.1 ± 4.7 | 18.8 ± 5.5 | 9.4 ± 3.7 | 15.9 ± 6.2 | 9.8 ± 1.7 | 16.8± 6.4 | 9.3 ± 3.7 | |
AST (U/L) | 46.9 ± 9.1 | 10.1 ± 2.1 | 49.9 ± 8.4 | 8.9 ± 2.9 | 49.1 ± 5.1 | 9.4 ± 2.5 | 49.7 ± 4.8 | 9.0 ± 2.4 | |
Cr (μmol/L) | 17.5 ± 5.1 | - | 23.1 ± 7.6 | - | 24.7 ± 8.8 | - | 18.8 ± 6.6 | - | |
BUN (mmol/L) | 5.3 ± 1.7 | - | 5.0 ± 1.9 | - | 5.2 ± 1.7 | - | 5.1 ± 1.5 | - | |
Subchronic toxicity | BG (mmol/L) | 8.4 ± 1.5 | 12.4 ± 0.9 | 7.9 ± 1.3 | 12.6 ± 1.6 | 8.5 ± 1.6 | 11.8 ± 1.7 | 8.3 ± 1.2 | 11.7 ± 1.6 |
TGs (mmol/L) | 1.1 ± 0.5 | 1.8 ± 0.8 | 1.2 ± 0.3 | 2.0 ± 0.7 | 1.0 ± 0.3 | 2.0 ± 0.8 | 1.3 ± 0.6 | 2.1 ± 0.9 | |
TC (mmol/L) | 2.0 ± 0.8 | 0.2 ± 0.1 | 2.0 ± 0.3 | 0.2 ± 0.1 | 2.0 ± 0.8 | 0.2 ± 0.1 | 2.3 ± 0.7 | 0.2 ± 0.1 | |
BA (μmol/L) | 5.3 ± 1.7 | 2.7 ± 1.4 | 5.1 ± 2.1 | 2.1 ± 1.1 | 5.6 ± 2.5 | 2.5 ± 1.9 | 5.7 ± 2.5 | 2.3 ± 1.4 | |
TP (μg/mL) | 1516 ± 363.7 | 621.7 ± 110.3 | 1484 ± 306.8 | 672.2± 121.7 | 1456 ± 303.2 | 639.1 ± 85.1 | 1573 ± 272.8 | 622.7 ± 74.2 | |
ALT (U/L) | 10.1 ± 1.9 | 9.6 ± 2.7 | 11.3 ± 1.6 | 9.2 ± 2.2 | 12.3 ± 1.1 | 9.4 ± 2.6 | 11.9 ± 1.9 | 9.7 ± 2.6 | |
AST (U/L) | 48.5 ± 6.2 | 278.2 ± 27.8 | 47.4 ± 9.0 | 267.3 ± 26.9 | 51.9 ± 5.1 | 272.2 ± 33.8 | 45.9 ± 8.8 | 280.4 ± 30.9 | |
Cr (μmol/L) | 13.9 ± 3.9 | - | 12.7 ± 2.3 | - | 12.8 ± 5.8 | - | 14.5 ± 3.4 | - | |
BUN (mmol/L) | 3.7 ± 0.7 | - | 3.8 ± 0.9 | - | 3.4 ± 0.4 | - | 3.4 ± 0.6 | - |
Heart | Liver | Spleen | Kidney | Thymus | Brain | Testicle | lung | Stomach | Intestines | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Acute toxicity | Saline | 5.8 ± 1.1 | 43.9 ± 7.5 | 2.5 ± 0.4 | 13.6 ± 2.5 | 2.9 ± 0.6 | 10.5± 1.5 | 6.2 ± 0.4 | 6.1 ± 0.9 | 19.3 ± 6.7 | 100.5 ± 10.6 |
Low dosage | 5.5 ± 1.1 | 46.8 ± 5.8 | 2.7± 0.9 | 14.0 ± 2.6 | 2.8 ± 0.5 | 11.2± 0.8 | 5.8 ± 0.3 | 5.7 ± 0.5 | 19.0 ± 2.2 | 101.2 ± 4.4 | |
Medium dosage | 5.7 ± 0.9 | 47.4 ± 7.7 | 2.6 ± 0.3 | 14.6 ± 3.1 | 2.7 ± 0.3 | 9.9 ± 0.5 | 6.5 ± 0.6 | 6.4 ± 0.7 | 21.3 ± 5.4 | 97.9 ± 5.7 | |
High dosage | 5.6 ± 1.5 | 49.9 ± 5.0 | 2.1 ± 0.8 | 13.4 ± 3.3 | 3.0 ± 0.2 | 10.6 ± 1.8 | 5.9± 0.6 | 5.9± 0.7 | 18.8 ± 5.5 | 100.4 ± 10.7 | |
Subchronic toxicity | Saline | 4.7 ± 0.4 | 39.6± 4.3 | 2.4 ± 0.7 | 11.2± 1.6 | 2.6 ± 0.8 | 9.4 ± 3.5 | 5.8 ± 1.1 | 5.8± 0.4 | 14.8 ± 5.9 | 77.4 ± 10.3 |
Low dosage | 4.7 ± 0.8 | 42.3 ± 5.0 | 2.7 ± 0.4 | 11.7± 0.9 | 2.8 ± 0.4 | 9.9 ± 1.6 | 5.9 ± 0.6 | 5.6 ± 0.5 | 14.6 ± 3.5 | 74.7 ± 9.7 | |
Medium dosage | 4.6 ± 0.4 | 39.9± 6.4 | 2.5 ± 0.9 | 10.1 ± 3.9 | 2.5 ± 0.5 | 8.9 ± 2.2 | 5.5 ± 0.6 | 5.4 ± 0.5 | 15.3 ± 4.9 | 79.3 ± 14.4 | |
High dosage | 4.6 ± 0.5 | 38.9 ± 3.2 | 2.7 ± 0.7 | 11.5± 1.0 | 2.7 ± 0.7 | 9.2 ± 1.9 | 5.3 ± 0.4 | 5.6 ± 0.6 | 14.4 ± 5.1 | 75.5 ± 14.8 |
Group | PCE (%) | NCE Ratio | PCE Ratio |
---|---|---|---|
Negative control group | 36.34 ± 4.63 | 0.06 ± 0.09 | 0.09 ± 0.04 |
Low dose group | 39.73 ± 5.62 | 0.02 ± 0.09 | 0.12 ± 0.04 |
Mid dose group | 32.54 ± 5.79 | 0.03 ± 0.06 | 0.10 ± 0.09 |
High dose group | 31.75 ± 6.74 | 0.03 ± 0.02 | 0.14 ± 0.03 |
Positive control group | 24.6 ± 5.90 | 0.33 ± 0.10 *** | 4.76 ± 2.13 *** |
Concentrations | Revertant Colonies per Plate (Mean ± Standard Deviation) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Salmonella typhimurium | Escherichia coli | |||||||||
TA97a | TA98 | TA100 | TA1535 | WP2 uvr A | ||||||
−S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | |
Distilled water control | 122.00 ± 30.68 | 126.20 ± 22.13 | 41.40 ± 8.11 | 35.00 ± 6.40 | 144.60 ± 25.52 | 109.00 ± 43.81 | 12.00 ± 4.42 | 16.00 ± 6.52 | 122.40 ± 19.36 | 162.00 ± 32.41 |
AKK ONE | 85.60 ± 14.54 | 99.20 ± 19.87 | 38.20 ± 12.09 | 34.00 ± 4.80 | 71.20 ± 9.58 | 62.00 ± 11.81 | 13.20 ± 4.49 | 13.00 ± 3.39 | 113.00 ± 13.91 | 134.20 ± 27.10 |
Dixon | 1169.40 ± 181.47 | - | 1525.00 ± 271.69 | - | - | - | - | - | - | - |
Sodium azide | - | - | - | - | 1347.00 ± 202.27 | - | - | - | 613.40 ± 61.99 | - |
Methyl methylsulfonate | - | - | - | - | - | - | 141.80 ± 26.63 | - | - | - |
2-aminofluorene | - | 1288.40 ± 296.29 | - | 1398.60 ± 309.13 | - | 1247.40 ± 59.71 | - | 163.20 ± 9.98 | - | 548.60 ± 111.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, N.; Wang, C.; Zhou, H.; Ma, X.; Yu, X.; Ren, D. Genome- and Toxicology-Based Safety Assessment of Probiotic Akkermansia muciniphila ONE Isolated from Humans. Foods 2024, 13, 1979. https://doi.org/10.3390/foods13131979
Lv N, Wang C, Zhou H, Ma X, Yu X, Ren D. Genome- and Toxicology-Based Safety Assessment of Probiotic Akkermansia muciniphila ONE Isolated from Humans. Foods. 2024; 13(13):1979. https://doi.org/10.3390/foods13131979
Chicago/Turabian StyleLv, Na, Caiping Wang, Hongtao Zhou, Xin Ma, Xueping Yu, and Dayong Ren. 2024. "Genome- and Toxicology-Based Safety Assessment of Probiotic Akkermansia muciniphila ONE Isolated from Humans" Foods 13, no. 13: 1979. https://doi.org/10.3390/foods13131979
APA StyleLv, N., Wang, C., Zhou, H., Ma, X., Yu, X., & Ren, D. (2024). Genome- and Toxicology-Based Safety Assessment of Probiotic Akkermansia muciniphila ONE Isolated from Humans. Foods, 13(13), 1979. https://doi.org/10.3390/foods13131979