A Comparative Study of Encapsulation of β-Carotene via Spray-Drying and Freeze-Drying Techniques Using Pullulan and Whey Protein Isolate as Wall Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of β-Carotene Emulsions for Spray Drying and Freeze Drying
2.3. Characterization of the β-Carotene Emulsions
2.4. Encapsulation of β-Carotene
2.4.1. Spray Drying
2.4.2. Freeze Drying
2.5. Characterization of Encapsulants
2.5.1. Encapsulation Efficiency
2.5.2. Yield of Encapsulation Process (Y)
2.5.3. Scanning Electron Microscopy (SEM)
2.5.4. Attenuated Total Reflectance Infrared Spectroscopy (ATR-FTIR)
2.5.5. Moisture Sorption Isotherms
2.5.6. Differential Scanning Calorimetry (DSC)
2.6. Storage Stability
2.7. Photostability by UV–Vis Irradiation
2.8. Experimental Design and Statistical Analysis
3. Results & Discussion
3.1. Optimization of Encapsulation Efficiency (EE, %) of SP Encapsulants Using RSM
3.2. Fitting Model to Data
3.3. Three-Dimensional Response Surface Plots for EE of SP
3.4. Comparison of EE and Y of SP and FZ Encapsulants
3.5. Morphological Characterization of SP and FZ Encapsulants
3.6. ATR-FTIR Analysis of SP and FZ Encapsulants
3.7. Water Adsorption Behavior
3.8. Glass Transition Temperature
3.9. Storage Stability of SP and FZ Encapsulants under Different aw and Temperature Conditions
3.10. Degradation Rates in Relation to Storage Temperature
3.11. Photostability of SP and FZ Encapsulants
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garza-Cadena, C.; Ortega-Rivera, D.M.; Machorro-García, G.; Gonzalez-Zermeño, E.M.; Homma-Dueñas, D.; Plata-Gryl, M.; Castro-Muñoz, R. A comprehensive review on Ginger (Zingiber officinale) as a potential source of nutraceuticals for food formulations: Towards the polishing of gingerol and other present biomolecules. Food Chem. 2023, 413, 135629. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Correa-Delgado, M.; Córdova-Almeida, R.; Lara-Nava, D.; Chávez-Muñoz, M.; Velásquez-Chávez, V.F.; Hernández-Torres, C.E.; Gontarek-Castro, E.; Ahmad, M.Z. Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chem. 2022, 370, 130991. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs. Crit. Rev. Food Sci. Nutr. 2022, 62, 1999–2049. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.-S.; Lee, J.-H. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—A Review of Recent Advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef]
- Gul, K.; Tak, A.; Singh, A.K.; Singh, P.; Yousuf, B.; Wani, A.A. Chemistry, encapsulation, and health benefits of β-carotene—A review. Cogent Food Agric. 2015, 1, 1018696. [Google Scholar] [CrossRef]
- Akram, S.; Mushtaq, M.; Waheed, A. Chapter 1—β-Carotene: Beyond provitamin A. In A Centum of Valuable Plant Bioactives; Mushtaq, M., Anwar, F., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–31. [Google Scholar]
- Ge, W.; Li, D.; Chen, M.; Wang, X.; Liu, S.; Sun, R. Characterization and antioxidant activity of β-carotene loaded chitosan-graft-poly(lactide) nanomicelles. Carbohydr. Polym. 2015, 117, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, N. Research Trends in the Dominating Microalgal Pigments, β-carotene, Astaxanthin, and Phycocyanin Used in Feed, in Foods, and in Health Applications. J. Nutr. Food Sci. 2016, 6, 507. [Google Scholar] [CrossRef]
- Drosou, C.; Krokida, M.; Biliaderis, C.G. Encapsulation of β-carotene into food-grade nanofibers via coaxial electrospinning of hydrocolloids: Enhancement of oxidative stability and photoprotection. Food Hydrocoll 2022, 133, 107949. [Google Scholar] [CrossRef]
- Eun, J.-B.; Maruf, A.; Das, P.R.; Nam, S.-H. A review of encapsulation of carotenoids using spray drying and freeze drying. Crit. Rev. Food Sci. Nutr. 2020, 60, 3547–3572. [Google Scholar] [CrossRef]
- Elik, A.; Koçak Yanık, D.; Göğüş, F. A comparative study of encapsulation of carotenoid enriched-flaxseed oil and flaxseed oil by spray freeze-drying and spray drying techniques. LWT 2021, 143, 111153. [Google Scholar] [CrossRef]
- Santos, P.D.d.F.; Rubio, F.T.V.; Balieiro, J.C.d.C.; Thomazini, M.; Favaro-Trindade, C.S. Application of spray drying for production of microparticles containing the carotenoid-rich tucumã oil (Astrocaryum vulgare Mart.). LWT 2021, 143, 111106. [Google Scholar] [CrossRef]
- Fang, S.; Zhao, X.; Liu, Y.; Liang, X.; Yang, Y. Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocoll. 2019, 93, 102–110. [Google Scholar] [CrossRef]
- Lim, A.S.L.; Roos, Y.H. Spray drying of high hydrophilic solids emulsions with layered interface and trehalose-maltodextrin as glass formers for carotenoids stabilization. J. Food Eng. 2016, 171, 174–184. [Google Scholar] [CrossRef]
- Sansone, F.; Esposito, T.; Mencherini, T.; Del Prete, F.; Cannoniere, A.L.; Aquino, R.P. Exploring microencapsulation potential: Multicomponent spray dried delivery systems for improvement of Chlorella vulgaris extract preservation and solubility. Powder Technol. 2023, 429, 118882. [Google Scholar] [CrossRef]
- Šeregelj, V.; Ćetković, G.; Čanadanović-Brunet, J.; Šaponjac, V.T.; Vulić, J.; Lević, S.; Nedović, V.; Brandolini, A.; Hidalgo, A. Encapsulation of carrot waste extract by freeze and spray drying techniques: An optimization study. LWT 2021, 138, 110696. [Google Scholar] [CrossRef]
- Coelho, L.M.; Gonçalves, I.; Ferreira, P.; Pinheiro, A.C.; Vicente, A.A.; Martins, J.T. Exploring the performance of amaranth grain starch and protein microcapsules as β-carotene carrier systems for food applications. Food Struct. 2022, 33, 100287. [Google Scholar] [CrossRef]
- Cao, L.; Xu, Q.; Xing, Y.; Guo, X.; Li, W.; Cai, Y. Effect of skimmed milk powder concentrations on the biological characteristics of microencapsulated Saccharomyces cerevisiae by vacuum-spray-freeze-drying. Dry. Technol. 2020, 38, 476–494. [Google Scholar] [CrossRef]
- Chen, J.; Li, F.; Li, Z.; McClements, D.J.; Xiao, H. Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocoll. 2017, 69, 49–55. [Google Scholar] [CrossRef]
- Constantino, A.B.T.; Garcia-Rojas, E.E. Microencapsulation of beta-carotene by complex coacervation using amaranth carboxymethyl starch and lactoferrin for application in gummy candies. Food Hydrocoll. 2023, 139, 108488. [Google Scholar] [CrossRef]
- Lim, A.S.L.; Burdikova, Z.; Sheehan, J.J.; Roos, Y.H. Carotenoid stability in high total solid spray dried emulsions with gum Arabic layered interface and trehalose–WPI composites as wall materials. Innov. Food Sci. Emerg. Technol. 2016, 34, 310–319. [Google Scholar] [CrossRef]
- Lavelli, V.; Sereikaitė, J. Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods 2022, 11, 437. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Yáñez-Fernández, J. Use of gelatin-maltodextrin composite as an encapsulation support for clarified juice from purple cactus pear (Opuntia stricta). LWT-Food Sci. Technol. 2015, 62, 242–248. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Sun, H.; Zhang, J.; Cai, C.; Xu, N.; Feng, J.; Nan, B.; Wang, Y.; Liu, J. Whey protein concentrate/pullulan gel as a novel microencapsulated wall material for astaxanthin with improving stability and bioaccessibility. Food Hydrocoll. 2023, 138, 108467. [Google Scholar] [CrossRef]
- Niu, B.; Shao, P.; Feng, S.; Qiu, D.; Sun, P. Rheological aspects in fabricating pullulan-whey protein isolate emulsion suitable for electrospraying: Application in improving β-carotene stability. LWT 2020, 129, 109581. [Google Scholar] [CrossRef]
- Drosou, C.; Krokida, M.; Biliaderis, C.G. Composite pullulan-whey protein nanofibers made by electrospinning: Impact of process parameters on fiber morphology and physical properties. Food Hydrocoll 2018, 77, 726–735. [Google Scholar] [CrossRef]
- Oikonomopoulou, V.; Stramarkou, M.; Plakida, A.; Krokida, M. Optimization of encapsulation of stevia glycosides through electrospraying and spray drying. Food Hydrocoll. 2022, 131, 107854. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Berg, C.v.d.; Bruin, S.C. Water activity and its estimation in food systems: Theoretical aspects. In Water Activity: Influences on Food Quality; Rockland, L.B., Stewart, G.F., Eds.; Academic Press: Amsterdam, The Netherlands, 1981; pp. 1–61. [Google Scholar] [CrossRef]
- Mohammed, N.K.; Tan, C.P.; Manap, Y.A.; Alhelli, A.M.; Hussin, A.S.M. Process conditions of spray drying microencapsulation of Nigella sativa oil. Powder Technol. 2017, 315, 1–14. [Google Scholar] [CrossRef]
- Sablania, V.; Bosco, S.J.D. Optimization of spray drying parameters for Murraya koenigii (Linn) leaves extract using response surface methodology. Powder Technol. 2018, 335, 35–41. [Google Scholar] [CrossRef]
- Jain, A.; Thakur, D.; Ghoshal, G.; Prakash, O.; Shivhare, U. Microencapsulation by Complex Coacervation Using Whey Protein Isolates and Gum Acacia: An Approach to Preserve the Functionality and Controlled Release of β-Carotene. Food Bioprocess Technol. 2015, 8, 1635–1644. [Google Scholar] [CrossRef]
- Fan, Y.; Yi, J.; Zhang, Y.; Wen, Z.; Zhao, L. Physicochemical stability and in vitro bioaccessibility of β-carotene nanoemulsions stabilized with whey protein-dextran conjugates. Food Hydrocoll. 2017, 63, 256–264. [Google Scholar] [CrossRef]
- Ferraz, M.C.; Procopio, F.R.; Furtado, G.d.F.; Hubinger, M.D. Co-encapsulation of paprika and cinnamon oleoresin by spray drying using whey protein isolate and maltodextrin as wall material: Development, characterization and storage stability. Food Res. Int. 2022, 162, 112164. [Google Scholar] [CrossRef] [PubMed]
- Corrêa-Filho, L.C.; Lourenço, M.M.; Moldão-Martins, M.; Alves, V.D. Microencapsulation of β-Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature. Int. J. Food Sci. 2019, 2019, 8914852. [Google Scholar] [CrossRef] [PubMed]
- de Barros Fernandes, R.V.; Marques, G.R.; Borges, S.V.; Botrel, D.A. Effect of solids content and oil load on the microencapsulation process of rosemary essential oil. Ind. Crops Prod. 2014, 58, 173–181. [Google Scholar] [CrossRef]
- Zahran, H.A.; Catalkaya, G.; Yenipazar, H.; Capanoglu, E.; Şahin-Yeşilçubuk, N. Determination of the Optimum Conditions for Emulsification and Encapsulation of Echium Oil by Response Surface Methodology. ACS Omega 2023, 8, 28249–28257. [Google Scholar] [CrossRef] [PubMed]
- Carmona, P.A.O.; Garcia, L.C.; Ribeiro, J.A.d.A.; Valadares, L.F.; Marçal, A.d.F.; de França, L.F.; Mendonça, S. Effect of Solids Content and Spray-Drying Operating Conditions on the Carotenoids Microencapsulation from Pressed Palm Fiber Oil Extracted with Supercritical CO2. Food Bioprocess Technol. 2018, 11, 1703–1718. [Google Scholar] [CrossRef]
- Fernandes, R.V.d.B.; Borges, S.V.; Botrel, D.A.; Silva, E.K.; Costa, J.M.G.d.; Queiroz, F. Microencapsulation of Rosemary Essential Oil: Characterization of Particles. Drying Technol. 2013, 31, 1245–1254. [Google Scholar] [CrossRef]
- Čulina, P.; Zorić, Z.; Garofulić, I.E.; Repajić, M.; Dragović-Uzelac, V.; Pedisić, S. Optimization of the Spray-Drying Encapsulation of Sea Buckthorn Berry Oil. Foods 2023, 12, 2448. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Tang, Z.; Huang, Q.; Xu, X.; Cheng, X.; Zhang, G.; Jing, X.; Li, X.; Liang, J.; Granato, D.; et al. Effects of spray drying temperature on physicochemical properties of grapeseed oil microcapsules and the encapsulation efficiency of pterostilbene. LWT 2024, 193, 115779. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, W.; Wei, Y.; Tong, Z.; Wang, Y.; Gao, Y. Fabrication, characterization and in vitro digestion of food-grade β-carotene high loaded microcapsules: A wet-milling and spray drying coupling approach. LWT 2021, 151, 112176. [Google Scholar] [CrossRef]
- Drosou, C.G.; Krokida, M.K.; Biliaderis, C.G. Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technol. 2017, 35, 139–162. [Google Scholar] [CrossRef]
- González-Ortega, R.; Faieta, M.; Di Mattia, C.D.; Valbonetti, L.; Pittia, P. Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. J. Food Eng. 2020, 285, 110089. [Google Scholar] [CrossRef]
- Fioramonti, S.A.; Rubiolo, A.C.; Santiago, L.G. Characterisation of freeze-dried flaxseed oil microcapsules obtained by multilayer emulsions. Powder Technol. 2017, 319, 238–244. [Google Scholar] [CrossRef]
- Al-Maqtari, Q.A.; Mohammed, J.K.; Mahdi, A.A.; Al-Ansi, W.; Zhang, M.; Al-Adeeb, A.; Wei, M.; Phyo, H.M.; Yao, W. Physicochemical properties, microstructure, and storage stability of Pulicaria jaubertii extract microencapsulated with different protein biopolymers and gum arabic as wall materials. Int. J. Biol. Macromol. 2021, 187, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, J.K.; Mahdi, A.A.; Ma, C.; Elkhedir, A.E.; Al-Maqtari, Q.A.; Al-Ansi, W.; Mahmud, A.; Wang, H. Application of argun fruit polysaccharide in microencapsulation of Citrus aurantium L. essential oil: Preparation, characterization, and evaluating the storage stability and antioxidant activity. J. Food Meas. Charact. 2021, 15, 155–169. [Google Scholar] [CrossRef]
- Misra, S.; Pandey, P.; Panigrahi, C.; Mishra, H.N. A comparative approach on the spray and freeze drying of probiotic and Gamma-aminobutyric acid as a single entity: Characterization and evaluation of stability in simulated gastrointestinal conditions. Food Chem. Advances 2023, 3, 100385. [Google Scholar] [CrossRef]
- Cabuk, B.; Harsa, S. Whey Protein-Pullulan (WP/Pullulan) Polymer Blend for Preservation of Viability of Lactobacillus acidophilus. Dry. Technol. 2015, 33, 150505120450007. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Shi, J.; Huang, X.; Peng, Q.; Xue, F. Encapsulation of tomato oleoresin using soy protein isolate-gum aracia conjugates as emulsifier and coating materials. Food Hydrocoll. 2015, 45, 301–308. [Google Scholar] [CrossRef]
- Teo, A.; Lam, Y.; Lee, S.J.; Goh, K.K.T. Spray drying of whey protein stabilized nanoemulsions containing different wall materials—Maltodextrin or trehalose. LWT 2021, 136, 110344. [Google Scholar] [CrossRef]
- Mihalcea, L.; Turturica, M.; Ghinea, I.; Barbu, V.; Enachi, E.; Cotarlet, M.; Nicoleta, S. Encapsulation of carotenoids from sea buckthorn extracted by CO2 supercritical fluids method within whey proteins isolates matrices. Innov. Food Sci. Emerg. Technol. 2017, 42, 120–129. [Google Scholar] [CrossRef]
- Sota-Uba, I.; Bamidele, M.; Moulton, J.; Booksh, K.; Lavine, B.K. Authentication of edible oils using Fourier transform infrared spectroscopy and pattern recognition methods. Chemom. Intellig. Lab. Syst. 2021, 210, 104251. [Google Scholar] [CrossRef]
- Stępień, A.; Witczak, M.; Witczak, T. Moisture sorption characteristics of food powders containing freeze dried avocado, maltodextrin and inulin. Int. J. Biol. Macromol. 2020, 149, 256–261. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Singh, A.K.; Kumar, D.; Sharma, H. Effect of spray and freeze drying on physico-chemical, functional, moisture sorption and morphological characteristics of camel milk powder. LWT 2020, 134, 110117. [Google Scholar] [CrossRef]
- Pavón-García, L.M.A.; Pérez-Alonso, C.; Orozco-Villafuerte, J.; Pimentel-González, D.J.; Rodríguez-Huezo, M.E.; Vernon-Carter, E.J. Storage stability of the natural colourant from Justicia spicigera microencapsulated in protective colloids blends by spray-drying. Int. J. Food Sci. Technol. 2011, 46, 1428–1437. [Google Scholar] [CrossRef]
- Carmo, E.L.d.; Teodoro, R.A.R.; Félix, P.H.C.; Fernandes, R.V.d.B.; Oliveira, É.R.d.; Veiga, T.R.L.A.; Borges, S.V.; Botrel, D.A. Stability of spray-dried beetroot extract using oligosaccharides and whey proteins. Food Chem 2018, 249, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Djendoubi Mrad, N.; Bonazzi, C.; Courtois, F.; Kechaou, N.; Boudhrioua Mihoubi, N. Moisture desorption isotherms and glass transition temperatures of osmo-dehydrated apple and pear. Food Bioprod. Process. 2013, 91, 121–128. [Google Scholar] [CrossRef]
- Muzaffar, K.; Kumar, P. Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technol. 2016, 291, 322–327. [Google Scholar] [CrossRef]
- García, L.; Cova, A.; Sandoval, A.J.; Müller, A.J.; Carrasquel, L.M. Glass transition temperatures of cassava starch–whey protein concentrate systems at low and intermediate water content. Carbohydr. Polym. 2012, 87, 1375–1382. [Google Scholar] [CrossRef]
- Guadarrama-Lezama, A.; Jaramillo-Flores, M.; Gutiérrez-López, G.; Pérez-Alonso, C.; Dorantes, L.; Alamilla-Beltrán, L. Effects of Storage Temperature and Water Activity on the Degradation of Carotenoids Contained in Microencapsulated Chili Extract. Drying Technol. 2014, 32, 1435–1447. [Google Scholar] [CrossRef]
- Sutter, S.C.; Buera, M.P.; Elizalde, B.E. β-Carotene encapsulation in a mannitol matrix as affected by divalent cations and phosphate anion. Int. J. Pharm. 2007, 332, 45–54. [Google Scholar] [CrossRef]
- Mahfoudhi, N.; Hamdi, S. Kinetic Degradation and Storage Stability of β-Carotene Encapsulated by Freeze-Drying Using Almond Gum and Gum Arabic as Wall Materials. J. Food Process. Preserv. 2015, 39, 896–906. [Google Scholar] [CrossRef]
- Haas, K.; Obernberger, J.; Zehetner, E.; Kiesslich, A.; Volkert, M.; Jaeger, H. Impact of powder particle structure on the oxidation stability and color of encapsulated crystalline and emulsified carotenoids in carrot concentrate powders. J. Food Eng. 2019, 263, 398–408. [Google Scholar] [CrossRef]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D.; Stathopoulos, C.E. A storage study of encapsulated gac (Momordica cochinchinensis) oil powder and its fortification into foods. Food Bioprod. Process. 2015, 96, 113–125. [Google Scholar] [CrossRef]
- Spada, J.C.; Noreña, C.P.Z.; Marczak, L.D.F.; Tessaro, I.C. Study on the stability of β-carotene microencapsulated with pinhão (Araucaria angustifolia seeds) starch. Carbohydr. Polym. 2012, 89, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Indrawati, R.; Sukowijoyo, H.; Indriatmoko; Wijayanti, R.D.E.; Limantara, L. Encapsulation of Brown Seaweed Pigment by Freeze Drying: Characterization and its Stability during Storage. Procedia Chem. 2015, 14, 353–360. [Google Scholar] [CrossRef]
- Chiu, Y.T.; Chiu, C.P.; Chien, J.T.; Ho, G.H.; Yang, J.; Chen, B.H. Encapsulation of Lycopene Extract from Tomato Pulp Waste with Gelatin and Poly(γ-glutamic acid) as Carrier. J. Agric. Food Chem. 2007, 55, 5123–5130. [Google Scholar] [CrossRef] [PubMed]
- Sarpong, F.; Zhou, C.; Bai, J.; Amenorfe, L.P.; Golly, M.K.; Ma, H. Modeling of drying and ameliorative effects of relative humidity (RH) against β-carotene degradation and color of carrot (Daucus carota var.) slices. Food Sci. Biotechnol. 2019, 28, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Cano-Higuita, D.M.; Malacrida, C.R.; Telis, V.R.N. Stability of Curcumin Microencapsulated by Spray and Freeze Drying in Binary and Ternary Matrices of Maltodextrin, Gum Arabic and Modified Starch. J. Food Process. Preserv. 2015, 39, 2049–2060. [Google Scholar] [CrossRef]
- Barbosa, M.I.M.J.; Borsarelli, C.D.; Mercadante, A.Z. Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Res. Int. 2005, 38, 989–994. [Google Scholar] [CrossRef]
- Hojjati, M.; Razavi, S.H.; Rezaei, K.; Gilani, K. Spray drying microencapsulation of natural canthaxantin using soluble soybean polysaccharide as a carrier. Food Sci. Biotechnol. 2011, 20, 63–69. [Google Scholar] [CrossRef]
- Ranveer, D.R.; Gatade, A.; Kamble, H.; Sahoo, A. Microencapsulation and Storage Stability of Lycopene Extracted from Tomato Processing Waste. Braz. Arch. Biol. Technol. 2015, 58, 953–960. [Google Scholar] [CrossRef]
Variable Levels | Observed Values | |||
---|---|---|---|---|
Run | X1 (Emulsion Concentration, % w/w) | X2 (Emulsion Flow Rate, mL/h) | X3 (Inlet Temperature, °C) | EE (%) |
1 | 4 | 200 | 160 | 63.07 ± 0.50 g |
2 | 4 | 800 | 160 | 66.02 ± 0.74 e |
3 | 4 | 500 | 170 | 64.13 ± 0.59 f |
4 | 4 | 200 | 180 | 62.00 ± 0.25 h |
5 | 4 | 800 | 180 | 66.14 ± 0.34 e |
6 | 6 | 500 | 160 | 83.62 ± 0.47 a |
7 | 6 | 200 | 170 | 73.82 ± 0.36 c |
8 | 6 | 500 | 170 | 83.54 ± 0.57 a |
9 | 6 | 500 | 170 | 83.54 ± 0.57 a |
10 | 6 | 800 | 170 | 75.50 ± 0.89 b |
11 | 6 | 500 | 180 | 73.70 ± 0.26 c |
12 | 8 | 200 | 160 | 73.12 ± 0.35 c,d |
13 | 8 | 800 | 160 | 72.87 ± 0.65 c,d |
14 | 8 | 500 | 170 | 73.08 ± 0.47 c,d |
15 | 8 | 200 | 180 | 72.72 ± 0.16 d |
16 | 8 | 800 | 180 | 75.42 ± 0.62 b |
Source | Coefficients | Standard Error | Sum of Squares | DF | Mean Square | F-Value |
---|---|---|---|---|---|---|
Model | 421.50 | 271.47 | 234,345.29 | 10 | 23,434.53 | 3407.19 *** |
X1 | 25.53 | 5.38 | 630.65 | 1 | 630.65 | 91.69 *** |
X2 | 0.01 | 0.03 | 37.75 | 1 | 37.75 | 5.49 * |
X3 | −4.97 | 3.22 | 22.73 | 1 | 22.73 | 3.30 NS |
X12 | −2.17 | 0.24 | 580.98 | 1 | 580.98 | 84.47 *** |
X22 | 0.00 | 0.00 | 53.28 | 1 | 53.28 | 7.75 ** |
X32 | 0.01 | 0.01 | 14.61 | 1 | 14.61 | 2.12 NS |
X1X2 | 0.00 | 0.00 | 8.10 | 1 | 8.10 | 1.18 NS |
X1X3 | 0.02 | 0.03 | 3.57 | 1 | 3.57 | 0.52 NS |
X2X3 | 0.00 | 0.00 | 6.44 | 1 | 6.44 | 0.94 NS |
Residual | 240.73 | 35 | 6.88 | |||
Total | 1849.09 | 44 |
Wall-Material Concentration (% w/w) | ESI (%) | d4,3 (μm) | Viscosity (mPa s) | SP-EE% | FZ-EE% | SP-Y% | FZ-Y% |
---|---|---|---|---|---|---|---|
4 | 97.6 ± 0.26 a | 1.82 ± 0.04 a | 36.20 ± 1.13 a | 64.13 ± 0.59 a | 61.62 ± 0.24 c | 71.22 a ± 0.38 | 81.14 a ± 0.21 |
6 | 100 ± 0.00 b | 1.75 ± 0.12 a | 90.30 ± 1.27 b | 83.54 ± 0.57 b | 66.48 ± 0.63 b | 72.39 a ± 0.87 | 82.48 a ± 1.46 |
8 | 100 ± 0.00 b | 1.58 ± 0.06 b | 435.80 ± 1.26 c | 73.08 ± 0.47 c | 70.98 ± 0.87 a | 73.85 a ± 1.39 | 84.04 a ± 2.56 |
Emulsion Concentration (% w/w) | SP | FZ | Main Characteristics |
---|---|---|---|
4 | Mean diameter: 4.04 ± 1.64 μm, smooth, spherical particles with no cracks (SP); porous, amorphous structure (FZ). | ||
6 | Mean diameter: 5.67 ± 2.02 μm, slight increase in particle size, maintained structural integrity (SP); maintained porous, amorphous structure (FZ). | ||
8 | Mean diameter: 7.19 ± 2.73 μm, larger particles with occasional surface dents (SP); maintained porous, amorphous structure (FZ) |
BET (aw = 0.11–0.64) | GAB (aw = 0.11–0.94) | ||||||
---|---|---|---|---|---|---|---|
Temperature/ Encapsulation Technique | mm (g H2O per 100 g Dry Weight) | K | R2 | mm (g H2O per 100 g Dry Weight) | K′ | C | R2 |
25 °C | |||||||
SP | 3.85 | 31.28 | 0.94 | 3.72 | 0.86 | 76.84 | 0.99 |
FZ | 4.75 | 78.67 | 0.99 | 4.88 | 0.80 | 62.66 | 0.99 |
35 °C | |||||||
SP | 3.50 | 38.84 | 0.95 | 3.65 | 0.82 | 57.00 | 0.99 |
FZ | 3.78 | 52.90 | 0.94 | 4.23 | 0.75 | 55.09 | 0.97 |
45 °C | |||||||
SP | 3.35 | 24.53 | 0.96 | 3.52 | 0.79 | 28.25 | 0.99 |
FZ | 3.44 | 64.35 | 0.96 | 4.46 | 0.63 | 36.84 | 0.98 |
k × 10−3 ± sk × 10−3 (day−1) | |||||
---|---|---|---|---|---|
Half-Life Period t1/2 (days) | |||||
Samples | 0.11 | 0.33 | 0.53 | 0.75 | 0.94 |
25 °C | |||||
SP | 0.6 ± 0.47 1,a | 0.7 ± 0.69 1,a | 12.8 ± 1.36 1,d | 3.7 ± 0.65 1,b | 7.6 ± 1.58 1,c |
911.91 | 713.21 | 37.84 | 181.26 | 89.94 | |
(0.94) | (0.89) | (0.99) | (0.95) | (0.99) | |
FZ | 1.1 ± 0.58 1,a | 9.5 ± 0.42 2,b | 92.8 ± 5.69 2,e | 15.8 ± 3.57 2,c | 32.3 ± 2.58 2,d |
130.77 | 58.08 | 8.92 | 33.47 | 17.16 | |
(0.72) | (0.98) | (0.98) | (0.93) | (0.97) | |
35 °C | |||||
SP | 2.5 ± 0.86 1,a | 6.6 ± 1.32 1,a,b | 28.7 ± 2.09 1,d | 10 ± 2.97 1,b | 15.6 ± 3.98 1,c |
276.18 | 103.63 | 24.86 | 71.97 | 44.78 | |
(0.99) | (0.99) | (0.97) | (0.98) | (0.98) | |
FZ | 8.6 ± 1.29 2,a | 22.9 ± 2.95 2,b | 165.1 ± 10.39 2,e | 43.1 ± 2.89 2,c | 82.7 ± 4.36 2,d |
77.23 | 30.52 | 4.30 | 15.47 | 7.69 | |
(0.94) | (0.98) | (0.99) | (0.97) | (0.96) | |
45 °C | |||||
SP | 20.6 ± 2.36 1,b | 13.8 ± 1.78 1,a | 34.8 ± 5.36 1,c | 17.9 ± 2.36 1,a,b | 58.8 ± 3.84 1,d |
39.63 | 45.50 | 17.88 | 48.06 | 9.11 | |
(0.98) | (0.99) | (0.99) | (0.97) | (0.97) | |
FZ | 24.4 ± 1.84 1,a | 28.5 ± 1.91 2,a | 395.0 ± 13.69 2,d | 90.6 ± 7.37 2,b | 120.6 ± 9.54 2,c |
13.56 | 29.85 | 1.95 | 8.35 | 7.06 | |
(0.89) | (0.96) | (0.97) | (0.99) | (0.96) |
Sample | k·10−3 ± sk·10−3 (h−1) | t1/2 (h) | R2 |
---|---|---|---|
β-carotene | 22.1 ± 1.49 c | 30.52 | 0.97 |
SP | 1.90 ± 0.23 a | 336.02 | 0.98 |
FZ | 5.30 ± 0.96 b | 102.44 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drosou, C.; Krokida, M. A Comparative Study of Encapsulation of β-Carotene via Spray-Drying and Freeze-Drying Techniques Using Pullulan and Whey Protein Isolate as Wall Material. Foods 2024, 13, 1933. https://doi.org/10.3390/foods13121933
Drosou C, Krokida M. A Comparative Study of Encapsulation of β-Carotene via Spray-Drying and Freeze-Drying Techniques Using Pullulan and Whey Protein Isolate as Wall Material. Foods. 2024; 13(12):1933. https://doi.org/10.3390/foods13121933
Chicago/Turabian StyleDrosou, Christina, and Magdalini Krokida. 2024. "A Comparative Study of Encapsulation of β-Carotene via Spray-Drying and Freeze-Drying Techniques Using Pullulan and Whey Protein Isolate as Wall Material" Foods 13, no. 12: 1933. https://doi.org/10.3390/foods13121933
APA StyleDrosou, C., & Krokida, M. (2024). A Comparative Study of Encapsulation of β-Carotene via Spray-Drying and Freeze-Drying Techniques Using Pullulan and Whey Protein Isolate as Wall Material. Foods, 13(12), 1933. https://doi.org/10.3390/foods13121933